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Preface and Overview

Everything Should Be Made as Simple as Possible, But Not
Simpler1

The purpose of this book is to give an introduction to the unbounded representation
theory of �-algebras on Hilbert space. As the title indicates, the book should be
considered as an invitation to this subject rather than a monograph or a compre-
hensive presentation.

Let us briefly explain the two main concepts explored in this book.
A complex �-algebra A is a complex algebra with an involution, denoted by

a 7! aþ . An involution is an antilinear mapping of A into itself which is
antimultiplicative (that is, ðabÞþ ¼ bþ aþ ) and involutive (that is, ðaþ Þþ ¼ a).
The complex conjugation of functions and the Hilbert space adjoint of operators are
standard examples of involutions.

Just as rings are studied in terms of their modules in algebra, it is natural to
investigate �-representations of �-algebras. Let D be a complex inner product space,
that is, D is a complex vector space equipped with an inner product h�; �i, and let H
be the corresponding Hilbert space completion. A �-representation of a �-algebra A
on D is an algebra homomorphism … of A into the algebra of linear operators on D
such that

h…ðaÞu;wi ¼ hu;…ðaþ Þwi; u;w 2 D; ð1Þ

for all a 2 A. In general, the operators …ðaÞ are unbounded. Equation (1) is crucial,
because it translates algebraic properties of elements of A into operator-theoretic
properties of their images under …. For instance, if a 2 A is hermitian (that is,
aþ ¼ a), then the operator …ðaÞ is symmetric, or if a is normal (that is,
aþ a ¼ aaþ ), then …ðaÞ is formally normal (that is, …ðaÞuk k ¼ …ðaþ Þuk k;
u 2 D). Since the closure of the symmetric operator …ðaÞ for a ¼ aþ on the Hilbert
space H is not necessarily self-adjoint, we are confronted with all the difficulties of
unbounded operator theory.

1Attributed to Albert Einstein.
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In quantum mechanics the canonical commutation relation

PQ� QP ¼ �i�hI ð2Þ

plays a fundamental role. Here P is the momentum operator, Q is the position
operator, and �h ¼ h

2… is the reduced Planck’s constant. Historically, relation (2) is
attributed to Max Born (1925)2. It implies Werner Heisenberg’s uncertainty prin-
ciple [Hg27]. Born and Jordan [BJ26] found a representation of (2) by infinite
matrices. Schrödinger [Schr26] discovered that the commutation relation (2) can be
represented by the unbounded operators P and Q, given by

ðQuÞðxÞ ¼ xuðxÞ and ðPuÞðxÞ ¼ �i�h
du
dx

; ð3Þ

acting on the Hilbert space L2ðRÞ. It was shown later by Wielandt [Wie49] and
Wintner [Wi47] that (2) cannot be realized by bounded operators. For the mathe-
matical treatment of the canonical commutation relation (2), there is no loss of
generality in setting �h ¼ 1, upon replacing P by �h�1P.

The unital �-algebra W with hermitian generators p and q satisfying the relation
pq� qp ¼ �i � 1 is called the Weyl algebra. Since relation (2) cannot hold for
bounded operators, W has no �-representation by bounded operators, but it has
many unbounded �-representations. Among them there is one distinguished
“well-behaved” representation, the Schrödinger representation …S, or its unitarily
equivalent version, the Bargmann–Fock representation. The �-representation …S

acts on the Schwartz space SðRÞ, considered as a subspace of the Hilbert space
L2ðRÞ, by

…SðpÞu ¼ Pu and …SðqÞu ¼ Qu; u 2 SðRÞ;

where P and Q are given by (3) with �h ¼ 1. The Weyl algebra has a rich algebraic
structure and an interesting representation theory. This �-algebra will be our main
guiding example through the whole book; it is treated in detail in Chap. 8.

Aims of the Book

For decades, operator theory on Hilbert space and operator algebras have provided
powerful methods for quantum theory and mathematical physics. Among the many
books on these topics, two can be recognized as standard textbooks for graduate
students and researchers. These are the four volumes [RS72]–[RS78] by

2In a letter to Pauli [Pa79, pp. 236–241], dated September 18, 1925, Heisenberg called the
commutation relation (2) “eine sehr gescheite Idee von Born” (“a very clever idea of Born”). In the
literature the relation (2) was first formulated by Born and Jordan [BJ26] and by Dirac [D25].
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Reed–Simon covering operator theory and the two volumes [BR87]–[BR97] by
Bratteli-Robinson for C�- andW�-algebras. The present book might be considered a
supplement covering unbounded representations of general �-algebras.

The aims and features of this book are the following:

• The main aim is to provide a careful and rigorous treatment of the basic
concepts and results of unbounded representation theory on Hilbert space.

Our emphasis is on representations of important nonnormed �-algebras. In
general, representations of �-algebras on Hilbert space act by unbounded operators.
It is well known that algebraic operations involving unbounded operators are del-
icate matters, so it is not surprising that unbounded representations lead to new and
unexpected difficulties and pathologies. Some of these are collected in Sect 4.7. In
fact, these phenomena already occur for very simple algebras such as the Weyl
algebra or polynomial algebras.

Compared to bounded Hilbert space representations, many results and devel-
opments require additional assumptions, concepts, and technical arguments. We
point out possible pathologies and propose concepts to circumvent them.

• In the exposition and presentation we try to minimize the use of technicalities
and generalities.

So we treat the representation theory of the Weyl algebra only in dimension one;
positivity only for functionals rather than complete positivity of mappings;
decomposition theory only for functionals and not for representations; and we avoid
details from the theory of quantum groups. Some results with long and technically
involved proofs, such as the trace representation Theorem 3.26 and the integrability
Theorems 9.49 and 9.50 for Lie algebra representations, are stated without proofs.
(The reader can find these topics and complete proofs in the author’s monograph
[Sch90].) We hope to fulfill Einstein’s motto stated above in this manner, at least to
some extent.

• The choice of topics illustrates the broad scope and the usefulness of unbounded
representations.

There are various fields in mathematics and mathematical physics where repre-
sentations of general �-algebras on Hilbert space appear. The canonical commutation
relation of quantum mechanics was already mentioned and is only one example.
Quantum algebras and noncompact quantum groups can be represented by
unbounded operators. Unitary representations of Lie groups lead to in general
unbounded representations of enveloping algebras. Representations of polynomial
algebras play a crucial role in the operator approach to the classical multi-dimensional
moment problem. Noncommutative moment problems are closely related to Hilbert
space representations. Properties of states on general �-algebras are important in
noncommutative probability theory. Dynamical systems appear in the representation
theory of operator relations. Noncomutative real algebraic geometry asks when ele-
ments, which are positive operators in certain representations, are sums of hermitian
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squares, possibly with denominators. These topics will appear in this book; for most
of them we provide introductions to these subjects. Some of them are treated in great
detail, while others are only touched upon.

• Our aim is to present fundamental general concepts and their applications and
basic methods for constructing representations.

The GNS construction is a powerful tool that is useful to reformulate or to solve
problems by means of Hilbert space operators. We carry out this construction in
detail and apply it to the study of positive functionals on �-algebras. Further, we
develop general methods for the construction of classes of representations such as
induced representations, operator relations, and well-behaved representations.
Representations on rigged modules or Hilbert C�-modules is a new topic which
belongs to this list as well. Throughout, our main focus is on basic ideas, concepts,
examples, and results.

• For some selected topics self-contained and deeper presentations are given.

This concerns the representation theory of the Weyl algebra and the theory of
infinitesimal representations of enveloping algebras. Both topics are extensively
developed including a number of advanced and deep results. Also, Archimedean
quadratic modules and the corresponding C�-algebras are explored in detail.

Brief Description of the Contents

Chapter 1 should be considered as a prologue to this book. We give a brief and
informal introduction into the algebraic approach to quantum theories thereby
provided some physical motivation for the study of general �-representations and
states of �-algebras.

Chapter 2 deals with the algebraic structure of general involutive algebras. Basic
constructions (tensor products, crossed products, matrix algebras), examples
(semigroup �-algebras, �-algebras defined by relations), and concepts (characters,
positive functionals, quadratic modules) are introduced and investigated.

Chapter 3 gives a short digression into O�-algebras. These are �-algebras of
linear operators on an invariant dense domain of a Hilbert space. The involution is
the restriction of the Hilbert space adjoint to the domain. We treat three special
topics (graph topology, bounded commutants, and trace functionals) that are used
later in the study of representations.

With Chap. 4 we enter the main topic of this book: �-representations on Hilbert
space. We develop basic concepts (closed, biclosed, self-adjoint, essentially
self-adjoint representations), in analogy to single operator theory, and standard
notions on representations (invariant subspaces, irreducible representations). The
heart of this chapter is the GNS construction which associates a �-representation
with each positive functional. It is probably the most important and useful technical
tool in Hilbert space representation theory.
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Chapter 5 is devoted to a detailed study of positive linear functionals on �-
algebras. The GNS representation allows one to explore the interplay between
properties of Hilbert space representations and positive functionals. Ordering,
orthogonality, transition probability, and a Radon–Nikodym theorem for positive
functionals are treated in this manner. Choquet’s theory is applied to obtain
extremal decompositions of states. Quadratic modules defined by representations
are introduced.

Chapters 6–9 are devoted to the representation theories of some important
special classes of �-algebras.

Chapter 6 deals with tensor algebras and free �-algebras. Positive functionals are
approximated by vector functionals of finite-dimensional representations and
faithful representations are constructed. We define topological tensor algebras such
as the field algebra of quantum field theory and develop continuous representations.

Chapter 7 is about “well-behaved” representations and states of commutative �-
algebras. We characterize these representations by a number of conditions and
express well-behaved representations of finitely generated �-algebras in terms of
spectral measures.

Chapters 8 and 9 are two core chapters that stand almost entirely by themselves.
Chapter 8 gives an extensive treatment of Hilbert space representations of the

canonical commutation relation (2) and the Weyl algebra. After collecting algebraic
properties of this algebra we treat the Bargmann–Fock representation and the
corresponding uniqueness theorem. Then the Schrödinger representation is studied
and the Stone–von Neumann uniqueness theorem is proved. The Bargmann
transform establishes the unitary equivalence of both representations. Kato’s the-
orem on the characterization of Schrödinger pairs in terms of resolvents is derived.
Further, the Heisenberg uncertainty principle and the Groenewold-van Hove
“no-go” theorem for quantization are developed in detail.

Chapter 9 is about infinitesimal representations of universal enveloping algebras
of finite-dimensional Lie algebras. Each unitary representation of a Lie group yields
a �-representation of the corresponding enveloping algebra. Basic properties
of these representations (C1-vectors, Gårding domains, graph topologies, essential
self-adjointness of symmetric elements) are studied in detail and elliptic regularity
theory is used to prove a number of advanced results.

Analytic vectors, first for single operators and then for representations, are
investigated. They play a crucial role for the integrability theorems of Lie algebra
representations due to Nelson and to Flato, Simon, Snellman, and Sternheimer.
These results are presented without proof, but with references. Finally, we discuss
K-finite vectors for unitary representations of SLð2;RÞ and the oscillator
representation.

Chapter 10 is concerned with Archimedean quadratic modules and the associ-
ated �-algebras of bounded elements. Two abstract Stellensätze give a glimpse into
noncommutative real algebraic geometry. As an application we derive a strict
Positivstellensatz for the Weyl algebra. Finally, a theorem about the closedness
of the cone of finite sums of hermitian squares in certain �-algebras is proved and
some applications are obtained.
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Chapter 11 examines the operator relation XX� ¼ FðX�XÞ, where F is Borel
function on ½0; þ1Þ and X is a densely defined closed operator on a Hilbert space.
The representation theory of this relation is closely linked to properties of the
dynamical system defined by the function F. For instance, finite-dimensional
irreducible representations correspond to cycles of the dynamical system. The
hermitian q-plane and the q-oscillator algebra are treated as important examples.

Chapter 12 presents an introduction to unbounded induced representations of
�-algebras. For group graded �-algebras there exists a canonical conditional
expectation which allows one to define induced representations. We develop this
theory for representations which are induced from characters of commutative
subalgebras. The Bargmann–Fock representation of the Weyl algebra is obtained in
this manner.

An important topic of advanced Hilbert space representation theory is to describe
classes of “well-behaved” representations of general �-algebras. In Chap. 13 we
propose some general methods (group graded �-algebras, fraction algebras, com-
patible pairs) and apply them to the Weyl algebra and to enveloping algebras.

Chapter 14 provides a brief introduction to �-representations on rigged modules
and Hilbert C�-modules. This is a new subject of theoretical importance. A rigged
space is a right or left module equipped with an algebra-valued sesquilinear map-
ping which is compatible with the module action. First we explore �-representations
of �-algebras on rigged modules purely algebraically. If the riggings are positive
semi-definite (in particular, in the case of Hilbert C�-modules), induced represen-
tations on “ordinary” Hilbert spaces can be defined and imprimitivity bimodules
yield equivalences between �-representations of the corresponding �-algebras.

Guide to Instructors and Readers

Various courses and advanced seminars can be built on this book. All of them
should probably start with some basics on �-algebras (Sects. 2.1 and 2.2), positive
functionals and states (Sect. 2.4), and �-representations (Sect. 4.1).

One possibility is a graduate course on unbounded representation theory. The
basics should be followed with important notions and tools such as irreducibility
(Sect. 4.3), GNS representations (Sect. 4.4), and bounded commutants (Sects. 3.2
and 5.1). Then there are many ways to continue. One way is to treat representations
of special classes of �-algebras such as tensor algebras (Chap. 6), commutative
algebras (Chap. 7), or the Weyl algebra (Chap. 8). One may also continue with a
detailed study of states (with material taken from Chap. 5) or by developing general
methods such as induced representations (Chap. 12), operator relations (Chap. 11),
and fraction algebras (Sects. 13.2 and 13.3).

Another possible course for graduate students of mathematics and theoretical
physics is on representations of the canonical commutation relation and the Weyl
algebra. Such a course could be based entirely on Chap. 8. Here, after considering
some basics and algebraic properties of the Weyl algebra, the Bargmann–Fock and
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Schrödinger representations, the Fock space, the Bargmann–Segal transform, the
Stone–von Neumann uniqueness theorem should be developed and continued until
the sections on the Heisenberg uncertainty principle and the Groenewald–von Hove
“no-go” theorem.

Chapter 9, which treats integrable representations of enveloping algebras, could
be used in general or advanced courses or as a reference for researchers. Material
from this chapter, for example, the “elementary” parts from Sect. 9.2 on
infinitesimal representations, C1-vectors and Garding domains, can be integrated
into any general course on infinite-dimensional unitary representation theory of Lie
groups. More complex material such as elliptic elements or analytic vectors (see
e.g. Sects. 9.4 and 9.6) would suit an advanced course. Because Chap. 9 contains a
number of strong results on infinitesimal representations, their domains, and
commutation properties, it might be also useful as a reference for researchers.

Apart from basic concepts and facts, most chapters are more or less
self-contained and could be studied independently of each other. Special topics can
be easily included into courses, treated in seminars or read on their own. Examples
are the noncommutative Positivstellensätze (Chap. 10) or operator relations and
dynamical systems (Chap. 11).

Each chapter is followed by a number of exercises. They vary in difficulty and
serve for different purposes. Most of them are examples or counter-examples
illustrating the theory. Some are slight variations of results stated in the text, while
others contain additional new results or facts that are of interest in themselves.

Prerequisites

The main prerequisite for this book is a good working knowledge of unbounded
Hilbert space operators such as adjoint operators, symmetric operators, self-adjoint
operators, and the spectral theorem. The corresponding chapters of the author’s
Graduate Text [Sch12] contain more material than really needed. The reader should
be also familiar with elementary techniques of algebra, analysis, and bounded
operator algebras. Chapter 9 assumes a familiarity with the theory of Lie groups and
Lie algebras. In three appendices, we have collected some basics on unbounded
operators, C�-algebras and their representations, and locally convex spaces and
separation of convex sets. In addition, we have often restated facts and notions at
the places where they are most relevant.

For parts of the book or for single results, additional facts from other mathe-
matical fields are required, which emphasize the interplay with these fields. There
we have given links to the corresponding literature. In most cases these results are
not needed elsewhere in the book, so the unfamiliar reader may skip these places.

Leipzig, Germany
March 2020

Konrad Schmüdgen
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General Notation

Throughout the book, we use the following notational conventions:

The involution of an abstract �-algebra is denoted by a 7! aþ .
The symbol a� is only used for the adjoint of a Hilbert space operator a.
The symbol K denotes either the real field R or the complex field C.
All algebras or vector spaces are either over R or C.
All inner products of complex inner product spaces or Hilbert spaces are linear
in the first and conjugate linear in the second variables.
Unless stated explicitly otherwise, all inner products and Hilbert spaces are over
the complex field.

We denote

– abstract �-algebras by sanserif letters such as A, B, F, M, W, X,
– unit elements of a unital K-algebras by 1 and write a � 1 by a for a 2 K,
– O�-algebras by script letters such as A, B,
– Hilbert spaces by H, H0, G, K,
– inner products by angle brackets h�; �i, h�; �i1
– dense domains or inner product spaces by D, DðTÞ,
– representations by …, …f , q,
– Hilbert space vectors by u, w, g, n.

N0 Set of nonnegative integers,
N Set of positive integers,
Z Set of integers,
R Set of real numbers,
Rþ Set of nonnegative real numbers,
C Set of complex numbers,
T Set of complex numbers of modulus one.

Cd½x� :¼ C½x1; . . .; xd�, Rd½x� :¼ R½x1; . . .; xd�.
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For a Hilbert space H, we denote by

– BðHÞ the bounded operators on H,
– B1ðHÞ the trace class operators on H,
– Tr t the trace of a trace class operator t,
– B1ðHÞþ the positive trace class operators on H,
– B2ðHÞ the Hilbert-Schmidt operators on H.

For a �-algebra A we denote by

– A1 the unitization of A,
– Aher the hermitian part of A,
– P(A)* the positive linear functionals on A,
– Pe(A)* the extendable positive linear functionals on A,
– S(A) the states of A,
– Â the hermitian characters of A, if A is commutative and unital,
– 1 its unit element, if A is unital.

CcðXÞ Compactly supported continuous functions on a topological space X .
C0ðXÞ Continuous functions on a locally compact space X that vanish at infinity.
L2ðMÞ L2-space with respect to the Lebesgue measure if M is a Borel set of Rd .
F Fourier transform Fðf ÞðxÞ ¼ ð2…Þ�d=2 R

R
d e�iðx;yÞf ðyÞdy.
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Chapter 1
Prologue: The Algebraic Approach
to Quantum Theories

Let us begin by recalling some well-known concepts from quantum mechanics.
For details, the reader can consult one of the standard textbooks such as [SN17] or
[Ha13].

The mathematical formulation of quantum mechanics is based on a complex
Hilbert space H, which is called the state space. The two fundamental objects of a
quantum theory, observables and states, are described by the following postulates.

(QM1) Each observable is a self-adjoint operator on the Hilbert space H.
(QM2) Each pure state is given by the unit ray [ϕ] := {λϕ : λ ∈ T} of a unit vector

ϕ ∈ H.

In general, not all self-adjoint operators on H are physical observables and not all
unit vectors ofH correspond to physical states. In the subsequent informal discussion
we will ignore this distinction and consider all unit rays as states and all bounded
self-adjoint operators on H as observables.

That each observable A is a self-adjoint operator by axiom (QM1) has impor-
tant consequences. Then the spectral theorem applies, and there exists a unique
projection-valued measure EA(·), called the spectral measure of A, on the Borel
σ-algebra of R such that

A =
∫
R

λ dEA(λ).

This spectral measure EA is a fundamental mathematical object in operator theory
and in quantum mechanics as well. All properties of the self-adjoint operator and
the observable A are encoded in EA. First we note that the support of the spectral
measure EA coincides with the spectrum of the operator A.
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2 1 Prologue: The Algebraic Approach to Quantum Theories

The probabilistic interpretation of quantum mechanics and the measurement the-
ory of observables are essentially based on spectral measures. To explain this, we
consider a unit vector ϕ ∈ H. It is clear that

μ[ϕ](·) := 〈EA(·)ϕ,ϕ〉

defines a probability measure μ[ϕ] on R which depends only on the unit ray [ϕ]. The
probabilistic interpretation says that μ[ϕ](M) is the probability that the measurement
outcome of the observable A in the state [ϕ] lies in the Borel set M of R. Two
observables A1 and A2 are simultaneously measurable if and only if their spectral
measures EA1 and EA2 commute.

Now let ϕ be a unit vector of the domain of A. Then the number

〈Aϕ,ϕ〉 =
∫
R

λ dμ[ϕ](λ) =
∫
R

λ d〈EA(λ)ϕ,ϕ〉

is interpreted as the expectation value and (Δ[ϕ]A)2 := ‖Aϕ‖2 − 〈Aϕ,ϕ〉2 as the
variance of the observable A in the state [ϕ]. Finally, the spectral measure allows
one to define a function F(A) of an observable A by F(A) = ∫

F(λ)dEA(λ) for
any Borel function F on the spectrum of A.

Let [ϕ] and [ψ] be states of H. Then the number

P([ϕ], [ψ]) := |〈ϕ,ψ〉|2

depends only on the unit rays, and it is called the transition probability between the
states [ϕ] and [ψ].

A symmetry of the quantum system is a bijection of the set of states [ϕ] which
preserves the transition probabilities between states. ByWigner’s theorem (see, e.g.,
[Em72]), each symmetry θ is implemented by a unitary or an antiunitary operator
U of the Hilbert space H, that is, θ([ϕ]) = U [ϕ]U−1 for all states [ϕ]. (An anti-
unitary operator is an operatorU onH such thatU (αϕ + βψ) = αUϕ + βUψ and
〈Uϕ,Uψ〉 = 〈ϕ,ψ〉 for ϕ,ψ ∈ H and α,β ∈ C.)

Let U be a unitary or an antiunitary operator on H. If A is an observable, then
the operator θ(A) := U AU−1 is self-adjoint and hence an observable. For arbitrary
A ∈ B(H), we set θ0(A) = U AU−1 if U is unitary and θ1(A) = U A∗U−1 if U is
antiunitary. For self-adjoint operators A, both θ0(A) and θ1(A) coincide with θ(A).
Then, θ0 is a ∗-automorphism and θ1 is a ∗-antiautomorphism of the C∗-algebra
B(H) of bounded operators on H.

There are also mixed states and states given by density matrices. Assume for a
moment that the observables are bounded operators. Then each positive trace class
operator t on H of trace one defines also a state. The corresponding probability
measure is μt (·) := Tr t EA(·), and the expectation value is Tr t A.

That was the classic approach to quantum mechanics. Let us explain now the
algebraic approach, in which the main objects of study of this book appear.
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Here the observable algebra is the central object of the theory. This is an abstract
complex unital algebra A equipped with an algebra involution a �→ a+, that is, A is
a complex unital ∗-algebra. The key postulates in this approach are the following:

(A1) Each observable is a hermitian element a = a+ of the ∗-algebra A.
(A2) Each state is a linear functional f on A such that f (a+a) ≥ 0 for a ∈ A and

f (1) = 1.

If f is a state and a is an observable of A, then the real number f (a) is considered
as the expectation value and the nonnegative number Δ f (a)2 := f (a2) − f (a)2 as
the variance of a in the state f .

Let us motivate this definition of a state. Elements of the form a+a are always
hermitian, and they should be positive, because Hilbert space operators of the form
A∗A are positive. Then the condition f (a+a) ≥ 0 says that the expectation value of
the “positive” observable a+a is nonnegative. A functional f with this property is
called positive. The requirement f (1) = 1 is a normalization condition for the trivial
observable 1 ∈ A.

Since A is a ∗-algebra, one can form algebraic operations (linear combinations,
products, adjoints) of elements of A. It is easily verified that the product of two
hermitian elements is hermitian if and only if the elements commute. Hence the
product of two observables can be only an observable if they commute in the
algebra A.

To remedy this failure it is convenient to consider the Jordan product

a ◦ b := 1

2
(ab + ba)

of elements a, b ∈ A. Obviously, if the elements a and b are hermitian, so is a ◦ b.
Clearly, a ◦ b = 1

2 ((a + b)2 − a2 − b2). Therefore, if we agree that real linear com-
binations and squares of observables are also observables, then the Jordan product
a ◦ b of observables a, b ∈ A is again an observable. Note that the Jordan product
“◦” is distributive and commutative, but it is not associative in general.

Beforewe continue our discussionwe introduce a fewmoremathematical notions.
Let θ be a linear map of A into another ∗-algebra B such that θ(a+) = θ(a)+ for
a ∈ A. Then θ is called a ∗-antihomomorphism if θ(ab) = θ(b)θ(a) for a, b ∈ A
and a Jordan homomorphism if θ(a ◦ b) = θ(a) ◦ θ(b) for a, b ∈ A. In this case, if
A = B and θ is bijective, then θ is said to be a ∗-antiautomorphism and a Jordan auto-
morphism ofA, respectively. Clearly, ∗-homomorphisms and ∗-antihomomorphisms
are Jordan homomorphisms.

Roughly speaking, a symmetry of a physical system should be a bijection that
preserves the main structures of the system. In the case of pure states on a Hilbert
space, the transition probability of states was chosen as the relevant concept. In
the algebraic approach, it is natural to require that symmetries preserve the Jordan
product. Thus, we define a symmetry to be a Jordan automorphism of the ∗-algebra
A. Then any symmetry θ preserves observables, and the map f �→ f ◦ θ preserves
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states.Various symmetry concepts forC∗-algebras are treated anddiscussed in [Ln17,
Chap.5], [Em72, Sect. 2.2.a], [Mo13, Sect. 12.1], and [K65].

In particular, ∗-automorphisms and ∗-antiautomorphisms of A are symmetries.
We say that a group G acts as a symmetry group on the observable algebra A if we
have a homomorphism g �→ θg of G into the group of ∗-automorphisms of A.

We collect the main concepts introduced so far in the following table:

Quantum mechanics Algebraic approach
State Hilbert space H Observable algebra A

Observable Self-adjoint operator on H Hermitian element of A
State Unit ray [ϕ] of ϕ ∈ H, ‖ϕ‖ = 1 Positive functional f with f (1) = 1
Symmetry Unitary or antiunitary operator on H Jordan automorphism of A

It should be emphasized that for the study of quantum theories usually specific
sets of further axioms and topics are added. Important examples are the Gårding–
Wightman axioms and the Haag–Kastler axioms in algebraic quantum field theory
[Hg55] and the KMS states in quantum statistical mechanics [BR97].

Next we discuss the role of representations of the observable algebra. To avoid
technical difficulties, let us assume throughout the following discussion that the
observable algebra A is a unital C∗-algebra. Recall that a ∗-representation of A is
a ∗-homomorphism ρ of A into the ∗-algebra B(H) of bounded operators of some
Hilbert space H. Then the image of each abstract observable a ∈ A is a bounded
self-adjoint operator ρ(a), hence an observable on the Hilbert spaceH, and each unit
vector ϕ ∈ H defines a state fρ,ϕ(·) := 〈ρ(·)ϕ,ϕ〉 on A. These states fρ,ϕ are called
the vector states of the representation ρ. Conversely, if f is a state on A, then the
GNS construction provides a ∗-representation ρ f of A on a Hilbert space H such
that f (·) = 〈ρ f (·)ϕ f ,ϕ f 〉 for some unit vector ϕ f ∈ H. Thus, the abstract state f
on A gives a concrete state [ϕ f ] on the Hilbert space H.

Further, two ∗-representations of A are physically equivalent if and only if each
vector state of one is a weak limit of convex combinations of vector states of the
other, or equivalently, if the kernels of both representations coincide [Em72, The-
orem II.1.7]. It is obvious that unitarily equivalent representations are physically
equivalent, but the converse is not true.

Let us turn to symmetries. Suppose ρ is a ∗-representation of A on a Hilbert space
H. A ∗-automorphism θ of A is called unitarily implemented in the representation ρ
if there exists a unitary operator U onH such that ρ(θ(a)) = Uρ(a)U−1 for a ∈ A.
Likewise, an action g �→ θg of a group G on A is said to be unitarily implemented
in the representation ρ if there is a homomorphism g �→ U (g) of G into the group
of unitaries on H, called then a unitary representation of G on H, such that

ρ(θg(a)) = U (g)ρ(a)U (g−1) for a ∈ A, g ∈ G. (1.1)

It can be shown that (1.1) holds, for instance, for the GNS representation associated
with any state which is invariant under θg . In important cases, G is a Lie group; then
appropriate continuity assumptions on θg and U (g) have to be added.
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According to a result of Kadison [K65], [BR97, Proposition 3.2.2], any Jordan
homomorphism intoB(H) can be decomposed into a sum of a ∗-homomorphism and
a ∗-antihomomorphism. More precisely, if ρ : A �→ B is a Jordan homomorphism of
A on a C∗-subalgebra B of B(H), then there is a projection P ∈ B′ ∩ B′′ such that
a �→ ρ(a)P is a ∗-homomorphism and a �→ ρ(a)(I − P) is a ∗-antihomomorphism
of A into B(H). Here B′ and B′′ denote the commutant and bicommutant of B,
respectively. In particular, if the von Neumann algebra B′′ is a factor, then P = 0 or
P = I , so ρ is a ∗-homomorphism or a ∗-antihomomorphism.

Any ∗-representation ρ of the observable algebra allows one to pass from the fixed
abstract observable algebra A to the observable algebra ρ(A) of operators acting on
a Hilbert space. There the power of operator theory on Hilbert spaces can be used
to study the quantum system. The flexibility of choosing the ∗-representation has a
number of advantages. First, various realizations of unitarily equivalent representa-
tions may provide new methods and structural insight. For instance, the Schrödinger
representation and the Bargmann–Fock representation of theWeyl algebra are unitar-
ily equivalent, but their realizations on L2(Rd) and on the Fock space, respectively,
lead to different approaches for the study of the canonical commutation relations.
Second, unitarily or physically inequivalent realizations of quantum systems can be
treated bymeans of the same abstract observable algebra. Here the canonical commu-
tation relations for infinitely many degrees of freedom form an interesting example.
There exist unitarily inequivalent irreducible representations which are physically
equivalent [BR97, Em72]. Third, let g �→ θg be an action of a Lie group G as ∗-
automorphisms of A. In “good” cases there exists a ∗-representation ρ of A such that
this action is implemented by a unitary representation g �→ U (g) ofG, as in formula
(1.1). Then the representation theory of Lie groups on Hilbert space can be used to
study the ∗-automorphism group.

The preceding was a brief sketch of some basic general concepts and ideas of
quantum mechanics and the algebraic approach to quantum theories.

In the case of general ∗-algebras a number of additional technical problems appear
in the study of ∗-representations and states. For instance, itmay happen that the image
of a hermitian element under a ∗-representation has no self-adjoint extension, so it
cannot be considered as an observable on the representation Hilbert space. An aim
of this book is to lay down a rigorous mathematical foundation of the theory of
representations and states of general ∗-algebras.

The pioneering work for the algebraic approach goes back to Neumann [vN32], Segal [Se47a],

and others. Modern treatments of this approach and various sets of axioms can be found in the

books of Emch [Em72],Moretti [Mo13] and Landsman [Ln17]; see also [K65]. Standard references

are [Hg92, Ak09] for algebraic quantum field theory and [BR87, BR97] for quantum statistical

mechanics.



Chapter 2
∗-Algebras

The aim of this chapter is to develop algebraic properties and structures of ∗-algebras
and of positive functionals and states. Also, we introduce a number of basic concepts,
notations, and facts that will be used later in this book.

Section2.1 contains basic definitions and examples of ∗-algebras. In Sect. 2.2,
we treat some general constructions of ∗-algebras (tensor products, matrix algebras,
crossed products, group graded algebras). Positivity in ∗-algebras is expressed in
terms of quadratic modules; they are introduced in Sect. 2.3 and studied later in
Sect. 5.7 and Chap.10.

Sections2.4–2.8 deal with positive linear functionals. In Sect. 2.4, we develop
basic facts on positive functionals and states on complex ∗-algebras. Positive func-
tionals on real ∗-algebras are briefly considered in Sect. 2.5. In Sect. 2.6 we study
characters of general algebras and prove the Gleason–Kahane–Zelazko characteri-
zation of characters (Theorem 2.56). Section2.7 is about hermitian characters and
pure states of commutative ∗-algebras (Theorem 2.63). In Sect. 2.8, we give a short
digression into hermitian and symmetric ∗-algebras.

Throughout this chapter, A is an algebra over the field K, where K is R or C.

2.1 ∗-Algebras: Definitions and Examples

The following definitions introduce the first main notions which this book is about.

Definition 2.1 An algebra over K is a vector space A over K, equipped with a
mapping (a, b) �→ ab of A × A into A, such that for a, b, c ∈ A and α ∈ K:

a(bc) = (ab)c, (αa)b = α(ab) = a(αb), a(b + c) = ab + ac, (b + c)a = ba + ca.
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8 2 ∗-Algebras

The element ab is called the product of a and b; we also write a · b for ab.
An algebra A is called unital if it has a unit element 1 ∈ A, that is, 1a = a1 = a

for all a ∈ A. An algebra A is commutative if ab = ba for a, b ∈ A.

Definition 2.2 An algebra involution, briefly an involution, of an algebra A over K
is a mapping a �→ a+ from A into A such that for a, b ∈ A and α,β ∈ K:

(αa + βb)+ = α a+ + β b+, (ab)+ = b+a+, (a+)+ = a. (2.1)

An algebra (over K) equipped with an involution is called a ∗-algebra (over K).

Example 2.3 Let d ∈ N. The polynomial algebraKd [x] := K[x1, . . . , xd ] is a unital
∗-algebra with involution defined by

f +(x) :=
∑

α
aα xα for f (x) =

∑
α
aαx

α ∈ Kd [x],

where we set xα := xα1
1 · · · xαd

d for α = (α1, . . . ,αd) ∈ N
d
0 and x0j := 1. Note that

the involution on Rd [x] is just the identity mapping. �
Let A be a ∗-algebra overK. It is easily verified that if A has a unit element 1 and

a ∈ A is invertible in A, then 1+ = 1 and (a−1)+ = (a+)−1.

Definition 2.4 An element a ∈ A is called hermitian if a = a+ and skew-hermitian
if a+ = −a.

The hermitian part Aher and the skew-hermitian part Asher of A are

Aher := {a ∈ A : a+ = a}, Asher := {a ∈ A : a+ = −a}. (2.2)

Clearly, both parts are real vector spaces, Aher is invariant under the Jordan product
a ◦ b := 1

2 (ab + ba), andAsher is invariant under the commutator [a, b] := ab − ba.
Further, A = Aher + Asher and each a ∈ A can be uniquely written as

a = ah + ash, where ah ∈ Aher, ash ∈ Asher. (2.3)

Indeed, for ah := 1
2 (a

+ + a) and ash := 1
2 (a − a+) we have (2.3). Conversely, if

ãh ∈ Aher and ãsh ∈ Asher satisfya = ãh + ãsh, thena+ = ãh − ãsh and hence ãh = ah
and ãsh = ash.

Now suppose K = C. Then, obviously, Asher = iAher, so that A = Aher + iAher.

Therefore, by (2.3), each element a ∈ A can be uniquely represented in the form

a = a1 + ia2, where a1, a2 ∈ Aher, (2.4)

and we have a1 = Re a := 1
2 (a

+ + a) and a2 = Im a := i
2 (a

+ − a).
If A is a commutative real algebra, the identity map is obviously an involution.
There exist algebras A which admit no algebra involution and others which have

infinitely many involutions making A into a ∗-algebra; see, e.g., [CV59].
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Example 2.5 (An algebra which has no involution)
Let A be the K-algebra of 2 × 2 matrices (akl)2k,l=1, with akl ∈ K, a21 = a22 = 0.
Clearly, the algebra A is isomorphic to the vector space K2 with multiplication

(x1, x2)(y1, y2) = (x1y1, x1y2). (2.5)

The algebra A has no involution such that A becomes a ∗-algebra.
Indeed, assume to the contrary that a �→ a+ is an algebra involution of A. Set

x := (1, 0) and y := (0, 1). We have x2 = x , y2 = 0, xy = y, yx = 0 by (2.5).
Then (x+)2 = x+ and (y+)2 = 0. By (2.5), these equations imply x+ = (1, x2) and
y+ = (0, y2). Then 0 = (yx)+ = x+y+ = (1, x2)(0, y2) = (0, y2) = y+ and hence
0 = (y+)+ = y, a contradiction. �

We develop different involutions in Example 2.15 below using the next lemma.

Lemma 2.6 Suppose A is an algebra. If ϕ : a �→ a+ is an algebra involution and
θ is an algebra automorphism of A such that

(θ ◦ ϕ) ◦ (θ ◦ ϕ) = Id, that is, θ(θ(a+)+) = a for a ∈ A, (2.6)

then ψ := θ ◦ ϕ is also an algebra involution of A.
Conversely, if ϕ and ψ are algebra involutions of A, then θ := ψ ◦ ϕ is an auto-

morphism of the algebra A such that ψ = θ ◦ ϕ and condition (2.6) holds.

The proof of this lemma is given by simple algebraic manipulations based on
(2.1). Equation (2.6) is equivalent to the last condition in (2.1). We omit the details;
see Exercise 1.

Next let us introduce some standard notions.
Amap θ of a ∗-algebraA into another ∗-algebraB is called a ∗-homomorphism if θ

is an algebra homomorphism such that θ(a+) = θ(a)+ for a ∈ A. A ∗-isomorphism
is a bijective ∗-homomorphism of A and B; in this case, A and B are said to be
∗-isomorphic. A ∗-automorphism of A is a ∗-isomorphism of A on itself. A ∗-ideal
of A is a two-sided ideal of A which is invariant under the involution.

Next we consider two useful general constructions.

Unitization of a ∗-algebra
For many considerations it is necessary that the ∗-algebra possesses a unit element.
If a ∗-algebra has no unit, it can be embedded into a unital ∗-algebra by adjoining a
unit. Let A be a ∗-algebra. It is easy to check that theK-vector space B := A ⊕ K is
a unital ∗-algebra with multiplication and involution defined by

(a,α)(b,β) := (ab + αb + βa,αβ) and (a,α)+ := (a+,α) (2.7)

for a, b ∈ A and α,β ∈ K. Obviously, 1 := (0, 1) is the unit element of B. By iden-
tifying a and (a, 0), the ∗-algebra A becomes a ∗-subalgebra of B. For notational
simplicity we write a + α instead of (a,α). Note that if A has a unit element, this
element is no longer a unit element of the larger ∗-algebra B.
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If A is not unital, we denote the unital ∗-algebra B = A ⊕ K by A1. If A is unital,
we set A1 := A.

Definition 2.7 The unital ∗-algebra A1 is called the unitization of the ∗-algebra A.
For real ∗-algebras we may have LinAher �= A, as the following example shows.

Example 2.8 On the vector space A := R we define a product by x · y := 0 and an
involution by x+ := −x . Then A is a real ∗-algebra and Aher = {0} �= A. For the
unitization A1 we have (A1)her = {(0,α) : α ∈ R} by (2.7). Hence the linear span of
(A1)her is different from A1. �
Complexification of a real ∗-algebra
Suppose A is a real ∗-algebra. Let AC be the Cartesian product A × A. It is not
difficult to verify that AC becomes a complex ∗-algebra with addition, multiplication
by complex scalars, multiplication, and involution defined by

(a, b) + (c, d) = (a + c, b + d), (α + iβ)(a, b) = (αa − βb,αb + βa),

(a, b)(c, d) = (ac − bd, bc + ad), (a, b)+ := (a+,−b+),

where a, b, c, d ∈ A and α,β ∈ R. The map a �→ (a, 0) is a ∗-isomorphism of A on
a real ∗-subalgebra of AC. We identify a ∈ A with (a, 0) ∈ AC. Then A becomes a
real ∗-subalgebra of AC, and we have (a, b) = a + ib for a, b ∈ A.

Definition 2.9 The complex ∗-algebra AC is called the complexification of the real
∗-algebra A.

We define θ(a + ib) = a − ib for a, b ∈ A. Then we have

θ(α a + β b) = α θ(a) + β θ(b), θ(x+) = θ(x)+, (2.8)

θ(xy) = θ(x)θ(y), (θ ◦ θ)(x) = x (2.9)

for α,β ∈ C, a, b ∈ A, x, y ∈ AC, and A = {x ∈ AC : θ(x) = x}. Conversely, if B
is a complex ∗-algebra and θ : B �→ B is a map satisfying (2.8) and (2.9), then
A := {x ∈ B : θ(x) = x} is a real ∗-algebra and B is the complexification of A.

Now let A be a commutative real algebra. Then A is a real ∗-algebra with the
identity map as involution and we have (a + ib)+ = a − ib in AC, where a, b ∈ A.
Hence A is the hermitian part (AC)her of its complexification AC. For instance, if
A = R[x1, . . . , xd ], we obtain AC = C[x1, . . . , xd ].

Now we turn to examples of ∗-algebras. Large classes of examples of ∗-algebras
are defined by means of generators and defining relations.

1. ∗-Algebras defined by relations

LetK〈x1, . . . , xm〉 denote the free unitalK-algebra with generators x1, . . . , xm . The
elements of this algebra can be considered as noncommutative polynomials f in
x1, . . . , xm ; for instance, f (x1, x2) = 5x1x72 x

3
1 − 3x1x2 + x2x1 + 1.
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Let n + k ∈ N, where k, n ∈ N0. The algebra K〈x1, . . . , xn, y1, . . . , y2k〉 has an
involution determined by (x j )

+ = x j for j = 1, . . . , n and (yl)+ = yl+k for l =
1, . . . , k; the corresponding ∗-algebra is denoted by

K〈x1, . . . , xn, y1, . . . , y2k | (x j )
+ = x j , j = 1, . . . , n; (yl)

+ = yl+k, l = 1, . . . , k〉.
(2.10)

(If n = 0 or k = 0, we interpret (2.10) by omitting the corresponding variables.)
Now let f1, g1 . . . , fr , gr be elements of the ∗-algebra (2.10) and let J be the

∗-ideal of this ∗-algebra generated by the elements f1 − g1, . . . , fr − gr . We write

K〈x1, . . . , xn, y1, . . . , y2k | (x j )
+ = x j , j = 1, . . . , n; (yl)

+ = yl+k, l = 1, . . . , k;
f1 = g1, . . . , fr = gr 〉 (2.11)

for the quotient∗-algebra of (2.10) by the∗-idealJ. Thus, (2.11) is the unital∗-algebra
with generators (x1)+ = x1, . . . , (xn)+ = xn, (y1)+ = yk+1, . . . , (yk)+ = y2k and
defining relations f1 = g1, . . . , fr = gr .

Example 2.10 (Weyl algebra W(d))
For d ∈ N, the d-dimensional Weyl algebra W(d) is the complex unital ∗-algebra

W(d) := C〈p1, . . . , pd , q1, . . . , qd | (pk)+ = pk, (qk)
+ = qk, pkqk − qk pk = −i;

p j pl = pl p j , q jql = qlq j , p jql = ql p j , k, j, l = 1, . . . , d, j �= l 〉,

where i is the complex unit. The one-dimensional Weyl algebra or CCR-algebra is

W := C〈p, q | p+ = p, q+ = q, pq − qp = −i〉. (2.12)

For elements p, q of a complex unital algebra, a := 1√
2
(q + ip),

a+ := 1√
2
(q − ip) satisfy aa+ − a+a = 1 if and only if pq − qp = −i. From this

fact it follows that the map 1√
2
(q + ip) �→ a extends to a ∗-isomorphism of W on

the ∗-algebra C〈a, b | a+ = b, ab − ba = 1〉. We shall write this ∗-algebra as

C〈a, a+ | aa+ − a+a = 1〉. (2.13)

Thus, (2.12) and (2.13) are ∗-isomorphic versions of the Weyl algebra; see Sect. 8.1.
Chapter8 is devoted to the study of representations of the Weyl algebra. �

As angle brackets 〈 · 〉 denote free algebras, squared brackets [ · ] always refer
to commutative polynomial algebras. In particular, Cd [x] := C[x1, . . . , xd ] and
Rd [x] := R[x1, . . . , xd ] are commutative ∗-algebras of polynomials with involu-
tion (x j )

+ = x j , j = 1, . . . , d. Commutative algebras with relations are defined
similarly as above and are self-explanatory. For instance, C[x, y | x+x + y+y = 1]
denotes the commutative ∗-algebra of polynomials in x, x+, y, y+ satisfying the
equation x+x + y+y = 1 of the unit sphere in C

2.
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Another source of important ∗-algebras are ∗-semigroups and groups.

2. Semigroup ∗-algebras and group ∗-algebras
By a semigroup we mean a nonempty set S with an associative binary operation
(a, b) �→ a · b.We consider this operation asmultiplication and call a · b the product
of a and b. We say an element e ∈ S is a unit of S if e · a = a · e = a for a ∈ S.

Definition 2.11 A semigroup with involution, briefly a ∗-semigroup , is a semigroup
S with a mapping s �→ s+ of S into itself, called involution, satisfying

(s · t)+ = t+ · s+ and (s+)+ = s for all s, t ∈ S.

If S is an abelian semigroup, then the identity map of S is an involution. If S is a
group, then the map s �→ s+ := s−1 is an involution.

Suppose S is a ∗-semigroup. Let K[S] be the vector space of all sums
∑

s∈S αss,
where αs ∈ K and only finitely many numbers αs are nonzero. Then K[S] becomes
a ∗-algebra over K with product and involution defined by

( ∑
s∈S αss

) · (∑
t∈Sβt t

) :=
∑

s,t∈S αsβt s · t,
( ∑

s∈S αss
)+ :=

∑
s∈S αs s

+.

Definition 2.12 The ∗-algebra K[S] is called the semigroup ∗-algebra of S. If S is
a group (with involution s+=s−1), we say K[S] is the group algebra of S.

Example 2.13 Let S be the additive semigroup N
d
0 with identity involution. Then

the map (n1, . . . , nd) �→ xn11 · · · xndd extends to a ∗-isomorphism of K[Nd
0 ] on the

polynomial ∗-algebra Kd [x] := K[x1, . . . , xd ]. �
Example 2.14 For the group Z with involution n+ = −n, there is a ∗-isomorphism
n �→ z of the group algebra C[Z] on the ∗-algebra C[z, z | zz = zz = 1] of polyno-
mials in z, z ∈ T. �

2.2 Constructions with ∗-Algebras

In this section, we consider four general constructions and structures of ∗-algebras.
1. Tensor product of ∗-algebras
LetA1, . . . ,An be ∗-algebras overK. TheK-tensor product A1 ⊗ · · · ⊗ An of vector
spaces A1, . . . ,An becomes a ∗-algebra with the product and involution defined on
elementary tensors by

(a1⊗ · · · ⊗ an)(b1 ⊗ · · · ⊗ bn) = a1b1 ⊗ · · · ⊗ anbn, (2.14)

(a1 ⊗ · · · ⊗ an)
+ = (a1)

+ ⊗ · · · ⊗ (an)
+, (2.15)
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where a1, b1 ∈ A1, . . . , an, bn ∈ An. This ∗-algebra is called the tensor product ∗-
algebra and denoted also by A1 ⊗ · · · ⊗ An if no confusion can arise.

Suppose that A1, . . . ,An are unital. Then there is an injective ∗-homomorphism
θ j : A j �→ A1 ⊗ · · · ⊗ An definedbyθ j (a) = 1 ⊗ · · · ⊗ 1 ⊗ a ⊗ 1 ⊗ · · · ⊗ 1,where
a stands at the j th position. If we identify a and θ j (a), then A j becomes a ∗-
subalgebra of A1 ⊗ · · · ⊗ An .

There is another algebra involution that makes the algebra A ⊗ A (with product
(2.14)) into a ∗-algebra; it is defined by (a1 ⊗ a2)+ = (a2)+ ⊗ (a1)+, a1, a2 ∈ A.

2. Matrices over A

Let n ∈ N. The set Mn(A) of n × n-matrices with entries in A is a ∗-algebra with the
“usual” algebraic operations: For a = (ai j )ni, j=1, b = (bi j )ni, j=1 in Mn(A) and λ ∈ K,
the (i, j)-entries of a + b, λa, ab and a+ are defined by

(a + b)i j = ai j + bi j , (λa)i j = λai j , (ab)i j =
n∑

k=1

aikbk j , (a+)i j = (a ji )
+.

Suppose A is unital. For i, j ∈ {1, . . . , n}, let ei j ∈ Mn(A) be the matrix with 1
as (i, j)-entry and zeros elsewhere. These matrix units ei j satisfy the relations

ei j ekl = δ jkeil and e+
i j = e ji for i, j, k, l = 1, . . . , n.

There is a ∗-isomorphism of the ∗-algebras Mn(A) and A ⊗ Mn(K) given by

(ai j )
n
i, j=1 �→

n∑

i, j=1

ai j ⊗ ei j .

Example 2.15 (Involutions on Mn(R))
Let A = R. Then, by the preceding, Mn(R) is a real ∗-algebra with involution
ϕ : a �→ a+ := aT , where aT is the transposed matrix. Let b ∈ Mn(R) be invertible.
Then θb(a) = bab−1, a ∈ Mn(R), defines an algebra automorphism θb of Mn(R).

Statement 1: Suppose bT = b or bT = −b. Then the map ψ := θb ◦ ϕ, that is,
ψ : a �→ a+b := θb(ϕ(a)) = baT b−1, is an algebra involution of Mn(R).

Proof For a ∈ MN (R), we compute

θ(θ(a+)+) = θ((baT b−1)T ) = θ((±b−1)a(±b)) = θ(b−1ab) = bb−1abb−1 = a.

Therefore, condition (2.6) holds, so the assertion follows from Lemma 2.6. �
For instance, we have

(
a11 a12
a21 a22

)+b

=
(
a22 τa21
τa12 a11

)
for b =

(
0 τ
1 0

)
, τ = ±1.
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Statement 2: Each algebra involution ψ of Mn(R) is of the form ψ = θb ◦ ϕ for
some invertible matrix b ∈ Mn(R) such that bT = b or bT = −b.

Proof Let ψ : a �→ a† be an algebra involution of Mn(R). Then θ := ϕ ◦ ψ is an
automorphism of Mn(R). It is well known that all automorphisms of Mn(R) are
inner, so θ = θb−1 for some invertible b ∈ Mn(R). Thus, θ(a) = (a†)+ = b−1ab.
Then, a† = (b−1ab)+ = b+a+(b+)−1 and hence

a = (a†)† = b+[b+a+(b+)−1]+(b+)−1 = b+[b−1ab](b+)−1 = b+b−1ab(b+)−1,

so (b(b+)−1)a = a(b(b+)−1) for all a ∈ Mn(R). This means that b(b+)−1 belongs
to the center of Mn(R). Hence b(b+)−1 = λI for some λ ∈ R. Thus, b = λb+
and b+ = (λb+)+ = λb = λ2b+. Hence λ = ±1 and b+ = bT = ±b. Therefore,
we have ψ(a) = a† = b+a+(b+)−1 = baT b−1, that is, ψ = θb ◦ ϕ. �

Let b ∈ Mn(R) be a diagonal matrix with nonzero diagonal entries b1, . . . , bn .
Then (ei j )+b ei j = be ji b−1ei j = b jb

−1
i e j j . In particular, (e j j )+b e j j = e j j .

Assume further that bi = −b j �= 0. Then we have

(ei j )
+b ei j + (e j j )

+b e j j = 0, while ei j , e j j �= 0.

Note that, in contrast, for the standard involution a �→ a+ := aT on Mn(R), any
equation

∑
i (ai )

+ai = 0 implies that ai = 0 for all i . �
3. Crossed product ∗-algebras
Let A be a ∗-algebra and G a group. Suppose g �→ θg is a homomorphism of G into
the group of ∗-automorphisms of A. Then θe = Id.

We define a ∗-algebra A ×θ G. As a vector space it is the K-tensor product
A ⊗ K[G], or equivalently, the vector space of A-valued functions on G with finite
support. By straightforward computations it follows that the vector space A ⊗ K[G]
becomes a ∗-algebra over K with product and involution on A determined by

(a ⊗ g)(b ⊗ h) = aθg(b) ⊗ gh and (a ⊗ g)+ = θg−1(a+) ⊗ g−1, (2.16)

where a, b ∈ A and g, h ∈ G.

Definition 2.16 This ∗-algebra is called the crossed product ∗-algebra of A and G
and denoted by A ×θ G.

If the action ofG is trivial, that is, θg = Id for all g ∈ G, it follows from (2.16) that
the crossed product ∗-algebra A ×θ G is the tensor product ∗-algebra A ⊗ K[G].

From now on we suppose that A is unital. Let us identify b with b ⊗ e and g
with 1 ⊗ g. Then A andK[G] are ∗-subalgebras of A ×θ G, and the crossed product
∗-algebra A ×θ G is just the ∗-algebra generated by the two ∗-subalgebras A and
K[G] with cross-commutation relations
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gb = θg(b)g for b ∈ A, g ∈ G. (2.17)

Suppose now that G is a finite group of n elements. We define a linear mapping
ϕ : A ×θ G �→ Mn(A) ∼= A ⊗ Mn(K) by

ϕ : a ⊗ g �→
∑

h∈G
θh(a) ⊗ eh,hg. (2.18)

(We consider eh,hg as matrix unit after enumerating the elements of G.)

Lemma 2.17 Then ϕ is an injective ∗-homomorphism of A ×θ G into Mn(A).

Proof Supposeϕ(x) = 0 for x = ∑
i ai ⊗ gi ∈ A ×θ G. Then, for thematrix entries

eh,hgi with h = e, we get θe(ai ) = ai = 0, so x = 0. Thus, ϕ is injective.
Now let a ⊗ g, b ⊗ k ∈ A ×θ G. Then

ϕ(a ⊗ g)ϕ(b ⊗ k) =
(

∑

h∈G
θh(a) ⊗ eh,hg

) (
∑

l∈G
θl(b) ⊗ el,lk

)

=
∑

h,l∈G
δhg,l θh(a)θl(b) ⊗ eh,lk =

∑

h∈G
θh(a)θhg(b) ⊗ eh,hgk

=
∑

h∈G
θh(aθg(b)) ⊗ eh,hgk = ϕ(aθg(b) ⊗ gk) = ϕ((a ⊗ g)(b ⊗ k)).

Similarly, (ϕ(a ⊗ g))+ = ϕ((a ⊗ g)+). Therefore, ϕ is a ∗-homomorphism. �
Lemma 2.17 says that A ×θ G can be considered as a ∗-subalgebra of Mn(A) via

the embedding ϕ. We illustrate this with a simple example.

Example 2.18 Suppose σ is a ∗-automorphism ofA such that σn = Id. For instance,
ifA = K[x1, . . . , xn] and ε1, . . . , εn ∈ {−1, 1} satisfy ε1 · · · εn = 1, wemay take the
∗-automorphism σ defined by

σ( f )(x1, . . . , xn) = f (ε1xn, ε2x1, . . . , εnxn−1).

Let G ∼= {0, . . . , n − 1} be the cyclic group of order n. There is a homomorphism
θ of G into the group of ∗-automorphisms of A given by k �→ σk . Then

ϕ
( n−1∑

k=0

ak ⊗ k
)

=

⎛

⎜⎜⎜⎝

a0 a1 . . . an−1

σ(an−1) σ(a0) . . . σ(an−2)
...

...
. . .

...

σn−1(a1) σn−1(a2) . . . σn−1(a0)

⎞

⎟⎟⎟⎠ . (2.19)

That is, A ×θ G is (∗-isomorphic to) the ∗-algebra of matrices (2.19), where
a0, . . . , an−1 are arbitrary elements of A. �
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4. Group graded ∗-algebras
Another important class of ∗-algebras is introduced in the following definition.

Definition 2.19 Let G be a (discrete) group. A G-graded ∗-algebra is a ∗-algebra
A which is a direct sum A = ⊕

g∈G Ag of vector spaces Ag , g ∈ G, such that

Ag · Ah ⊆ Ag·h and (Ag)
+ ⊆ Ag−1 for g, h ∈ G. (2.20)

From the conditions in (2.20) we conclude that a G-grading of a ∗-algebra A is
completely determined if we know the components for a set of algebra generators of
A. It is convenient to describe G-gradings in this manner.

The following is probably the simplest example of a G-graded ∗-algebra.
Example 2.20 (Super ∗-algebra)
Let G be the group Z/2 = {0, 1}. Then each G-graded ∗-algebra A is a direct sum
A = A0 ⊕ A1 of vector spaces A0,A1 such that

A0 · A0 ⊆ A0, A0 · A1 + A1 · A0 ⊆ A1, A1 · A1 ⊆ A0, (A0)
+ = A0, (A1)

+ = A1.

Such a ∗-algebra is usually called a super ∗-algebra. �
Example 2.21 Let J be an index set and let F = C〈zi , wi ; i ∈ J |(zi )+ = wi 〉 be the
free unital ∗-algebra with generators zi , wi , i ∈ J , and involution given by (zi )+ =
wi , i ∈ J . Then F is a Z-graded ∗-algebra with Z-grading determined by zi ∈ F1,
i ∈ J . The vector space Fn is the span of all finite products of k ∈ N0 factors of
elements wi and (n − k) ∈ N0 factors of elements z j . �

The proof of the following simple lemma is straightforward and will be omitted.

Lemma 2.22 If A = ⊕
g∈G Ag is a G-graded ∗-algebra and J is a two-sided ∗-

ideal of A generated by subsets of Ag , g ∈ G, then the quotient ∗-algebra A/J is
also G-graded.

Proofs of the existence of gradings are usually given by the following pattern:
First we define a G-grading on the free ∗-algebra (as done with G = Z in Example
2.21). If the polynomials of the defining relations belong to single components of
this grading, Lemma 2.22 applies and gives the grading of the ∗-algebra.
Example 2.23 (Weyl algebra A = C〈a, a+| aa+ − a+a = 1〉)
Let F = C〈a, a+〉 be the free unital ∗-algebra with single generator a equipped with
Z-grading given by a ∈ F1. Then we have a+ ∈ F−1, so the defining polynomial
aa+ − a+a − 1 belongs to the component F0 and Lemma 2.22 applies. Hence A is
a Z-graded ∗-algebra with grading determined by a ∈ A1.

Set N := a+a. It is not difficult to verify that A0 is the polynomial algebra C[N ]
and An = anC[N ], A−n = (a+)nC[N ] for n ∈ N0. �
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Example 2.24 (Enveloping algebra of the Virasoro algebra)
Let A be the unital ∗-algebra with generators z and xn, n ∈ Z, relations

[xk, xn] = (n − k)xk+n + δk+n,0
1

12
(n3−n) z, [xn, z] = 0, k, n ∈ Z, (2.21)

and involution determined by (xn)+ = x−n and z+ = z, where [x, y] := xy − yx .
The Lie algebra with generators z and xn, n ∈ Z, and Lie brackets (2.21) is the
Virasoro algebra and the algebra A is called its enveloping algebra. From Lemma
2.22 it follows that A is a Z-graded ∗-algebra with xn ∈ An and z ∈ A0. �

In the literature, a G-graded algebra A = ⊕g∈GAg is often defined by requiring
that Agh is equal to the span of Ag · Ah for g, h ∈ G, see, e.g., [Mk99]. We do not
assume this, because it does not hold for our standard example. For the Weyl algebra
A (Example 2.23), we have A0 = C[N ], A1 = aA0, A−1 = a+A0 = A0a+. Hence
the linear span of A−1 · A1 is equal to N · C[N ] and different from A0.

2.3 Quadratic Modules

Throughout this section, A denotes a ∗-algebra over K.
In commutative real algebraic geometry [Ms08], positivity notions are usually

described in terms of quadratic modules. Their counterpart for general ∗-algebras is
introduced in the following definition.

Definition 2.25 A nonempty subset Q of Aher is a pre-quadratic module of A if

a + b ∈ Q and λa ∈ Q for a, b ∈ Q, λ ≥ 0, (2.22)

x+ax ∈ Q for a ∈ Q, x ∈ A. (2.23)

Any element a+a, where a ∈ A, is called a hermitian square of A.
A quadratic module Q of a unital ∗-algebra such that 1 ∈ Q is called a quadratic

module.

Example 2.26 Let A = C[x]. The set of finite sums of elements x2 p+ p, where
p ∈ C[x], is a pre-quadratic module of A which is not a quadratic module. �

It is easily checked that the set

∑
A2 :=

{ n∑

k=1

(ak)
+ak : ak ∈ A, n ∈ N

}
(2.24)

of all finite sums of hermitian squares is a pre-quadratic module of A.
If A is unital, it follows from condition (2.23), with a = 1, that

∑
A2 is the

smallest quadratic module of A.
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Example 2.27 SupposeA is unital andX is a subset ofAher. Then the set of all finite
sums of elements a+a and a+xa, where a ∈ A and x ∈ X, is the smallest quadratic
module of A that contains X. �
The next lemma collects a number of useful polarization identities.

Lemma 2.28 If A is a complex ∗-algebra and a, x, y ∈ A, we have

4 yax =
3∑

k=0

ik (x + ik y+)+a (x + ik y+), (2.25)

4 xay =
3∑

k=0

i−k (x+ + ik y)+a (x+ + ik y), (2.26)

4 yx =
3∑

k=0

ik (x + ik y+)+(x + ik y+), (2.27)

2 (x+ay + y+ax) = (x + y)+a(x + y) − (x − y)+a(x − y), (2.28)

2 (x+y + y+x) = (x + y)+(x + y) − (x − y)+(x − y). (2.29)

If A is a complex unital ∗-algebra and a, x, y ∈ A, then

4 ax =
3∑

k=0

ik (x + ik1)+a (x + ik1), (2.30)

4 xa =
3∑

k=0

ik (x + ik1) a (x + ik1)+. (2.31)

Proof The equalities (2.25) and (2.28) are proved by direct computations of the
corresponding right-hand sides. Setting y = 1 in (2.25) gives (2.30). The identities
(2.26) and (2.31) follow from (2.25) and (2.30) by taking the adjoints and replacing
a, x, y by a+, x+, y+, respectively. By applying (2.25) and (2.28) to the unitization
A1 of A and setting a = 1, we obtain (2.27) and (2.29). �

For any complex ∗-algebra A, it follows easily from (2.27) and (2.29) that

A2 =
∑

A2−
∑

A2 + i
∑

A2 − i
∑

A2, (2.32)

A2 ∩ Aher =
∑

A2 −
∑

A2.

Here A2 denotes the C-linear span of products ab for a, b ∈ A. If Q is a quadratic
module of a complex unital ∗-algebra A, then Q ⊇ ∑

A2 and A2 = A, so that

A = Q − Q + i Q − i Q, Aher = Q − Q.
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Proposition 2.29 Let Q be a pre-quadratic module of a complex ∗-algebra A and
set Q0 := Q ∩ (−Q). Then IQ := Q0 + i Q0 is a two-sided ∗-ideal ofA; it is called
the support ideal of Q.

Proof It is clear that IQ is a ∗-invariant complex vector space and Q0 − Q0 ⊆ Q0.
For c ∈ Q0 and x, y ∈ A, it follows from (2.23) that (x+ + ik y)+c(x+ + ik y) ∈ Q0.
Therefore, by (2.26), 4xcy ∈ (Q0 − Q0 + iQ0 − iQ0) ⊆ Q0 + i Q0 = IQ . Thus,
A · Q0 · A ⊆ IQ and hence A · (Q0 + i Q0) · A = A · IQ · A ⊆ IQ , that is, IQ is a
two-sided ideal of A. �

Important examples of quadratic modules are defined by ∗-representations in
Sect. 5.7. We close this section with two examples from the commutative case.

Example 2.30 (Motzkin polynomial p(x1, x2) := x21 x
2
2 (x

2
1 + x22 − 3) + 1)

Let A := C[x1, x2]. We show that p(x1, x2) is nonnegative on R
2, but p /∈ ∑

A2.
For (x1, x2) ∈ R

2, the arithmetic–geometric mean inequality yields

x41 x
2
2 + x21 x

4
2 + 1 ≥ 3 3

√
x41 x

2
2 · x21 x42 · 1 = 3x21 x

2
2 ,

which in turn implies p(x1, x2) ≥ 0.
We prove that p /∈ ∑

C[x1, x2]2. Assume to the contrary that p = ∑
j q

+
j q j ,

where q j ∈ C[x1, x2]. Then

p(x1, x2) =
∑

j
|q j (x1, x2)|2, (x1, x2) ∈ R

2. (2.33)

Comparing the monomials of highest degrees on both sides we conclude that
deg(q j ) ≤ 3. Since p(0, x2) = p(x1, 0) = 1, it follows from (2.33) that the polyno-
mials q j (0, x2) and q j (x1, 0) are constant. Hence each q j is of the form λ j + x1x2r j ,
with λ j ∈ C and linear r j ∈ C[x1, x2]. Then, comparing the coefficients of x21 x

2
2 in

(2.33) yields
∑

j |r j (0, 0|2 = −3, which is the desired contradiction. �
Example 2.31 (Real algebraic geometry)
LetK be either R or C and let A be the commutative ∗-algebraK[x1, . . . , xd ]. Then
Aher = R[x1, . . . , xd ]. For any closed subset K of Rd we define

A(K )+ := {p ∈ R[x1, . . . , xd ] : p(t) ≥ 0 for all t ∈ K }.

Obviously, A(K )+ is a quadratic module which is invariant under multiplication,
that is, p, q ∈ A(K )+ implies p · q ∈ A(K )+. In real algebraic geometry, a quadratic
module which has this property is called a pre-ordering.

In particular, A+ := A(Rd)+ is the set of polynomials of R[x1, . . . , xd ] that are
nonnegative on Rd . Clearly,

∑
A2 ⊆ A+. If d = 1, it follows from the fundamental

theorem of algebra that
∑

A2 = A+. For d ≥ 2, we have
∑

A2 �= A+. Indeed, if p
is the polynomial from Example 2.30, then q(x1, . . . , xd) := p(x1, x2) belongs to
A+, but q is not in

∑
A2. �
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2.4 Positive Functionals and States on Complex ∗-Algebras

Throughout this section, A denotes a complex ∗-algebra.
Definition 2.32 A linear functional f : A �→ C is called positive if

f (a+a) ≥ 0 for a ∈ A

and hermitian if

f (a+) = f (a) for a ∈ A.

A state on a unital ∗-algebra is a positive linear functional f such that f (1) = 1. The
set of positive linear functionals on A is denoted by P(A)∗.

Clearly, the positive linear functionals on A are precisely the linear functionals
that are nonnegative on the pre-quadratic module

∑
A2 defined by (2.24).

The following fundamental inequality (2.34) is the Cauchy–Schwarz inequality.

Proposition 2.33 Let f be a positive linear functional on A. Then, for a, b ∈ A,

| f (b+a)|2 ≤ f (a+a) f (b+b), (2.34)

f (a+b) = f (b+a). (2.35)

If A is unital, then f is hermitian.

Proof For α,β ∈ C we compute

f ((αa + βb)+(αa + βb))

= αα f (a+a) + αβ f (a+b) + αβ f (b+a) + ββ f (b+b) ≥ 0. (2.36)

Hence αβ f (a+b) + αβ f (b+a) is real, so its imaginary part vanishes. We set first
αβ = 1 and then αβ = i. This gives Im f (a+b) = −Im f (b+a) and Re f (a+b) =
Re f (b+a), respectively. Both equalities together imply (2.35).

The expression in (2.36) is a positive semi-definite quadratic form, so its discrim-
inant has to be nonnegative. By (2.35), this yields f (a+a) f (b+b) − | f (b+a)|2 ≥ 0,
which proves (2.34).

Now suppose A is unital. Then we set b = 1 in (2.35) and obtain f (a+) = f (a).
Thus f is hermitian. �
Definition 2.34 A positive linear functional f on A is called extendable if it can be
extended to a positive linear functional on its unitization A1. We denote the set of
extendable positive functionals on A by Pe(A)∗.

If A is unital, A = A1 and all positive functionals on A are trivially extendable.
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Proposition 2.35 Suppose f is a positive linear functional on A. Then f is extend-
able if and only if f is hermitian and there exists a constant c ≥ 0 such that

| f (a)|2 ≤ c f (a+a) for a ∈ A. (2.37)

If A is unital, then f (1) is the smallest constant c ≥ 0 such that (2.37) holds.

Proof First assume that f is extendable. Let f1 be a positive linear functional on A1

which extends f . Then, by Proposition (2.33), f1 is hermitian, so is f , and (2.37)
holds with c := f1(1) by the Cauchy–Schwarz inequality (2.34), applied to f1 with
b = 1. Therefore, both conditions on f are satisfied.

Conversely, first suppose A is unital. Then (2.34) implies (2.37) with c = f (1).
If (2.37) holds for some c ≥ 0, settinga = 1 yields f (1)2 ≤ c f (1). Hence f (1) ≤ c.
Thus, f (1) is indeed the smallest c ≥ 0 for which (2.37) is fulfilled.

Now we suppose that A is not unital and both conditions are satisfied. We can
assume that f �≡ 0. Clearly, there exists a smallest number c ≥ 0 for which (2.37)
holds. Then c > 0, since c = 0 would imply f ≡ 0 by (2.37). We fix a real number
C ≥ c and define a linear functional f1 on A1 by

f1(a + α) := f (a) + αC for a ∈ A, α ∈ C. (2.38)

Since f is hermitian, f (a+) = f (a) . Therefore, using (2.38) and (2.37) we obtain

f1((a + α)+(a + α)) = f (a+a) + α f (a) + α f (a+) + |α|2C
= f (a+a) + α f (a) + α f (a) + |α|2C
≥ f (a+a) − 2|α| | f (a)| + |α|2c
= f (a+a)−c−1| f (a)|2 + (|α|c1/2 − | f (a)|c−1/2

)2 ≥ 0.

Hence f1 is a positive functional on A1. By (2.38), f1 is an extension of f . �
The last assertions of Propositions 2.33 and 2.35 suggest how to define a state in

the nonunital case and they show that for unital ∗-algebras the following definition
of a state coincides with the one given in Definition 2.32.

Definition 2.36 A positive functional f on a ∗-algebra A is called a state if f is
hermitian and 1 is the smallest number c ≥ 0 such that | f (a)|2 ≤ c f (a+a) for all
a ∈ A. The set of states of A is denoted by S(A).

Corollary 2.37 Any state on a ∗-algebra A has an (obviously unique) extension to
a state on its unitization A1.

Proof Suppose A is not unital and f is a state on A. Since (2.37) holds with c = 1, it
follows from (2.38) and the proof of Proposition 2.35 that f1(1) = 1 defines a state
on A1. �
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Corollary 2.38 Let f be a positive linear functional on a ∗-algebra A and x ∈ A.
Then fx (·) := f (x+ · x) is an extendable positive linear functional.
Proof Let a ∈ A. Since fx (a+a) = f ((ax)+ax) ≥ 0, fx is a positive functional on
A. Using (2.35) and (2.34) we obtain

fx (a
+) = f ((ax)+x) = f (x+(ax)) = fx (a) ,

| fx (a)|2 = | f (x+(ax))|2 ≤ f (x+x) f ((ax)+ax) = f (x+x) fx (a+a).

Hence fx is extendable by Proposition 2.35. �
Example 2.39 (A positive functional that is not extendable and not hermitian)
Let A be the ∗-algebra xC[x] with involution given by x+ := x . Fix α ∈ C, α �=
0. We define a linear functional f on A by f (xp(x)) := αp(0), p ∈ C[x]. Since
f ((xp)+xp) = 0 for p ∈ C[x], f is a positive functional on A. But condition (2.37)
does not hold, so f is not extendable. Clearly, f is not hermitian if α /∈ R. �
Example 2.40 (Positive semi-definite functions on ∗-semigroups)
Let S be a ∗-semigroup. Clearly, a linear functional f onC[S] is uniquely determined
by its values f (s) at s ∈ S. Hence linear functionals onC[S] correspond to functions
on S. By definition, a linear functional f on C[S] is positive if and only if

f
(( ∑

s
αss

)+( ∑
t
αt t

))
=

∑
s,t

αsαt f (s
+t) ≥ 0 (2.39)

for all
∑

s αss ∈ C[S]. �
Definition 2.41 A function f on a ∗-semigroup S is called positive semi-definite,
or of positive type, if

n∑

j,k=1

α jαk f (s
+
j sk) ≥ 0 (2.40)

for arbitrary elements s1, . . . , sn ∈ S and numbers α1, . . . ,αn ∈ C, n ∈ N.

Comparing (2.39) and (2.40) we see that a linear functional on C[S] is positive if
and only if its restriction to S is a positive semi-definite function. �

In the rest of this section, we assume that f is a state on a unital ∗-algebra A.
Definition 2.42 The standard deviation Δ f (a) of the state f in a ∈ A is defined by

Δ f (a) := [
f
(
(a − f (a)1)+(a − f (a)1)

)]1/2 = (
f (a+a) − | f (a)|2)1/2. (2.41)

The second equality in (2.41) follows by a simple computation using the fact that
the state f is hermitian. Note that we have f (a+a) − | f (a)|2 ≥ 0 by the Cauchy–
Schwarz inequality, since f (1) = 1.
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Lemma 2.43 For a, b ∈ A we have

| f (ba) − f (b) f (a)| ≤ Δ f (a)Δ f (b
+). (2.42)

Proof Using the equations f (1) = 1 and (2.35) and the inequality (2.34) we derive

∣∣ f (ba) − f (b) f (a)
∣∣ = ∣∣ f

(
(b − f (b)1)(a − f (a)1)

)∣∣

= ∣∣ f
(
(b+ − f (b+)1)+(a − f (a)1)

)∣∣

≤ [
f
(
(a − f (a)1)+(a − f (a)1)

)]1/2 [
f
(
(b+ − f (b+)1)+(b+ − f (b+)1

)]1/2

= Δ f (a)Δ f (b
+). �

The following inequality (2.43) is the algebraic version of the uncertainty relation
studied in Sect. 8.7.

Proposition 2.44 For each state f on A and hermitian elements a, b ∈ A,

Δ f (a)Δ f (b) ≥ 1

2
| f (ab − ba)|. (2.43)

Proof Since a = a+, b = b+, it follows from (2.42) and its counterpart obtained by
interchanging a and b that

| f (ab) − f (ba)| ≤ | f (ab)− f (a) f (b)| + | f (ba)− f (b) f (a)| ≤ 2Δ f (a)Δ f (b).

This proves (2.43). �
Example 2.45 (Noncommutative probability space)
A (noncommutative) probability space is a pair (A, f ) of a unital ∗-algebra A and a
fixed state f of A. Any hermitian element a ∈ A is considered as a random variable,
and the number f (a) is interpreted as the expectation value of f at a.

The classical example is the following: Let (X,A) be a measurable space and μ
a probability measure on (X,A). Then f (a) = ∫

a dμ defines a state f on the ∗-
algebra A := L∞(X,A) and the pair (A, f ) is a probability space. In this case, f (a)

and Δ f (a) are the “usual” expectation value and standard deviation, respectively, of
a random variable a = a+ ∈ A. �

2.5 Positive Functionals on Real ∗-Algebras

In this section, A denotes a real ∗-algebra.
The first two notions of the following definition are verbatim the same as for

complex ∗-algebras; see Definition 2.32.
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Definition 2.46 A linear functional f : A �→ R is called
• positive if f (a+a) ≥ 0 for a ∈ A,
• hermitian if f (a+) = f (a) for a ∈ A.
If A is unital, we say that f is a state on A if f is positive, hermitian, and f (1) = 1.

The counterpart of Proposition 2.33 for real ∗-algebras is the following.
Proposition 2.47 Let f : A �→ R be a positive linear functional and a, b ∈ A. Then

f (b+a + a+b)2 ≤ 4 f (a+a) f (b+b). (2.44)

In particular, if b+a is hermitian, then

f (b+a)2 ≤ f (a+a) f (b+b), (2.45)

and if A is unital, then f (a + a+)2 ≤ 4 f (1) f (a+a).

Proof As in the proof of Proposition 2.33, see (2.36), we obtain for real α,β,

f ((αa + βb)+(αa + βb)) = α2 f (a+a) + αβ[ f (a+b) + f (b+a)] + β2 f (b+b) ≥ 0.

Hence the expression in the middle is a positive semi-definite real quadratic form.
Therefore, its discriminant f (a+a) f (b+b) − ( 12 [ f (b+a + a+b)])2 is nonnegative,
which implies (2.44).

If b+a is hermitian, b+a = (b+a)+ = a+b, so (2.44) gives (2.45). Setting b = 1
in (2.44) yields the last inequality. �

Let fR : A �→ R be anR-linear functional on the real ∗-algebraA. Clearly, fR has
a unique extension to aC-linear functional fC : AC �→ C on the complexificationAC

(Definition 2.9) of A and fC is given by fC(a + ib) = fR(a) + i fR(b), a, b ∈ A. If
fC is a positive functional on A, then fC is not necessarily positive on AC, as shown
in Example 2.50 below. The following simple lemma clarifies when fC is positive.

Lemma 2.48 fC is a positive functional on AC if and only if fR is a positive func-
tional on A and fR(a+b) = fR(b+a) for all a, b ∈ A.

Suppose that A is unital. Then fC is positive on AC if and only if fR is positive
and hermitian on A. Further, fC is a state on AC if and only if fR is a state on A.

Proof Recall that the elements of AC are a + ib, where a, b ∈ A, and in the ∗-
algebra AC we have (a + ib)+(a + ib) = a+a + b+b + i(a+b − b+a). Hence fC is
positive on AC if and only if fR is positive on A and fR(a+b − b+a) = 0, that is,
fR(a+b) = fR(b+a) for a, b ∈ A.
IfA is unital, we can set b = 1 and the latter holds if and only if the functional fR is

hermitian on A. Therefore, by the definition of a state on a real ∗-algebra (Definition
2.46), fC is a state if and only if fR is so. �

The following examples show a number of peculiarities that can occur for positive
linear functionals on real ∗-algebras.



2.5 Positive Functionals on Real ∗-Algebras 25

Example 2.49 Let A be the complex ∗-algebra C considered as a real ∗-algebra.
Then f (x + iy) := x + y, x, y ∈ R, defines an R-linear (!) functional f on A. This
functional is positive (by f ((x + iy)+(x + iy)) = x2 + y2), but it is not hermitian.
Set a = 1, b = 1 + i. Then | f (b+a)|2 = 4 and f (a+a) f (b+b) = 2, so the inequality
(2.45) does not hold in general if the element b+a is not hermitian. �
Example 2.50 (Example 2.8 continued)
Let A1 be the commutative real unital ∗-algebra from Example 2.8. From the defini-
tions (2.7) of the algebraic operations of the unitization it follows that the ∗-algebra
A1 is just the vector space R2 with multiplication and involution

(x1, x2)(y1, y2) = (x2y1 + x1y2, x2y2), (x1, x2)
+ = (−x1, x2). (2.46)

The unit element is (0, 1). Let t = (t1, t2) ∈ R
2. We define a linear functional ft on

A1 by ft (x) = t1x1 + t2x2 for x = (x1, x2) ∈ R
2. Since (x1, x2)+(x1, x2) = (0, x22 )

by (2.46), ft is a positive linear functional if and only if t2 ≥ 0. Clearly, ft is a
hermitian functional if and only if t1 = 0.

Now suppose t1 �= 0 and t2 ≥ 0. Then ft is a positive functional on A1 that is not
hermitian. Hence, by Lemma 2.48, the positive functional ft on the real ∗-algebra
A1 has no extension to a positive linear functional on the complexification (A1)C.

For x = (x1, 0) �= 0, we have ft (x) = t1x1 �= 0 and ft (x+x) = 0. Hence the
Cauchy–Schwarz inequality | f (a)|2 ≤ f (1) f (a+a) for complex unital ∗-algebras
does not hold for real ∗-algebras. Note that the element b+a + a+b on the left-hand
side of (2.44) is hermitian. But if the functional f on A is positive and hermitian,
then (2.44) gives the “usual” Cauchy–Schwarz inequality (2.45). �

2.6 Characters of Unital Algebras

In this section, A is a (not necessarily commutative) unital algebra over K.

Definition 2.51 A character, or a multiplicative linear functional, of A is a nonzero
algebra homomorphism χ : A �→ K, that is, χ is a linear functional on A such that
χ �≡ 0 and

χ(ab) = χ(a)χ(b) for a, b ∈ A. (2.47)

If χ is a character, then χ(1) = 1. (Indeed, since χ is nonzero, we can find a ∈ A
such that χ(a) �= 0; then χ(a)χ(1) = χ(a), so that χ(1) = 1.)

Example 2.52 Let A be the algebra of rational functions in one variable x . If χ is a
character ofA, then 1 = χ(1) = χ(χ(x) − x)χ((χ(x) − x)−1) = 0, a contradiction.
This shows that the algebra A has no character. �
Proposition 2.53 Let χ be a linear functional on A such that χ(1) = 1. Then the
following are equivalent:
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(i) χ(a) = 0 implies χ(a2) = 0 for a ∈ A.
(ii) χ(a2) = χ(a)2 for a ∈ A.
(iii) χ(a) = 0 implies χ(ab) = 0 for a, b ∈ A.
(iv) χ is a character of A.

Proof (i)→(ii): Let a ∈ A. Since χ(1) = 1, χ(a − χ(a)1) = 0. Hence, by (i),

0 = χ
(
(a − χ(a)1)2

) = χ
(
a2 − 2aχ(a) + χ(a)21

) = χ(a2) − χ(a)2.

(ii)→(iii): Applying (ii) with a = u + v we obtain

(
χ(u) + χ(v)

)2 = (
χ(u + v)

)2 = χ
(
(u + v)2

) = χ(u2) + χ(v2) + χ(uv + vu).

Combined with χ(u2) = χ(u)2 and χ(v2) = χ(v)2 again by (ii), the latter implies

χ(uv + vu) = 2χ(u)χ(v) for u, v ∈ A. (2.48)

Now suppose χ(a) = 0. Then, (2.48) applied with u, v replaced by a, b, yields

χ(ab + ba) = 0. (2.49)

Applying first (ii) twice, then (2.48) with u = a, v = bab, (2.49), and finally χ(a) =
0 we compute

(
χ(ab − ba)

)2 = χ
(
(ab − ba)2

) = χ
(
2abab + 2baba − (ab + ba)2

)

= 2χ
(
a(bab) + (bab)a

) − (
χ(ab + ba)

)2 = 4χ(a)χ(bab) + 0 = 0,

so that χ(ab − ba) = 0. Adding the latter equation and (2.49) we get χ(ab) = 0.

(iii)→(iv): Since χ(a − χ(a)1) = 0, it follows from (iii) that

0 = χ((a − χ(a)1)b) = χ(ab) − χ(a)χ(b).

Hence χ(ab) = χ(a)χ(b), so χ is a character.
(iv)→(i) is trivial. �
From now on, A is a complex unital algebra. Let A−1 denote the set of elements

a ∈ A which are invertible in A, that is, there exists an element b ∈ A such that
ab = ba = 1. Then b is uniquely determined by a and denoted by a−1.

Definition 2.54 Fora ∈ A, the set of numbersλ ∈ C forwhich the element a − λ · 1
is not in A−1 is called the spectrum of a and denoted by σA(a).

Example 2.55 ForA = C[x], the spectrumof each nonconstant polynomial isC. By
contrast, for the algebra of rational functions of x the spectrum of each nonconstant
function is empty. �
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Simple properties of the spectrum are listed in Exercise 13. The spectrum is a
fundamental tool in the theory of Banach algebras and C∗-algebras. However, the
main classes of ∗-algebras treated in this book (polynomial algebras, Weyl algebra,
enveloping algebras) do not contain “enough” inverses, so the concept of the spec-
trum is not useful for their study. In fact, for these ∗-algebras the spectrum of all
nonconstant elements is C.

The following result is the Gleason–Kahane–Zelazko theorem.

Theorem 2.56 Suppose A is a unital complex algebra for which the spectrum of
every element of A is bounded. If χ is a linear functional on A such that χ(1) = 1,
then the following statements are equivalent:

(i) χ(a) ∈ σA(a) for a ∈ A.
(ii) χ(a) �= 0 for a ∈ A−1.
(iii) χ is a character of A.

Proof (i)→(ii): Suppose a ∈ A−1. If we would have χ(a) = 0, then 0 ∈ σA(a) by
(i), so a /∈ A−1, which is a contradiction.

(ii)→(i): Since χ(a−χ(a)1) = 0, (a−χ(a)1) /∈ A−1 by (ii), so χ(a) ∈ σA(a).
(iii)→(ii): From 1 = χ(1) = χ(aa−1) = χ(a)χ(a−1) we get χ(a) �= 0.

(ii)→(iii): Let a ∈ A. Suppose that χ(a) = 0.
Let n ∈ N, n ≥ 2. Consider the polynomial p(λ) := χ((λ − a)n). Let λ1, . . . ,λn

be its (complex!) roots. Since 0 = p(λi ) = χ((λi − a)n), we have (λi − a)n /∈ A−1

by (ii), hence (λi − a) /∈ A−1, so that λi ∈ σA(a). Further,

p(λ) =
n∏

i=1

(λ − λi ) = λn − nχ(a)λn−1 +
(
n

2

)
χ(a2)λn−2 + . . . (2.50)

Comparing the coefficients of λn−1 and λn−2 in (2.50) yields
∑

i λi = nχ(a) = 0
and

∑
i< j λiλ j = (n

2

)
χ(a2). Therefore,

0 =
( ∑

i
λi

)2 =
∑

i
λ2
i + 2

∑
i< j

λiλ j =
∑

i
λ2
i + n(n − 1)χ(a2),

which implies that

n(n − 1)|χ(a2)| =
∣∣∣ −

n∑

i=1

λ2
i

∣∣∣ ≤
n∑

i=1

|λi |2.

Hence for at least one i we have (n − 1)|χ(a2)| ≤ |λi |2. Since n ≥ 2 is arbitrary
and λi belongs to the bounded set σA(a) (by assumption), it follows that χ(a2) = 0.
Therefore, by the implication (i)→(iv) of Proposition 2.53, χ is a character. �

Recall that a Banach algebra A is an algebra which is also a complete normed
space with norm satisfying ‖ab‖ ≤ ‖a‖ ‖b‖ for a, b ∈ A. By a unital Banach
algebra we mean a Banach algebra with unit element 1 such that ‖1‖ = 1.
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Suppose A is a complex unital Banach algebra. Then |λ| ≤ ‖a‖ for a ∈ A and
λ ∈ σA(a); see Exercise 12. Hence σA(a) is bounded. Therefore, the assertion of
Theorem 2.56 holds for each complex unital Banach algebra A.

The following is another important fact about characters of Banach algebras.

Theorem 2.57 Each character χ on a complex unital Banach algebra is continuous
and has norm one.

Proof We prove that |χ(a)| ≤ ‖a‖ for all a ∈ A. Assume to the contrary that there
exists an a ∈ A such that |χ(a)| > ‖a‖. By scaling we can assume that ‖a‖ < 1
and χ(a) = 1. Since ‖an‖ ≤ ‖a‖n and ‖a‖ < 1, the series

∑∞
n=1 a

n converges in A
and defines an element b ∈ A. Then b = ab + a.Hence χ(b) = χ(a)χ(b) + χ(a) =
χ(b) + 1, a contradiction. Thus, |χ(a)| ≤ ‖a‖ for a ∈ A, so that ‖χ‖ ≤ 1.

Since χ(1) = 1 and ‖1‖ = 1, we have ‖χ‖ ≥ 1. Therefore, ‖χ‖ = 1. �

2.7 Hermitian Characters of Unital ∗-Algebras

Throughout this section, A is a unital ∗-algebra over K = C or K = R.

Definition 2.58 A hermitian character of A is a character of the algebra A (Def-
inition 2.51) that is a hermitian functional. The set of hermitian characters of A is
denoted by Â.

A hermitian character of A is a nonzero ∗-algebra homomorphism χ : A → K.

This means that χ is a nonzero linear functional on A such that

χ(ab) = χ(a)χ(b) and χ(a+) = χ(a) for a, b ∈ A. (2.51)

Each hermitian character χ is a state on A. Indeed, χ(1) = 1, and from (2.51) we
obtain χ(a+a) = χ(a+)χ(a) = χ(a)χ(a) ≥ 0 for a ∈ A.

Obviously, a character on A is a hermitian character if and only if it is a state.
Characters on commutative C∗-algebras are always hermitian [Dv96, Theorem

I.3.1]. For general commutative ∗-algebras this is not true. For instance, χ(p) :=
p(i), p ∈ C[x], defines a character χ on A = C[x] which is not hermitian.

The following proposition provides characterizations of characters among states
in terms of the standard deviation Δ f (Definition 2.42).

Proposition 2.59 Suppose f is a state on A.

(i) Let a ∈ A. If Δ f (a) = 0, then f (ba) = f (b) f (a) for all b ∈ A.
(ii) f is a character if and only if Δ f (a) = 0 for all a ∈ A.
(iii) If A is a complex ∗-algebra and Δ f (a2) = 0 for all a ∈ Aher, then f ∈ Â.
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Proof (i): is an immediate consequence of the inequality (2.42).
(ii): Using (2.51) we easily derive that Δ f (a) = 0 if f is a character. The converse

implication follows at once from (i).
(iii): Let c ∈ Aher. By assumption,Δ f ((c ± 1)2) = 0. Therefore, by (i), applied with

b = c, a = (c ± 1)2, we compute

4 f (c2) = f
(
c(c + 1)2

) − f
(
c(c − 1)2

) = f (c) f ((c + 1)2) − f (c) f ((c − 1)2)

= f (c) f
(
(c + 1)2 − (c − 1)2

) = 4 f (c)2.

Hence Δ f (c) = 0. Then f (bc) = f (b) f (c) for b ∈ A by (i). Since K = C, we
have A = Aher + iAher. Therefore, f (bc) = f (b) f (c) for all b, c ∈ A. Thus, f is a
character. By assumption, f is a state. Hence f is hermitian, so f ∈ Â. �
Definition 2.60 A state on a unital ∗-algebra A is called pure if it is an extreme
point of the convex set S(A) of states on A.

For states f, g on A, λ ∈ [0, 1], and a ∈ A, a straightforward computation yields
the following very useful identity:

Δλ f +(1−λ)g(a)2 = λΔ f (a)2 + (1−λ)Δg(a)2 + λ(1−λ)
∣∣( f −g)(a)

∣∣2. (2.52)

Corollary 2.61 Each hermitian character on A is a pure state.

Proof Let h ∈ Â. Suppose h = λ f + (1 − λ)g, where f, g are states and λ ∈ (0, 1).
Let a ∈ A. Since h is a character, Δh(a) = 0 by Proposition 2.59(ii). Thus, since
Δ f (a) ≥ 0,Δg(a) ≥ 0, and λ(1 − λ) > 0, the identity (2.52) gives ( f − g)(a) = 0.
Hence f = g and therefore f = g = h. �

A natural question is the following:
When are pure states on commutative unital ∗-algebras characters?
In general this is not true: As shown in Example7.5 below, there exists a pure

state on the ∗-algebra C[x1, x2] that is not a character. Positive results concerning
this question are given in Theorem 2.63 and Proposition 2.72.

We begin with a simple technical lemma.

Lemma 2.62 Let C be a subset of A such that C ⊇ ∑
A2. Suppose f is a state on

A which is an extreme point of the convex set of all C-positive states. Let g ∈ P(A)∗.
If g and f − g are C-positive, then g = g(1) f .

Proof Since the assertion is trivial for g = 0, we can assume that g �= 0.
Then we have g(1) > 0 by the Cauchy-Schwarz inequality.

Suppose g(1) = 1. Then ( f −g)(1) = 0. Since C ⊇ ∑
A2, f − g ∈ P(A)∗.

Hence f = g again by the Cauchy-Schwarz inequality, so the assertion is also true.
Now assume 0 < g(1) < 1. Then f1 := g(1)−1g and f2 := (1−g(1))−1( f − g)

are C-positive states such that f = g(1) f1 + (1−g(1)) f2. Since f is an extreme
point of the C-positive states, we obtain f1 = f . This gives g = g(1) f . �
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Theorem 2.63 Let f be a state on a commutative (!) complex unital ∗-algebra A.
Suppose Q is a quadratic module of A such that for any x ∈ A and a ∈ Aher,

x+x − 1 ∈ Q and x+ax ∈ Q imply a ∈ Q. (2.53)

If f is Q-positive and an extreme point of the convex set of Q-positive states, then
f is a hermitian character and hence a pure state.

Proof Fix b ∈ Aher. Clearly, Sb = {(1 + b2)a : a ∈ Aher} is a linear subspace ofAher.
First we show that there is a well-defined linear functional g on Sb given by

g((1 + b2)a) = f (a), a ∈ Aher. (2.54)

Suppose (1 + b2)a = (1 + b2)a′ with a, a′ ∈ Aher. Then (b − i)+(b − i) − 1 =
b2 ∈ Q and 0 = (1 + b2)(a − a′) = (b + i)(a − a′)(b − i) ∈ Q , so a − a′ ∈ Q by
condition (2.53). Hence f (a − a′) ≥ 0, since f is Q-positive. Interchanging the role
of a, a′ yields f (a′ − a) ≥ 0. Thus, f (a) = f (a′), so g is well defined.

Suppose (1 + b2)a ∈ Q, where a ∈ Aher. Then, since (1 + b2)a = (b − i)+
a(b − i), condition (2.53), applied with x = b − i, yields a ∈ Q. Hence, since
f is Q-positive, g is nonnegative on Q ∩ Sb by (2.54). Further, if c ∈ Aher, then
(1 + b2)(1 + c)2 ∈ Q and (1 + b2)(1 + c)2 − 4c = b2(1 + c)2 + (1 − c)2 ∈ Q.
This shows that Sb is Q-cofinal in Aher. Therefore, by Proposition C.4, g admits
an extension to a Q-positive R-linear functional on Aher and hence to a C-linear
Q-positive functional, denoted again g, on A. In particular, g ∈ P(A)∗.

Let c ∈ Q. Then b2c = bcb ∈ Q, so g(b2c) ≥ 0 and g(c) ≤ g((1 + b2)c) =
f (c). Thus, f − g is Q-positive. By assumption, f is an extreme point of the
Q-positive states, so Lemma 2.62 implies g = g(1) f . Note that g(1) > 0, since
otherwise g = 0 and hence f (1) = 0 by (2.54), a contradiction. Then, by (2.54),

f (a) = g((1 + b2)a) = g(1)−1g(a) for a ∈ Aher. (2.55)

Set a = 1 + b2 and a = (1 + b2)2 in (2.55). Since g(1 + b2) = f (1) = 1, we obtain

f (1 + b2) = g(1)−1g(1 + b2) = g(1)−1,

f ((1 + b2)2) =g(1)−1g((1 + b2)2) = g(1)−2g(1 + b2) = g(1)−2.

HenceΔ f (1 + b2) = 0 and therefore f (x(1 + b2)) = f (x) f (1 + b2), x ∈ A, by
Proposition 2.59(i). Because A is the linear span of elements 1 + b2, where b ∈ Aher,
f is a character. Since f is a state, it is hermitian. By Corollary 2.61, f is pure. �
Corollary 2.64 Let f be a state on a commutative complex unital ∗-algebra A and

A+ := {a ∈ Aher : χ(a) ≥ 0 for χ ∈ Â }. (2.56)
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If f is A+-positive and an extreme point of the set of A+-positive states on A, then
f is a hermitian character and a pure state.

Proof By Theorem 2.63 it suffices to check that the quadratic module A+ satisfies
condition (2.53). Indeed, suppose x+x − 1 ∈ A+ and x+ax ∈ A+. Then, for χ ∈ Â,
χ(x+x − 1) = χ(x+x) − 1 ≥ 0 and χ(x+ax) = χ(x+x)χ(a) ≥ 0, which implies
that χ(a) ≥ 0. Thus, a ∈ A+ and condition (2.53) holds. �

Extreme points of the convex set of Q-positive states play a crucial role in the
decomposition theory of positive linear functionals (see Theorem 5.35). Obviously,
each Q-positive pure state is an extreme point of the set of Q-positive states.

Now we turn to the description and existence of hermitian characters.
First let A be a real unital subalgebra of the algebra C(X ;R) of continuous real-

valued functions on a topological Hausdorff space X , equipped with the identity
involution. For x ∈ X , let evx denote the evaluation functional at x , that is, evx ( f ) =
f (x) for f ∈ A. Obviously, evx ∈ Â. It is natural to ask when the functionals evx ,
x ∈ X , exhaust the set Â. A simple fact is the following.

Lemma 2.65 Suppose X is a compact topological Hausdorff space. For each char-
acter χ on A = C(X ;R) there exists a unique point x ∈ X such that χ = evx .

Proof We consider the ideal J := { f ∈ A : χ( f ) = 0}. First we show that there
exists an x ∈ X such that f (x) = 0 for all f ∈ J. Assume the contrary. Then for
each x ∈ X there exists a function ϕx ∈ J such that ϕx (x) �= 0. Clearly, the sets
Ox = {y ∈ X : ϕx (y) �= 0} are open and cover the compact set X , since
x ∈ Ox . Hence there exists a finite subcover, say Ox1 ∪ · · · ∪ Oxk = X . The func-
tion g := ϕ2

x1 + · · · + ϕ2
xk is in J (since ϕx j ∈ J) and satisfies g(x) > 0 on X . Hence

g−1 ∈ A = C(X ;R). Since g ∈ J, 1 = gg−1 ∈ J and therefore J = A. Thus, χ = 0,
a contradiction.

We fix an x ∈ X at which all functions of J vanish. Let f ∈ A. Since χ(1) = 1,
( f − χ( f )1) ∈ J and hence ( f − χ( f )1)(x) = f (x) − χ( f ) = 0, that is, we have
χ( f ) = f (x) = evx ( f ). Since the functions of C(X ;R) separate the points of X ,
x is uniquely determined by χ. �

For arbitrary topological spaces X the assertion of Lemma 2.65 does not hold.
The point evaluations on C(X ;R) exhaust the characters if and only if the space
X is realcompact; see [GJ60, Chap.8] for the definition and basic results. Large
classes of spaces (such as metrizable spaces, σ-compact spaces) have this property.
A topological space that is not realcompact is sketched in the next example.

Example 2.66 Let X be the space of all ordinals less than the first uncountable
ordinal, equipped with the order topology. Each function f ∈ C(X ;R) is a constant
χ( f ) on a set {α ∈ X : α ≥ β} for some β ∈ X depending on f . Then χ(·) is a
character on A which is not of the form evx for some point x ∈ X . (Full details and
proofs concerning this example can be found in [GJ60, pp. 72–75].) �
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For a commutative real algebra A with identity involution, the set Â of hermitian
characters is just the set of nonzero algebra homomorphisms of A into R.

Next we describe the set Â for a finitely generated commutative unital K-algebra
A. First we fix a set { f1, . . . , fd} of hermitian generators of A. Then there exists a
unique surjective unital ∗-homomorphism θ : Kd [x] �→ A such that θ(x j ) = f j for
j = 1, . . . , d. The kernel J of θ is a ∗-ideal of Kd [x] and A is ∗-isomorphic to the
quotient ∗-algebra Kd [x]/J , that is, A ∼= Kd [x]/J .

Let χ ∈ Â. Since f j are hermitian generators of A, χ( f j ) ∈ R and χ is uniquely
determined by the point xχ := (χ( f1), . . . ,χ( fd)) ∈ R

d . For p ∈ Kd [x], we obtain

χ(θ(p)) = χ(p( f1, . . . , fd)) = p(χ( f1), . . . ,χ( fd)) = p(xχ). (2.57)

For p ∈ J , we have θ(p) = 0 and hence p(xχ) = 0 by (2.57), so xχ is in the zero
setZ(J ) of J . Conversely, suppose x ∈ R

d is inZ(J ). Then, since A ∼= Kd [x]/J ,
there is a well-defined (!) hermitian character χ on A given by χ(θ(p)) = p(x) for
p ∈ Kd [x]. That is, by (2.57), χ( f ) = p(xχ), θ(p) = f , is well defined on A. We
identify χ with xχ and write f (xχ) := χ( f ) for f ∈ A. Then, by the preceding, Â
becomes the real algebraic set

Â = Z(J ) := {x ∈ R
d : f (x) = 0 for f ∈ J }. (2.58)

Since Z(J ) is closed in R
d , Â is a locally compact Hausdorff space in the induced

topology of Rd and the elements of A can be considered as continuous functions
on this space. In the special case A = Kd [x] we can take f1 = x1, . . . , fd = xd and
obtain Â = R

d .
Before we continue let us introduce another general concept. Note that locally

convex topologies are defined in Appendix C.

Definition 2.67 A topological ∗-algebra is a ∗-algebra A, together with a locally
convex topology, such that the involution a �→ a+ is continuous and the multiplica-
tion maps a �→ ab and a �→ ba of A are continuous for each element b ∈ A.

The continuity of the maps a �→ ab and a �→ ba as in the preceding definition
is called the separate continuity of the multiplication. Since the involution is con-
tinuous, it suffices to require the continuity of one of these mappings. The separate
continuity is weaker than the joint continuitywhich means that the map (a, b) �→ ab
of A × A into A is continuous. It follows from [Sh71, Theorem III.5.1] that the
multiplication in Frechet topological ∗-algebras is always jointly continuous.

The Arens algebra is a commutative unital Frechet ∗-algebra without characters.
Example 2.68 (Arens algebra Lω(0, 1))
Let ‖ · ‖p denote the norm of L p(0, 1) with respect to the Lebesgue measure on
[0, 1]. Let p ∈ (1,+∞). For f, g ∈ L p(0, 1), we have by the Hölder inequality,

‖ f g‖p ≤ ‖ f ‖2p ‖g‖2p. (2.59)
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The vector space Lω(0, 1) := ∩1<p<∞L p(0, 1), equipped with the locally convex
topology defined by the norms ‖ · ‖p, p ∈ (1,∞), is a Frechet space.

From (2.59) it follows that for f, g ∈ Lω(0, 1) the pointwise product f g is also
in Lω(0, 1) and the multiplication is jointly continuous in the topology of Lω(0, 1).
Further, Lω(0, 1) is a complex unital ∗-algebra with involution f +(t) := f (t) and
we have ‖ f +‖p = ‖ f ‖p for f ∈ Lω(0, 1). Thus,

Lω(0, 1) = ∩1<p<∞L p(0, 1)

is a commutative Frechet ∗-algebra, called the Arens algebra.
We prove that the ∗-algebra Lω(0, 1) has no character. Assume to the contrary,

it has a character χ. Its restriction to C([0, 1];R) is a character, so by Lemma 2.65
there exists an x0 ∈ [0, 1] such that χ( f ) = f (x0) for f ∈ C([0, 1];R). Define

g(x) = log|x − x0|, h(x) = (log|x − x0|)−1 for x ∈ [0, 1], x �= x0, h(x0) = 0.

Then h ∈ C([0, 1];R), g ∈ Lω(0, 1), and gh = 1 in Lω(0, 1), so we obtain

1 = χ(1) = χ(gh) = χ(g)χ(h) = χ(g)h(x0) = 0,

a contradiction.
But Lω(0, 1) has plenty of positive functionals. For any ϕ ∈ L∞(0, 1) there is a

positive linear functional defined by Lϕ( f ) = ∫ 1
0 f (x)|ϕ(x)|dx, f ∈ Lω(0, 1). �

2.8 Hermitian and Symmetric ∗-Algebras

In this section, A is a complex unital ∗-algebra.
Definition 2.69 A complex unital ∗-algebra A is called
• hermitian if 1 + a2 is invertible in A for each hermitian element a = a+ ∈ A,
• symmetric if 1 + a+a is invertible in A for each element a ∈ A.

Obviously, each symmetric ∗-algebra is hermitian. The converse is not true, as
Example 2.73 below shows.

Example 2.70 Obviously, C(Rd), C∞(Rd) and the ∗-algebra of rational functions
on Rd are symmetric. The polynomial ∗-algebra Cd [x] is not hermitian. �

The next proposition gives characterizations of these notions in terms of spectra.

Proposition 2.71 (i) A is hermitian if and only if σA(a) ⊆ R for each hermitian
element a ∈ A.

(ii) A is symmetric if and only if σA(a+a) ⊆ [0,+∞) for each a ∈ A.
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Proof (i): Suppose σA(a) ⊆ R for a = a+ ∈ A. Then, since ±i /∈ σA(a), a − i and
a + i are invertible, and so is 1 + a2 = (a − i)(a + i). Thus A is hermitian.
Conversely, suppose A is hermitian. Then 1 + a2 is invertible for a = a+ ∈ A.
Froma(1 + a2) = (1 + a2)aweobtain (1 + a2)−1a = a(1 + a2)−1.Using this
relation and the identity 1 + a2 = (a − i)(a + i) we derive (a ± i)(1 + a2)−1

is the inverse of a ∓ i. Hence i,−i /∈ σA(a). Upon scaling by a factor it follows
that all nonreal numbers are not in σA(a). Thus, σA(a) ⊆ R.

(ii): Let a ∈ A and suppose that σA(a+a) ⊆ [0,+∞). Then −1 /∈ σA(a+a), hence
1 + a+a is invertible. Hence A is symmetric.
Conversely, assume that A is symmetric. Let a ∈ A. Since A is also hermitian,
σA(a+a) ⊆ R by (i). If λ > 0, then −λ − a+a = −λ(1 + (λ−1/2a)+(λ−1/2a))

is invertible, because A is symmetric. Therefore, −λ /∈ σA(a+a). This proves
that σA(a+a) ⊆ [0,+∞). �

Let f, g ∈ P(A)∗. We write f ≤ g if f (a+a) ≤ g(a+a) for all a ∈ A. Recall that
fx denotes the positive functional defined by fx (·) := f (x+ · x) for x ∈ A.

Proposition 2.72 Suppose A is a commutative hermitian complex unital ∗-algebra.
Then each pure state of A is a hermitian character.

Proof Let a ∈ Aher. Then b := (1 + a2)−1 ∈ Aher and

1 = f (1)2 = f (b(1 + a2))2 ≤ f ((1 + a2)2) f (b2)

by the Cauchy-Schwarz inequality. Hence f (b2) > 0.
From the relations

1 − (ab)2 = (1 + a4 + a2)b2 ∈
∑

A2 and 1 − b2 = (a4 + 2a2)b2 ∈
∑

A2

we obtain fab ≤ f and fb ≤ f . Therefore, since f is pure, it follows from Lemma
2.62, applied with C = ∑

A2, that fab = fab(1) f and fb = fb(1) f . Using essen-
tially that A is commutative and these two equalities we derive

f (a2b2x) = fb(a
2x) = fb(1) f (a

2x) = f (b2) f (a2x),

f (a2b2x) = fab(1) f (x) = fb(a
2) f (x) = fb(1) f (a

2) f (x) = f (b2) f (a2) f (x)

for x ∈ A. As noted above, f (b2) �= 0. Hence f (a2x) = f (a2) f (x) for x ∈ A. Since
squares of hermitian elements span Aher (by the identity (a + 1)2 − (a − 1)2 = 4a)
and hence A, we conclude that f (cx) = f (c) f (x) for all c, x ∈ A, that is, f is a
character. As a state, f is hermitian. �
Example 2.73 (A commutative hermitian ∗-algebra which is not symmetric)
Let C(x)[y] denote the polynomials in y over the field C(x) of rational functions
in x . Then, C(x)[y] is a complex unital ∗-algebra, with involution determined by
x+ = x, y+ = y. Let A be the quotient ∗-algebra ofC(x)[y] by the ∗-ideal generated
by the polynomial 1 + x2 + y2.
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Statement 1: A is a field.

Proof This follows from the fact that the polynomial 1 + x2 + y2 in y is irreducible
over C(x). We give a direct proof. We denote the images of x, y in the quotient
algebra A also by x, y. Clearly, each element of A is of the form f = a + by, where
y2 = −1 − x2 and a, b ∈ C(x). Suppose f �= 0. Then a �= 0 or b �= 0.

Suppose a �= 0. First we show that a2 + (1 + x2)b2 �= 0. Assume the contrary.
Then, after clearing denominators and canceling common factors, we can assume
that a2 = −(1 + x2)b2, where a, b ∈ C[x] have no common divisor. But then x + i
is a divisor of a, so (x + i)2 is a factor of a2. This implies that x + i is a factor of b,
a contradiction.

Let c be the inverse of a2 + (1 + x2)b2 �= 0 in the field C(x). Then we compute

f (ac − bcy) = (a + by)(ac − bcy) = (a2 − b2y2)c = (a2 + (1 + x2)b2)c = 1.

Now let a = 0, b �= 0. Then f (−b−1(1 + x2)−1y) = −byb−1(1 + x2)−1y = 1.
Thus, in both cases, f �= 0 is invertible in A. Hence A is a field. �

Statement 2: A is hermitian, but not symmetric.

Proof Let f = f + ∈ A. Then 1 ± i f �= 0. (Otherwise, 1 = ∓ i f and therefore
1 = ± i f . Adding both equations yields 2 = 0, a contradiction.) Hence we have
1 + f 2 = ( f − i)( f + i) �= 0, so 1 + f 2 is invertible in the field A. This proves that
A is hermitian.

For f := x + iy, we have 1 + f + f = 1 + (x + iy)+(x − iy) = 1 + x2 + y2 =
0 in A, so 1 + f + f is not invertible in A. Therefore, A is not symmetric. ��

A Banach ∗-algebra A is a complex Banach algebra which is also a ∗-algebra.
The Shirali–Ford theorem ([SF70], see [DB86, Theorem33.2] for a simplified proof),
states that each hermitianBanach ∗-algebra is symmetric, thus solving an outstanding
conjecture of I. Kaplansky. Even more, in any hermitian unital Banach ∗-algebra,
1 + (a1)+a1 + · · · + (an)+an is invertible for arbitrary elements a1, . . . , an ∈ A and
n ∈ N. Such ∗-algebras are called completely symmetric.

Group algebras of locally compact groups form an important class of Banach
∗-algebras. Group algebras of abelian or compact groups are symmetric. In general,
group algebras are not symmetric. It is an interesting question of whether the group
algebra of a locally compact group is symmetric; see, e.g., [Pl01, Chap.12] for a
detailed treatment.

2.9 Exercises

1. Carry out the proof of Lemma 2.6.
2. Suppose A is a commutative real ∗-algebra with the identity map as involution.

Let AC be its complexification (Definition 2.9). Show that
∑

A2 = ∑
(AC)2.
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Show that each R-linear positive functional on A has a unique extension to a
C-linear positive functional on AC.

3. Consider the real ∗-algebra Mn(R), with involution a �→ a+ := aT . Suppose
b, c ∈ Mn(R) are invertible, bT = b or bT = −b, and cT = c or cT = −c.
Show that the corresponding ∗-algebras (Mn(R),+b) and (Mn(R),+c) from
Example 2.15 are ∗-isomorphic if and only if there exists an invertible matrix
u ∈ Mn(R) such that c = uT bu or c = −uT bu.

4. Extend the considerations of Example 2.15 to the matrix ∗-algebra Mn(C) with
involution defined by (a+)i j := a ji . Prove that each algebra involution of the
complex algebra Mn(C) is of the form a �→ a+b := ba+b−1 for some invertible
hermitian matrix b ∈ Mn(C). (Note that b+ = b in contrast to Mn(R).)

5. (Quaternions) LetH denote the algebra of real quaternions, that is,H is the real
unital algebra with generators i, j and defining relations i2 = j2 = 0, ij = −ji.
Set k := ij. Each element x ∈ H is of the form x = x0 + ix1 + jx2 + kx3 with
x0, x1, x2, x3 ∈ R uniquely determined. Define x+ = x0 − ix1 − jx2 − kx3.

a. Show that the map x �→ x+ is an algebra involution of H, so H becomes a
real ∗-algebra.

b. Prove x+x = xx+ = x20 + x21 + x22 + x23 for x = x0 + ix1 + jx2 + kx3 ∈ H.
c. Show that ‖x‖ := √

x+x , x ∈ H, defines a norm on the real vector space
H such that (H, ‖ · ‖) is a real C∗-algebra according to Definition B.3 and
‖xy‖ = ‖x‖ ‖y‖ for x, y ∈ H.

d. Show that any x ∈ H, x �= 0, is invertible in H with x−1 = ‖x‖−2x+.
e. Let b ∈ H, b �= 0, be such that b+ = b or b+ = −b. Prove that the map

x �→ x+b := bx+b−1 is an algebra involution of H.
f. Show that any involution of the real algebraH is of the form described in e.

Hint for e. and f.: Mimic the proofs given in Example 2.15.
6. Show that the real∗-algebrasM2(R) andH (seeExercise 5) are not∗-isomorphic,

but their complexifications are ∗-isomorphic (as complex ∗-algebras) to M2(C),
equipped with the involution (a+)i j := a ji .

7. Let X be a topological space and σ a homeomorphism of X such that σ2 = Id.

a. Show that the algebra C(X ) is a ∗-algebra with involution defined by
f +(x) := f (σ(x)).

b. LetX = [0, 1] and σ(x) = 1 − x, x ∈ X .Describe the elements ofAher and∑
A2 for the ∗-algebra A from a. in this case.

8. Prove that the enveloping algebra of the Virasoro algebra from Example 2.24 is
Z-graded.

9. Let A be a complex ∗-algebra. Show that each linear functional f on A can be
uniquely represented as f = f1 + i f2, where f1, f2 are hermitian functionals.

10. Let A be a ∗-algebra. Show that Q := {a ∈ Aher : f (a) ≥ 0, f ∈ P(A)∗} is a
pre-quadratic module of A.

11. Let A = xC[x]. Describe the smallest pre-quadratic module of A containing x .
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12. Let (A, ‖ · ‖) be a complex unital Banach algebra. Prove that |λ| ≤ ‖a‖ for each
element a ∈ A and λ ∈ σA(a).

13. Let A be a unital complex algebra and let a, b ∈ A. Prove the following:

a. σA(ab) ∪ {0} = σA(ba) ∪ {0}.
b. σA(p(a)) = {p(λ) : λ ∈ σA(a)} for any nonconstant polynomial p ∈ C[x].
c. If A is a ∗-algebra, then λ ∈ σA(a) if and only if λ ∈ σA(a+).

14. Let A = C(X ), where X is a topological space, and f ∈ A. Prove that σA( f ) is
the closure of the set f (X ) in C. Give an example for which σA( f ) �= f (X ).

15. Determine the hermitian characters of the real ∗-algebra R ⊕ R.
16. Determine the hermitian characters of A = C, first considered as a complex ∗-

algebra and then as a ∗-real ∗-algebra.
17. Describe the semigroup ∗-algebras of the following ∗-semigroups as polynomial

∗-algebras and determine the corresponding sets of hermitian characters.

a. Zn , n+ = −n.
b. N2d

0 , (m, n)+ = (n,m) for n,m ∈ N
d
0 .

c. N0 × Z, (n,m)+ = (n,−m).

18. Determine the hermitian characters of the following commutative ∗-algebras:
a. C[x, y | x+x = xx+ = 1, y = y+].
b. R[x, y | x = x+, y = y+, x2 = y2 = 1].
c. C[x | x+x = 0] and R[x | x = x+, x2 = 0].

19. LetA = C[x, x−1] be the algebra of complex Laurent polynomials. Show thatA
becomes a ∗-algebraBwith involution x+ = x and a ∗-algebraCwith involution
x+ = x−1. Determine the hermitian characters of B and C.

20. Suppose f is a state on a commutative complex unital ∗-algebra A. Show that
A0 := {a ∈ A : Δ f (a) = 0} is a unital ∗-subalgebra of A and the restriction of
f to A0 is a hermitian character of A0. Show that A0 is the largest ∗-subalgebra
which has this property.

21. LetA be the vector spaceC ⊕ C, with the multiplication (a, b)(c, d) = (ac, bd)

and involution (a, b)+ = (b, a).

a. Show thatA is a commutative unital complex ∗-algebra that is not hermitian.
b. Show that

∑
A2 = Aher = {(a, a) : a ∈ C}.

c. Show that A has no nonzero positive functional.

22. Let A be the ∗-algebra C[x], with the norm topology of ‖p‖ = ∫ 1
0 |p(x)| dx .

a. Show that A is a topological ∗-algebra.
b. Show that the multiplication of A is not jointly continuous.
c. Show that the multiplication of A cannot be extended by continuity to the

completion of (A, ‖ · ‖) such that the completion becomes an algebra.
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2.10 Notes

A standard reference for involutions on rings and algebras is [KMRT98]. A standard
text book for harmonic analysis on ∗-semigroups is [BCR84]. A large number of
examples of group graded ∗-algebras can be found in [SS13]. The Gleason–Kahane–
Zelazko Theorem 2.56 was proved in [Gl67] and in [KZ68]. The Arens algebra
Lω(0, 1) was discovered by R. Arens [Ar46]. Theorem 2.63, Exercise 20 and the
proof of Corollary 2.61 are due to Schötz [Sz19, Sz18].

The symmetry condition appeared already in the classical paper [GN43]. Sym-
metric Banach ∗-algebras were first studied by Raikov [Ra46]. Hermitian Banach
∗-algebras were introduced by Rickart [Ri47] and Kaplansky [Kp47]. For general ∗-
algebras these notionswere studied byWichmann [Wi74, Wi76, Wi78]who obtained
a number of interesting results. Example 2.73 is taken from [Wi74]. Detailed pre-
sentations of symmetric and hermitian ∗-algebras are given in [DB86, Chap.6] and
[Pl01, Sect. 9.8].

Topological ∗-algebras are not the subject of this book; we refer to [Sch90,
In98, AIT02] for topological algebras of unbounded operators, to [Fr05] for locally
multiplicatively convex algebras, to [Pl01] for Banach ∗-algebras, to [Di77b, KR83,
DB86, Dv96] for C∗-algebras, and to [Gol82, Li03] for real C∗-algebras.



Chapter 3
O∗-Algebras

An O∗-algebra is a ∗-algebra of linear operators acting on an invariant dense domain
D of a Hilbert space. The involution is the restriction of the Hilbert space adjoint
to D. In this chapter, we treat a few selected topics on O∗-algebras that are needed
later for the study of ∗-representations. These are the graph topology and the closure
of an O∗-algebra in Sect. 3.1, weak and strong bounded commutants in Sect. 3.2,
and functionals defined by positive trace class operators in Sect. 3.3. In Sect. 3.4, we
prove and apply a useful technical result, the so-called Mittag-Leffler lemma.

Onafirst reading, the readermay skip this chapter andpass directly to the treatment
of ∗-representations which begins in Chap. 4; if notions or facts from this chapter are
needed, one can easily return to the corresponding places.

In this chapter, all algebras and vector spaces are over the complex field.

3.1 O∗-Algebras and Their Graph Topologies

Suppose (D, 〈·, ·〉) is a complex inner product space, that is, D is a complex vector
spacewith aC-valued inner product1 〈·, ·〉. LetH denote theHilbert space completion
of (D, 〈·, ·〉) and L(D) the algebra of linear operators mapping D into itself.

Definition 3.1 L+(D) denotes the set

{
a ∈ L(D) : There exists a b ∈ L(D) such that 〈aϕ,ψ〉 = 〈ϕ, bψ〉 for ϕ,ψ ∈ D}

.

1In the literature, an “inner product” is often referred to as a “scalar product” and an “inner product
space” as a “pre-Hilbert space.” Occasionally, “complex inner product spaces” are called “unitary
spaces.”
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Clearly, the operator b is uniquely determined by a and denoted by a+. Note that
b = a+ coincides with the restriction to D of the adjoint operator a∗ on H. Hence
each operator a ∈ L+(D) has a densely defined adjoint, so a is closable on H.

By a slight reformulation, L+(D) is the set of linear operators a on the Hilbert
space H with domain D such that

aD ⊆ D, D ⊆ D(a∗), and a∗D ⊆ D.

Lemma 3.2 L+(D) is a unital ∗-algebra with the addition, scalar multiplication
and product of linear operators and the involution a �→ a+. The unit element is the
identity map I = ID.

Proof The axioms of a ∗-algebra are proved by straightforward verifications. As a
sample, we show that ab ∈ L+(D) and (ab)+ = b+a+ for a, b ∈ L+(D). For vectors
ϕ,ψ ∈ D we have bϕ ∈ D and a+ψ ∈ D, so that

〈abϕ,ψ〉 = 〈bϕ, a+ψ〉 = 〈ϕ, b+a+ψ〉.

Since b+a+ ∈ L(D), this implies that ab ∈ L+(D) and (ab)+ = b+a+. �
Definition 3.3 A ∗-subalgebra A of the ∗-algebra L+(D) is called an O∗-algebra
on the domainD(A) := D. IfA contains the identity map I , we say thatA is a unital
O∗-algebra.

IfA is an O∗-algebra, thenA + C · I is unital O∗-algebra which is ∗-isomorphic to
the unitization A1 of A.

It is straightforward to check that the set

A+ := {
a = a+ ∈ A : 〈aϕ,ϕ〉 ≥ 0 for ϕ ∈ D(A)

}
(3.1)

of all positive operators of an O∗-algebra A is a pre-quadratic module of A.
Let A be an O∗-algebra. In general, the operators of A are not continuous in the

Hilbert space norm. But there is a natural locally convex topology onD(A), the graph
topology, in which all operators ofA are continuous. For a ∈ A let ‖ · ‖a denote the
seminorm on D(A) defined by ‖ϕ‖a := ‖aϕ‖, ϕ ∈ D(A).

We refer to Appendix C for some basics on locally convex topologies.

Definition 3.4 The graph topology tA is the locally convex topology on the vector
space D(A) defined by the family of seminorms {‖ · ‖ + ‖ · ‖a : a ∈ A}.

A base of neighborhoods of ϕ ∈ D(A) in the topology tA is given by the sets

Uε,a1,a2,...,an (ϕ) := {ψ ∈ D(A) : ‖ϕ − ψ‖ + ‖ak(ϕ − ψ)‖ ≤ ε, k = 1, . . . , n},

where ε > 0 and a1, . . . , an ∈ A, n ∈ N.
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Anet (ϕ)i∈I of vectorsϕi ∈ D(A) converges to a vectorϕ ∈ D(A) in the topology
tA if and only if limi ϕi = ϕ and limi aϕi = aϕ inH for all a ∈ A.

From the relation ‖a · ‖ + ‖a · ‖b = ‖ · ‖a + ‖ · ‖ba , a, b ∈ A, it follows that each
a ∈ A is a continuous linear mapping of the locally convex space D(A)[tA].

If all operators a ∈ A are bounded on D(A), then the graph topology is given by
the Hilbert space norm.

Lemma 3.5 If A is a unital O∗-algebra, the family of seminorms {‖ · ‖a : a ∈ A}
is directed and defines the graph topology tA. Given a1, . . . , an ∈ A, setting b =
I + a+

1 a1 + · · · + a+
n an, we have ‖ · ‖ ≤ ‖ · ‖b and ‖ · ‖ak ≤ ‖ · ‖b, k = 1, . . . , n.

Proof For ϕ ∈ D(A) we derive

‖ϕ‖2b = ‖(I + a+
1 a1 + · · · + a+

n an)ϕ‖2
= ‖(a+

1 a1 + · · · + a+
n an)ϕ‖2 + ‖ϕ‖2 + 2 Re

〈
(a+

1 a1 + · · · + a+
n an)ϕ,ϕ

〉

≥ ‖ϕ‖2 + 2 ‖ϕ‖2a1 + · · · + 2 ‖ϕ‖2an ,

which implies the assertion. �
Lemma 3.6 Let A be a unital O∗-algebra. Suppose that (an)n∈N0 is a sequence of
operators an ∈ A, where a0 = I , such that the locally convex topology t on D(A)

defined by the seminorms {‖ · ‖an : n ∈ N0} is complete. Then t is equal to the graph
topology tA.

Proof Obviously, t is weaker than tA. Since t is defined by countably many semi-
norms, t is metrizable, so D(A)[t] is a Frechet space. Let a ∈ A. The topology t
is stronger than the Hilbert space topology on D(A), because a0 = I . Since a is
closable as a Hilbert space operator, a is a closed linear operator of the Frechet
spaceD(A)[t] intoH. Therefore, by the closed graph theorem, a : D(A)[t] �→ H is
continuous, so the seminorm ‖ · ‖a is t-continuous. Thus, tA is weaker than t. �
Definition 3.7 An O∗-algebra A is said to be closed if D(A) = ∩a∈A D(a).

For an O∗-algebra A we define

D(A ) = ⋂

a∈A
D(a), A := { j (a) : a ∈ A}, where j (a) := aD(A ). (3.2)

Proposition 3.8 SupposeA is an O∗-algebra. ThenA is a closed O∗-algebra with
domain D(A ) and the map a �→ j (a) is a ∗-isomorphism of A and A. Moreover,
D(A) is dense in the locally convex space D(A )[tA ].
Proof SetB := A + C · I . ThenD(B ) = D(A ) and tB = tA. Hence, upon replac-
ing A by B, we can assume that A is a unital O∗-algebra.

Suppose that ϕ,ψ ∈ D(A ) and a, b ∈ A. Because the family of seminorms
{‖ · ‖x : x ∈ A} is directed by Lemma 3.5, there exists an operator c ∈ A such that
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‖aη‖ + ‖bη‖ + ‖abη‖ ≤ ‖cη‖ for η ∈ D(A). (3.3)

Since ϕ ∈ D(c), there is a sequence (ϕn)n∈N of vectors ϕn ∈ D(A) such that
limn ϕn = ϕ and limn cϕn = cϕ. Applying (3.3) to η = ϕn − ϕk we conclude that
(aϕn)n∈N, (bϕn)n∈N, and (abϕn)n∈N are Cauchy sequences, hence they converge in
H. The operators b, ab, and a are closable. Hence it follows that

bϕ = lim
n

bϕn, abϕ = lim
n

abϕn, a ϕ = lim
n

aϕn. (3.4)

Since a is closable, the first two relations of (3.4) imply bϕ ∈ D(a) and a bϕ =
abϕ. Since a ∈ A was arbitrary, bϕ ∈ ∩a∈A D(a) = D(A ). Hence j (b)ϕ = bϕ
and j (a) j (b)ϕ = a bϕ = abϕ = j (ab)ϕ. Because a + b is closable, from the first
and third relation of (3.4) we obtain j (a + b)ϕ = ( a + b )ϕ = ( j (a) + j (b))ϕ.
Obviously, j (λa) = λ j (a) for λ ∈ K.

Next we prove that j (a+) = j (a)+ for a ∈ A. Since ψ ∈ D( a+ ), we can find a
sequence (ψn) of vectors ψn ∈ D(A) such that ψ = limn ψn and j (a+)ψ = a+ ψ =
limn a+ψn . Then

〈 j (a)ϕ,ψ〉 = lim
n

〈aϕn,ψn〉 = lim
n

〈ϕn, a
+ψn〉 = 〈ϕ, j (a+)ψ〉 (3.5)

for ϕ,ψ ∈ D(A ). As shown above, each operator j (b) maps D(A ) into itself.
Hence j (a) and j (a+) leave D(A ) invariant, so (3.5) implies j (a) ∈ L+(D(A ))

and j (a)+ = j (a+). Putting the preceding together we have proved that j is a ∗-
isomorphism of A on the O∗-algebra j (A) = A on D(A ).

Since a ⊆ j (a) ⊆ a for a ∈ A, we have D(A ) = ∩a∈A D( j (a) ), that is, the
O∗-algebra j (A) = A is closed.

Suppose that ϕ ∈ D(A ). Let ε > 0 and a ∈ A. Since ϕ ∈ D(a), we can find
a vector ϕa,ε ∈ D(A) such that ‖a (ϕ − ϕa,ε)‖ ≡ ‖ϕ − ϕa,ε‖ j (a) < ε. Since the
family of seminorms {‖ · ‖ j (a) : a ∈ A} is directed by Lemma 3.5, this means that
D(A) is dense in the locally convex space D(A )[tA ]. �
Proposition 3.9 An O∗-algebra A on D is closed if and only if the locally convex
space D(A)[tA] is complete.
Proof First suppose A is closed, that is, D(A) = ∩a∈A D(a). Let (ϕi )i∈J be a
Cauchy net in the locally convex space D(A)[tA]. Fix a ∈ A. Then (ϕi )i∈J and
(aϕi )i∈J are Cauchy nets in the underlying Hilbert space H. Hence there exist vec-
tors ϕ and ϕa of H such that limi ϕi = ϕ and limi aϕi = ϕa in H. Since a is
closable, the latter implies that ϕ ∈ D(a) and ϕa = a ϕ. Therefore, it follows that
ϕ ∈ ∩a∈A D(a) = D(A) and hence aϕ = aϕ. From the relations limi ϕi = ϕ and
limi aϕi = aϕ for all ∈ A we conclude that limi ϕi = ϕ inD(A)[tA]. This proves
that the locally convex space D(A)[tA] is complete.

Now assume that D(A)[tA] is complete. By Proposition 3.8, D(A) is dense in
the locally convex space D(A )[tA ]. Since tA is the induced topology of tA and
D(A)[tA] is complete, this implies D(A) = D(A ). �
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From Propositions 3.8 and 3.9,D(A )[tA ] is the completion of the locally convex
space D(A)[tA] and A is the smallest closed O∗-algebra which extends the O∗-
algebra A. This justifies the following definition.

Definition 3.10 The O∗-algebra A is called the closure of the O∗-algebra A.

We illustrate the preceding with an important example.

Example 3.11 (Differential operators with polynomial coefficients)
Let D be the Schwartz space S(Rd) of rapidly decreasing C∞-functions on R

d

considered as a dense domain of the Hilbert spaceH = L2(Rd). Let A be the set of
operators a acting on D of the form

a =
∑

|α|≤n

fα(x)D
α, where fα ∈ Cd [x], Dα :=

( ∂

∂x1

)α1 · · ·
( ∂

∂xd

)αd

,

and n ∈ N. Hereα = (α1, . . . ,αd) ∈ N
d
0 and |α| := α1 + · · · + αd .Clearly, a leaves

D invariant. It is easily checked that A is a unital O∗-algebra on D.
The assignment p j �→ −i ∂

∂x j
,q j �→ x j , j = 1, . . . , d, defines a∗-homomorphism

π of the Weyl algebra W(d) (see Example 2.10) on the O∗-algebra A. (In order to
prove this it suffices to verify that the operators −i ∂

∂x j
, x j satisfy the defining rela-

tions of W(d), which is easily done.) Further, if a ∈ A as above acts as the zero
operator on S(Rd), then all coefficients fα are zero. Hence π is injective, so π is a
∗-isomorphism ofW(d) and the O∗-algebraA. In the terminology of Definition 4.2
below, this means that π is a faithful ∗-representation of the Weyl algebra W(d) on
the domain S(Rd). In fact, π is the d-dimensional Schrödinger representation.

The Schwartz space S(Rd) is a Frechet space with respect to the locally convex
topology t given by the countable family of seminorms

qm(ϕ) = sup
|α|≤m

sup
x∈Rd

∣∣(1 + x21 + · · · + x2d )
m (Dαϕ)(x)

∣∣, m ∈ N0.

It is well known (see, e.g., [RS72, Appendix to V.3]) that this topology t is also
generated by the family of seminorms {‖ · ‖cn : n ∈ N0}, where

c := x21 + · · · + x2d − ∂2

∂x21
− · · · − ∂2

∂x2d
∈ A. (3.6)

Hence, by Lemma 3.6, t = tA. That is, the graph topology of the O∗-algebra A
coincides with the “natural” locally convex topology of the Schwartz space S(Rd).
In particular, the O∗-algebra A is closed, because S(Rd) is complete. �
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3.2 Bounded Commutants

In this section we define and study basic notions of bounded commutants of O∗-
algebras. They will serve later for different purposes: While the strong commutant
and the symmetrized commutant are used to characterize irreducible representations
(Proposition 4.26), the weak commutant appears in the study of orderings of positive
linear functionals and pure states (Corollary 5.4).

Throughout this section, we assume thatA is an O∗-algebra on the dense domain
D(A) of the Hilbert space H. Define

D(A∗) = ⋂

a∈A
D(a∗).

Definition 3.12 An O∗-algebra A is called self-adjoint if D(A) = D(A∗).

Definition 3.13 The weak commutant A′
w is defined by

A′
w = {

T ∈ B(H) : 〈Taϕ,ψ〉 = 〈Tϕ, a+ψ〉 for a ∈ A, ϕ,ψ ∈ D(A)
}
,

the strongly commutant A′
s by

A′
s = {

T ∈ B(H) : TD(A) ⊆ D(A) and Taϕ = aTϕ for a ∈ A, ϕ ∈ D(A)
}
,

and the symmetrized commutant A′
sym by

A′
sym = {

T ∈ B(H) : Ta ⊆ aT and T ∗ a ⊆ a T ∗ for a ∈ A}
.

It is convenient to have weak and strong commutants also for single operators.

Definition 3.14 The strong commutant {a}′s of a linear operator a on H is

{a}′s := {
T ∈ B(H) : TD(a) ⊆ D(a) Taϕ = aTϕ for ϕ ∈ D(a)

}
.

If a is a symmetric operator, its weak commutant {a}′w is

{a}′w = {
T ∈ B(H) : 〈Taϕ,ψ〉 = 〈Tϕ, aψ〉 for ϕ,ψ ∈ D(a)

}
.

For linear operators a and b on H and T ∈ B(H) the relation Ta ⊆ bT means
that T maps the domain D(a) into D(b) and Taϕ = bTϕ for all ϕ ∈ D(a).

It is not difficult to verify that the preceding definitions can be rewritten as

{a}′s := {
T ∈ B(H) : Ta ⊆ aT

}
, {a}′w = {

T ∈ B(H) : Ta ⊆ a∗T
}
.

For the second equality we have to assume thatD(a) is dense inH in order to ensure
that the adjoint operator a∗ is defined.
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If the operator a is self-adjoint, we clearly have {a}′s = {a}′w and we write {a}′
for {a}′s = {a}′w.

For the following results we need the definition and some basic facts of von
Neumann algebras (see Definition B.2 and Appendix B).

Proposition 3.15 Theweak commutantA′
w is a ∗-invariant linear subspace ofB(H)

which is closed in the weak operator topology of B(H) and spanned by its positive
elements. We have A′

w = (A )′w,

A′
w = {

T ∈ B(H) : TD(A) ⊆ D(A∗), Taϕ = (a+)∗Tϕ for a ∈ A,ϕ ∈ D(A)
}
,

A′
s = {

T ∈ A′
w : TD(A) ⊆ D(A)

}
.

If A is self-adjoint, then A′
w = A′

s. If A′
w = A′

s, this set is a von Neumann algebra
which is denoted by A′.

Proof From its definition it follows at once thatA′
w is a linear subspace of B(H) that

is closed in the weak operator topology. Suppose T ∈ A′
w. Then

〈T ∗aϕ,ψ〉 = 〈aϕ, Tψ〉 = 〈ϕ, Ta+ψ〉 = 〈T ∗ϕ, a+ψ〉

for a ∈ A and ϕ,ψ ∈ D(A), where the second equality holds by the assumption
T ∈ A′

w. Therefore, T
∗ ∈ A′

w. Thus A′
w is ∗-invariant.

Since obviously I ∈ A′
w, the positive operators T + ‖T ‖ · I and ‖T ‖ · I − T are

in A′
w for any T = T ∗ ∈ A′

w. Hence A′
w is the span of its positive elements.

We show that A′
w = (A )′w. Clearly, (A )′w ⊆ A′

w. Suppose T ∈ A′
w. Further, let

a ∈ A and ϕ,ψ ∈ D(A ). Then there are nets (ϕi ) and (ψ j ) from D(A) such that
ϕ = limi ϕi and ψ = lim j ψ j in the graph topology tA. Passing to the limit in
〈Taϕi ,ψ j 〉 = 〈Tϕi , a+ψ j 〉 yields

〈T j (a)ϕ,ψ〉 = 〈Tϕ, j (a+)ψ〉 = 〈Tϕ, j (a)+ψ〉.

This proves that T ∈ (A )′w. Thus A′
w = (A )′w.

Next we prove the formula for A′
w. Suppose T ∈ A′

w and ϕ ∈ D(A). Let
a ∈ A. From the relation 〈Taϕ,ψ〉 = 〈Tϕ, a+ψ〉 for all ψ ∈ D(A) it follows that
Tϕ ∈ D((a+)∗) and Taϕ = (a+)∗Tϕ. Since a ∈ A is arbitrary, Tϕ ∈ D(A∗). Thus,
TD(A) ⊆ D(A∗), which proves one inclusion. The proof of the reverse inclusion is
straightforward.

Since (a+)∗ψ = a++ψ = aψ for ψ ∈ D(A), the formula forA′
w implies the for-

mula for A′
s and also the equality A′

w = A′
s when A is self-adjoint.

Finally, suppose A′
w = A′

s. Since A′
s is obviously an algebra, I ∈ A′

s, and A′
w is

∗-invariant and weak operator closed, A′
w = A′

s is a von Neumann algebra. �
The next lemma contains some technical facts on commutants of single operators.
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Lemma 3.16 (i) If a is a closable operator on H, then the closure of {a}′s in the
weak operator topology of B(H) is contained in {a}′s.

(ii) If the operator a is closed, then {a}′s is closed in the weak operator topology.
(iii) If a is closable symmetric operator, then {a}′w = {a}′w.
(iv) If a is a self-adjoint operator and Ea(λ),λ ∈ R, are its spectral projections,

then {a}′s = {a}′w = {
Ea(λ) : λ ∈ R

}′
.

Proof (i): First we prove that {a}′s ⊆ {a}′s. Fix T ∈ {a}′s. Let ϕ ⊆ D(a). Then there
exists a sequence (ϕn)n∈N of vectors ϕn ∈ D(a) such that ϕ = limn ϕn and
a ϕ = limn aϕn . Since Tϕ = limn ϕn and Ta ϕ = limn T aϕn = limn aTϕn ,
it follows that Tϕ ∈ D(a) and Ta ϕ = a Tϕ. That is, T ∈ {a}′s, which proves
that {a}′s ⊆ {a}′s.
To complete the proof it suffices to show that {a}′s is weak operator closed in
B(H). For convex subsets of B(H) the weak operator closure coincides with
its strong operator closure (see, e.g., [KR83, Theorem 5.1.2]), so it suffices
to prove that {a}′s is strong operator closed. Let T be an operator of the strong
operator closure of {a}′s. Then there is a net (Ti )i∈ of operators Ti ∈ {a}′s such that
Tψ = limi Tiψ for all ψ ∈ H. Let ϕ ∈ D(a). Since the operator a is closed, we
conclude from Tϕ = limi Tiϕ and Ta ϕ = limi Tia ϕ = limi a Tiϕ that Tϕ ∈
D(a) and Ta ϕ = aTϕ. Thus, T ∈ {a}′s and {a}′s is strong operator closed.

(ii): Follows immediately from (i).

(iii): is proved by the same reasoning as used in the proof of Proposition 3.15 to derive
the equality A′

w = (A )′w.
(iv): Since a is self-adjoint, {a}′s = {a}′w. The equality {a}′s={Ea(λ) : λ ∈ R}′ is a

well-known fact in unbounded operator theory [Sch12, Proposition 5.15]. �
A densely defined closed operator a on a Hilbert spaceH is called affiliated with

a von Neumann algebra N on H if Ta ⊆ aT for all T ∈ N ′; see Appendix B.
The next proposition collects basic properties of the strong commutant A′

s and
the symmetrized commutant A′

sym for an O∗-algebra A on H.

Proposition 3.17 (i) A′
s is a subalgebra of B(H) such that A′

s ⊆ (A )′s.
(ii) If the O∗-algebraA is closed, thenA′

s is closed in the weak operator topology
of B(H) and we have A′

sym = A′
s ∩ (A′

s)
∗.

(iii) If the O∗-algebraA is self-adjoint, thenA′
s = A′

w = A′
sym and this set is a von

Neumann algebra onH which is denoted by A′.
(iv) A′

sym is a von Neumann algebra on H and A′
sym = (A )′sym. For each a ∈ A,

the closed operator a is affiliated with (A′
sym)

′ and (A′
sym)

′ is the smallest von
Neumann algebra onH which has this property.

Proof (i): From its definition it is clear that A′
s is a subalgebra of B(H). Lemma

3.16(i) implies that A′ ⊆ (A )′s
(ii): Let T ∈ A′

s ∩ (A′
s)

∗. Then, for a ∈ A, T and T ∗ are in {a}′s by definition and
hence in {a}′s by Lemma3.16(i). Therefore, T ∈ A′

sym. Conversely, let T ∈ A′
sym.
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Then T ∈ {a}′s and T ∗ ∈ {a}′s for each a ∈ A. SinceA is closed by assumption,
D(A) = ∩a∈A D(a), so the latter implies that T and T ∗ are in A′

s . Hence T ∈
A′

s ∩ (A′
s)

∗, so we have shown that A′
sym = A′

s ∩ (A′
s)

∗.
Let T be in the weak operator closure ofA′

s inB(H). SinceA′
s ⊆ {a}′s for a ∈ A,

we get T ∈ {a}′s by Lemma 3.16(i). Thus, TD(A) ⊆ ∩a∈A D(a) = D(A) and
hence T ∈ A′

s. This proves that A′
s is closed in the weak operator topology.

(iii): By Proposition 3.15,A′
w is ∗-invariant andA′

s = A′
w is a von Neumann algebra,

because A is self-adjoint. Hence (ii) implies A′
s = A′

w = A′
sym.

(iv): Since A′
sym = ∩a∈A ({a}′s ∩ ({a}′s)∗) by definition, A′

sym is closed in the weak
operator topology by Lemma 3.16(ii). Obviously, I ∈ A′

sym and A′
sym is a ∗-

algebra. Hence A′
sym is a von Neumann algebra. Since A′

sym = (A′
sym)

′′, it is
clear from the definition ofA′

sym that each operator a, where a ∈ A, is affiliated
with (A′

sym)
′.

Suppose N is another von Neumann algebra on H which has this property. Fix
x ∈ N ′. Let a ∈ A. Since a is affiliated withN and x∗ ∈ N ′, we have xa ⊆ ax
and x∗a ⊆ ax∗, so x ∈ A′

sym. ThusN ′ ⊆ A′
sym and hence (A′

sym)
′ ⊆ N ′′ = N .�

Remark 3.18 While the weak commutant and symmetrized commutant of an O∗-
algebra and its closure coincide, this is not true in general for the strong commutant.
A simple example is the following: Consider the O∗-algebraA = C[x] on the dense
domain C[x] of L2(0, 1), where the polynomials act as multiplication operators.
Then D(A) = L2(0, 1) and the multiplication operators of characteristic functions
of intervals [a, b] ⊆ (0, 1) are in (A )′s. But they are not in A′

s, because they do not
leave the domain C[x] invariant. �

The following simple lemma describes weak and strong commutants of an O∗-
algebra in terms of commutants of algebra generators.

Lemma 3.19 Let A be an O∗-algebra and let B be a subset of A which generates
A as an algebra.

(i) A′
s = ∩b∈B {b}′s.

(ii) If B ⊆ Aher, then A′
w = ∩b∈B {b}′w.

Proof (i) is obvious. We prove (ii). It is trivial that A′
w ⊆ ∩b∈B {b}′w. Conversely,

suppose T ∈ ∩b∈B {b}′w. Let A0 denote the set of operators a ∈ A for which
〈Taϕ,ψ〉 = 〈Tϕ, a+ψ〉 for all ϕ,ψ ∈ D(A). Clearly, A0 is a vector space. Let
a1, a2 ∈ A0. For ϕ,ψ ∈ D(A), we have a2ϕ, a

+
1 ψ ∈ D(A) and therefore

〈Ta1a2ϕ,ψ〉 = 〈Ta2ϕ, a+
1 ψ〉 = 〈Tϕ, a+

2 a
+
1 ψ〉 = 〈Tϕ, (a1a2)

+ψ〉.

This shows that a1a2 ∈ A0. ThusA0 is a subalgebra ofA. Since B ⊆ A0 by assump-
tion, A0 = A, which proves that T ∈ A′

w. �
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In the next example we describe the commutants A′
s and A′

w explicitly, and we
shall see that A′

s is not ∗-invariant and A′
w is not an algebra. This example requires

some facts on Toeplitz operators; all of them can be found in [H67].

Example 3.20 Let S denote the shift operator on the Hardy space H = H 2(T).
Since (I − S)H is dense inH as easily checked, A := i(I + S)(I − S)−1 is a densely
defined closed symmetric operator on H with deficiency indices (0, 1). Further, for
ξ ∈ L∞(T) let Tξ denote the Toeplitz operator on H 2(T) with symbol ξ, that is,
Tξϕ = P(ξ · ϕ) for ϕ ∈ H 2(T), where P is the projection of L2(T) on H 2(T).

Statement 1: {A}′w = {
Tξ : ξ ∈ L∞(T)

}
and {A}′s = {

Tξ : ξ ∈ H∞(T)
}
.

Proof Suppose T ∈ B(H). Then T ∈ {A}′w if and only if 〈T Aϕ,ψ〉 = 〈Tϕ, Aψ〉,
or equivalently, 〈T (A + i)ϕ,ψ〉 = 〈Tϕ, (A − i)ψ〉 for ϕ,ψ ∈ D(A). Writing ϕ =
(I − S)η andψ = (I − S)ζ withη, ζ ∈ H, we have (A + i)ϕ = 2i η and (A − i)ψ =
2i ζ. Inserting this it follows easily that the latter is equivalent to the equation T =
S∗T S. But this holds if and only if T is a Toeplitz operator with symbol ξ ∈ L∞(T);
see e.g., [H67, Nr. 194]. This proves the first equality.

We show the second equality. It is easily verified that Tξ ∈ {A}′s for ξ ∈ H∞(T).
Conversely, let T ∈ {A}′s. Then T ∈ {A}′w and hence T = Tξ with ξ ∈ L∞(T). Since
Tξ ∈ {A}′s, we have Tξ(A − i)D(A) ≡ TξSH ⊆ (A − i)D(A) ≡ SH. The relation
TξSH = SH implies that the negative Fourier coefficients of ξ are zero. Therefore,
ξ ∈ H∞(T). �

Since A has finite deficiency indices, D∞(A) := ∩n∈ND(An) is dense in H and
a core for A by Proposition 3.31 proved in Sect. 3.4. Then the symmetric operator
a := AD∞(A) is in L+(D∞(A)) and a = A. Let A denote the unital O∗-algebra
on D∞(A) generated by a.

Statement 2: A′
w = {

Tξ : ξ ∈ L∞(T)
}
and A′

s = {
Tξ : ξ ∈ H∞(T)

}
.

Proof From Lemmas 3.19(ii) and 3.16(iii) and a = A we get A′
w = {a}′w = {A}′w.

If T ∈ {A}′s, then T maps D∞(A) into itself and hence T ∈ {a}′s = A′
s. Conversely,

let T ∈ A′
s. Then T ∈ {a}′s. Hence, since a = A, T ∈ {A}′s by Lemma 3.16(i). Thus,

A′
s = {A}′s. Now the assertions follow from Statement 1. �
If ξ ∈ L∞(T) and both ξ and ξ are not in H∞(T), then Tξ ∈ A′

w, but (Tξ)
2 is not

in A′
w by Statement 2, because (Tξ)

2 is not a Toeplitz operator [H67, Exercise 195].
This shows that the weak commutant A′

w is not an algebra.
Suppose T = T ∗ ∈ A′

s. Then T = Tη with η ∈ H∞(T) by Statement 2. The rela-
tion Tη = (Tη)

∗ = Tη implies η = η ∈ H∞(T). Hence η is constant [H67, Exercise
26], so T = λ · I for some λ ∈ R. In particular, this implies that the strong commu-
tant A′

s is not ∗-invariant. �
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3.3 Trace Functionals on O∗-Algebras

Throughout this section, A is a closed unital O∗-algebra on the Hilbert space H.
Our aim is to study functionals of the form ft (a) = Tr at , a ∈ A, for some pos-

itive trace class operator t . These functionals are an important source of positive
functionals and of ∗-representations of ∗-algebras; see, e.g., Example 4.10 below.

First we recall some facts on trace class operators. For notational simplicity we
assume that the Hilbert space H has infinite dimension. We denote the trace class
operators on H by B1(H), the positive trace class operators by B1(H)+, and the
operator 〈 ·,ϕ〉ψ, where ϕ,ψ ∈ H, by ϕ ⊗ ψ.

By an absolutely convergent series onHwe mean a series
∑∞

n=1 ϕn ⊗ ψn , where
ϕn,ψn ∈ H, such that

∑
n ‖ϕn‖ ‖ψn‖ < ∞. Since ‖ϕ ⊗ ψn‖ = ‖ϕn‖ ‖ψn‖, such a

series converges in the operator norm and defines a bounded operator t on H. We
say that t is represented by this series and write t = ∑

n ϕn ⊗ ψn .
The following lemma reviews some basic results on trace class operators; see,

e.g., [BS87, Chap. 11] for proofs of these facts.

Lemma 3.21 (i) If
∑∞

n=1 ϕn ⊗ ψn is an absolutely convergent series on H, then
the operator t := ∑

n ϕn ⊗ ψn belongs to B1(H) and

Tr t =
∞∑

n=1

〈ψn,ϕn〉. (3.7)

Each operator t ∈ B1(H) is of this form t = ∑∞
n=1 ϕn ⊗ ψn.

(ii) Suppose t ∈ B1(H)+. There exist a sequence (λn)n∈N of numbers λn ≥ 0 and
an orthonormal sequence (ϕn)n∈N of H such that

∑∞
n=1 λn < ∞ and t is rep-

resented by the absolutely convergent series
∑

n ϕn ⊗ (λnϕn) :

t =
∞∑

n=1

ϕn ⊗ (λnϕn). (3.8)

Now we begin the study of trace functionals ft (·) = Tr · t on O∗-algebras.

Definition 3.22 Set ft (a) := Tr at for a ∈ A and t ∈ B1(A)+, where

B1(A)+ := {
t ∈ B1(H)+ : tH ⊆ D(A), atb ∈ B1(H) for all a, b ∈ A}

.

Note that since tH ⊆ D(A) for t ∈ B1(A)+, the operator at is defined on the
whole Hilbert space H.

Remark 3.23 Let {ai : i ∈ I } be a subset of A such that the graph topology tA is
generated by the seminorms {‖ · ‖ai : i ∈ I }. The proof of Proposition 3.24 below
shows that in the definition of B1(A)+ the condition “ atb ∈ B1(H) for a, b ∈ A”
can be replaced by the weaker requirement “ ai ta

+
i ∈ B1(H) for i ∈ I”. �
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Let (ϕn)n∈N be a sequence of vectors ϕn ∈ D(A). We shall say that the series∑∞
n=1 ϕn ⊗ ϕn is absolutely A-convergent if

∞∑

n=1

‖aϕn‖2 ≡
∞∑

n=1

‖ϕn‖2a < ∞ for a ∈ A.

Since the family of seminorms {‖ · ‖a : a ∈ A} is directed (Lemma 3.5), this implies
that

∑∞
n=1 ‖aϕn‖ ‖bϕn‖ < ∞ for all a, b ∈ A.

The following proposition collects basic properties of trace functionals ft .

Proposition 3.24 (i) If t ∈ B1(A)+ and t = ∑∞
n=1 ϕn ⊗ (λnϕn) is a represen-

tation (3.8) of t , then the series
∑∞

n=1(λ
1/2
n ϕn) ⊗ (λ

1/2
n ϕn) is absolutely A-

convergent and represents the operator t .
(ii) If

∑∞
n=1 ψn ⊗ ψn is absolutely A-convergent, then t := ∑∞

n=1 ψn ⊗ ψn is in
B1(A)+ and for a, b ∈ A we have

ft (ab) ≡ Tr abt = Tr tab = Tr bta =
∞∑

n=1

〈abψn,ψn〉. (3.9)

(iii) Suppose t ∈ B1(A)+ and t1/2H ⊆ D(A). Then, t1/2at1/2 ∈ B1(H) and

ft (a) = Tr t1/2at1/2 for a ∈ A. (3.10)

(iv) For t ∈ B1(A)+, the linear functional ft (·) ≡ Tr · t is A+-positive, that is,
ft (c) ≥ 0 for c ∈ A+ := {

a = a+ ∈ A : 〈aϕ,ϕ〉 ≥ 0, ϕ ∈ D(A)
}
.

Proof (i): Let a ∈ A. Since t ∈ B1(A)+, we have s := ata+ ∈ B1(H) and t ≥ 0.
The latter implies that 〈sϕ,ϕ〉 = 〈ta+ϕ, a+ϕ〉 ≥ 0 forϕ ∈ D(A). Hence s ≥ 0.
We apply the Gram–Schmidt procedure to the sequence (aϕn)n∈N and construct
an orthonormal sequence (ψk)k∈N of vectors ψk ∈ D(A) such that
G := Lin {ψk : k ∈ N} ⊇ Lin {aϕn : n ∈ N}. Then

∞∑

k=1

‖s1/2ψk‖2 =
∞∑

k=1

〈sψk,ψk〉 =
∞∑

k=1

〈ata+ψk,ψk〉

=
∞∑

k=1

〈ta+ψk, a
+ψk〉 =

∞∑

k=1

∞∑

n=1

λn〈a+ψk,ϕn〉〈ϕn, a
+ψk〉

=
∞∑

k=1

∞∑

n=1

|〈ψk, a(λ
1/2
n ϕn)〉|2 =

∞∑

n=1

∞∑

k=1

|〈ψk, a(λ
1/2
n ϕn)〉|2

=
∞∑

n=1

‖a(λ1/2
n ϕn)‖2, (3.11)
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where the last equality follows from Parseval’s identity, applied to the orthonor-
mal basis {ψk : k ∈ N} of the Hilbert space G. Since s ∈ B1(H), its square
root s1/2 is a Hilbert–Schmidt operator and therefore

∑
k ‖s1/2ψk‖2 < ∞ (see

[BS87]). Thus,
∑

n ‖a(λ1/2
n ϕn)‖2 < ∞ by (3.11). Since a ∈ A was arbitrary,

this proves that the series
∑

n (λ
1/2
n ϕn) ⊗ (λ

1/2
n ϕn) is absolutely A-convergent.

By construction this series represents the operator t .
(ii): In particular,

∑
n ψn ⊗ ψn is an absolutely convergent series onH, so by Lemma

3.21(i) it represents an operator t ∈ B1(H). Clearly, t ≥ 0, since

〈tϕ,ϕ〉 =
∞∑

n=1

〈ϕ,ψn〉〈ψn,ϕ〉 =
∞∑

n=1

|〈ϕ,ψn〉|2 ≥ 0 , ϕ ∈ H.

Next we prove that tH ⊆ D(A). Suppose ϕ ∈ H. Let a ∈ A. Since I ∈ A, we
have

∑
n ‖ψn‖ ‖aψn‖ < ∞. Hence the series

∑
n〈ϕ,ψn〉ψn converges in the

Hilbert space (D(a), 〈·, ·〉a := 〈a ·, a ·〉 + 〈·, ·〉). It converges to the vector tϕ in
H. Thus, tϕ ∈ D(a). Because the O∗-algebraA is closed,D(A) = ∩a∈A D(a).
Therefore, tϕ ∈ D(A) and tH ⊆ D(A).
Now let a, b ∈ A. Since the series

∑
n ψn ⊗ ψn is absolutely A-convergent,∑

n a
+ψn ⊗ bψn is an absolutely convergent series on H, hence its represents

an operator ta,b ∈ B1(H) by Lemma 3.21(i). For ξ, η ∈ D(A),

〈ta,bξ, η〉 =
∞∑

n=1

〈ξ, a+ψn〉〈bψn, η〉 =
∞∑

n=1

〈aξ,ψn〉〈ψn, bη〉 = 〈taξ, b+η〉.
(3.12)

Since tH ⊆ D(A) as shown in the preceding paragraph, it follows from (3.12)
that 〈ta,bξ, η〉 = 〈btaξ, η〉 for ξ, η ∈ D(A). Therefore, bta = ta,bD(A) and
hence bta = ta,b ∈ B1(H). Putting these facts together we have proved that
t ∈ B1(A)+.
Setting a = I , we get bt = bt ∈ B1(H). By the preceding we have shown that

bta = ta,b =
∞∑

n=1

a+ψn ⊗ bψn,

abt = tI,ab =
∞∑

n=1

ψn ⊗ abψn,

tab = tab,I =
∞∑

n=1

(ab)+ψn ⊗ ψn.

We apply formula (3.7) to these three series and derive
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ft (ab) ≡ Tr abt =
∞∑

n=1

〈abψn,ψn〉 =
∞∑

n=1

〈bψn, a
+ψn〉 = Tr bta

=
∞∑

n=1

〈ψn, (ab)
+ψn〉 = Tr tab.

(iii): It suffices to prove the assertion for a = c2, where c = c+ ∈ A, because these
elements spanA. By the assumption t1/2H ⊆ D(A), s := t1/2c2t1/2 is defined on
H. Therefore, since s is symmetric, s is bounded. Let t = ∑∞

n=1 ϕn ⊗ (λnϕn)

be a representation (3.8) of t ∈ B1(A)+. By adding vectors ψk if necessary,
we obtain an orthonormal basis {ψk,ϕn} of H. Clearly, tϕn = λnϕn implies
t1/2ϕn = λ

1/2
n ϕn . Since ψk is orthogonal to tH = t1/2H, we have t1/2ψk = 0

and hence sψk = 0. Using these facts we derive

∑

k

〈sψk,ψk〉 +
∞∑

n=1

〈sϕn,ϕn〉 =
∞∑

n=1

〈sϕn,ϕn〉

=
∞∑

n=1

〈c2t1/2ϕn, t
1/2ϕn〉 =

∞∑

n=1

〈c2(λ1/2
n ϕn), (λ

1/2
n ϕn)〉. (3.13)

Since
∑

n(λ
1/2
n ϕn) ⊗ (λ

1/2
n ϕn) is absolutely A-convergent, the sum in (3.13) is

finite. Therefore, since s = t1/2c2t1/2 ≥ 0 and {ψk,ϕn} is an orthonormal basis,
this implies that s is trace class [BS87] and Tr s = ∑

n〈c2(λ1/2
n ϕn), (λ

1/2
n ϕn)〉.

By (3.9), applied with ψn = λ
1/2
n ϕn , a = b = c, this yields

Tr s ≡ Tr t1/2c2t1/2 = ft (c2). This proves (3.10).
(iv): By (i) and (ii), formula (3.9) holds. If c ∈ A+, then we have 〈cϕ,ϕ〉 ≥ 0 for

ϕ ∈ D(A). Therefore, setting a = c, b = I in (3.9), we obtain ft (c) ≥ 0. �
Corollary 3.25 For a linear functional f on A the following are equivalent:

(i) There is an operator t ∈ B1(A)+ such that f (a) = ft (a) ≡ Tr at for a ∈ A.
(ii) There exists a sequence (ϕn)n∈N of vectors ϕn ∈ D(A) such that

f (a) =
∞∑

n=1

〈aϕn,ϕn〉 for a ∈ A. (3.14)

Proof (i)→(ii): Apply formula (3.9) with b = I .
(ii)→(i): By (3.14), f (a+a) = ∑

n 〈a+aϕn,ϕn〉 = ∑
n ‖aϕn‖2 < ∞ for a ∈ A,

so
∑

n ϕn ⊗ ϕn is absolutelyA-convergent. By Proposition 3.24(ii), it represents an
operator t ∈ B1(A)+ and formula (3.9) yields f = ft . �

A Frechet–Montel space (see, e.g., [Sh71, IV, 5.8.]) is a locally convex space
which is a Frechet space (i.e., a complete metrizable space) and has the Montel
property (i.e., each bounded subset is relatively compact). For a Frechet space the
Montel property means that each bounded sequence has a convergent subsequence.
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The following theorem, due to the author [Sch78], shows that for a large class of
O∗-algebras all A+-positive linear functionals are of the form ft with t ∈ B1(A)+.

Theorem 3.26 SupposeA is a unital O∗-algebra such that the locally convex space
D(A)[tA] is a Frechet–Montel space. Then, for each A+–positive linear functional
f on A, there exists an operator t ∈ B1(A)+ such that

f (a) = Tr at for a ∈ A. (3.15)

Proof The proof is long and technical. Complete proofs of this theorem are given in
the original papers [Sch78, Sch79] and also in [Sch90, Theorem 5.3.8]. �

For a closable operator a we denote by Ha the Hilbert space D(a) with inner
product 〈·, ·〉a := 〈a ·, a ·〉 + 〈·, ·〉.
Corollary 3.27 Suppose D(A)[tA] is a Frechet space. Assume that there exists an
operator c ∈ A such that the embedding of the Hilbert space Hc into the Hilbert
space H is compact. Then each A+–positive linear functional on A is of the form
(3.15) for some operator t ∈ B1(A)+.

Proof Since the graph topology tA is metrizable, there is a sequence (ak)k∈N of
elements ak ∈ A such that the family of seminorms {‖ · ‖ak : k ∈ N} defines the
topology tA. Let (ϕn)n∈N be a bounded sequence of D(A)[tA]. Fix k ∈ N. Then
supn∈N (‖cakϕn‖ + ‖akϕn‖) < ∞, so the sequence (akϕn)n∈N is bounded in the
Hilbert spaceHc. Hence, by the compactness of the embedding ofHc intoH, there
is a subsequence (ϕn(k) j ) j∈N such that the sequence (akϕn(k) j ) j∈N converges inH. By
a diagonal procedure we choose a subsequence (ϕn j ) j∈N (independent of k) such that
(akϕn j ) j∈N converges inH for each k ∈ N. Then (ϕn j ) j∈N is aCauchy sequence in the
graph topology. Since D(A)[tA] is complete, the subsequence (ϕn j ) j∈N converges
in the locally convex space D(A)[tA]. This proves that D(A)[tA] has the Montel
property, so the assertion follows from Theorem 3.26. �

Functionals (3.15) are extensively studied in [Sch90, Chap.5]. In the preceding
we have presented a simplified approach to some of the main results on this topic.

Let us add a few remarks.

Remark 3.28 1. Let c be a densely defined closable operator on H. It is easily
verified that the embedding of the Hilbert spaceHc intoH is compact if and only if
the (bounded) operator (I + c∗c)−1 on H is compact.

2. There exists an O∗-algebra A such that D(A)[tA] is a Frechet–Montel space,
but there is no operator c ∈ A such that the embedding of Hc into H is compact.
In fact, Theorem3.26 is stronger than Corollary 3.27 and its proof is much more
involved.

3. If D(A)[tA] is a Frechet space, then by Theorem 3.26 the Montel property is
sufficient for representing all A+-positive linear functionals as ft , t ∈ B(A)+. The
following result [Sch90, Proposition 5.5.1] shows that if the O∗-algebra is “large”
enough, the Montel property of the graph topology is also necessary:
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Suppose A is a unital O∗-algebra such that D(A)[tA] is a Frechet space and
A contains all operators ϕ ⊗ ψ, where ϕ,ψ ∈ D(A). If each A+-positive linear
functional onA is of the form ft = Tr · t , t ∈ B(A)+, then the locally convex space
D(A)[tA] has the Montel property.

4. The problem of representing functionals in the form ft , t ∈ B(A)+, is called
the quantum moment problem ; see [Wo70, Sch91]. The trace can be viewed as a
noncommutative integral and the operator t as a counterpart of a Radon measure.
For the quantum moment problem the Weyl algebraW(d) plays a similar role as the
polynomial algebra R[x1, . . . , xd ] does for the classical moment problem. �
Example 3.29 (Example 3.11 continued)
LetAbe theO∗-algebra onD(A) = S(Rd) fromExample 3.11.ThenallA+-positive
linear functionals on A are of the form ft = Tr · t , where t ∈ B(A)+.

This follows fromTheorem3.26, since the graph topology tA is the usual topology
of the Schwartz space, which is known to be a Frechet–Montel space [Tr67].

It can be also derived from Corollary 3.27. Indeed, let c be the operator (3.6).
Then c is a self-adjoint operator with discrete spectrum of eigenvalues tending to
infinity. Hence (I + c ∗c)−1 is compact, so the embedding of Hc into H is compact
by Remark 3.28.1 and the assumptions of Corollary 3.27 are satisfied. �

3.4 The Mittag-Leffler Lemma

The following result is usually called the Mittag-Leffler lemma. It is a useful tool
to prove that (under certain assumptions) intersections of countably many dense
domains of operators are dense.

Proposition 3.30 Suppose (En, ‖ · ‖n), n ∈ N0, is a sequence of Banach spaces
such that En+1 is a dense subspace of (En, ‖ · ‖n) and the embedding of En+1 into En

is continuous for n ∈ N0. Then E∞ := ∩∞
n=0 En is dense in each space (Ek, ‖ · ‖k)

for k ∈ N0.

Proof There is no loss of generality to assume that k = 0. Since the embedding of
En+1 in En is continuous, there is a constant an > 0 such that ‖ · ‖n ≤ an‖ · ‖n+1 on
En+1. Upon rescaling the norms we can assume that an = 1.

Fix x ∈ E0. Let ε > 0. Since En+1 is dense in En , we can define inductively
a sequence (xn)n∈N0 such that x0 = x , xn ∈ En , and ‖xn+1−xn‖n+1 ≤ ε2−(n+1) for
n ∈ N0. Then



3.4 The Mittag-Leffler Lemma 55

‖xm+n+r − xm+n‖m = ∥∥
r∑

j=1

(xm+n+ j − xm+n+ j−1)
∥∥
m

≤
r∑

j=1

‖xm+n+ j − xm+n+ j−1‖m ≤
r∑

j=1

‖xm+n+ j − xm+n+ j−1‖m+n+ j

≤
r∑

j=1

ε 2−m−n− j ≤ ε 2−n (3.16)

for m, n ∈ N0 and r ∈ N. From (3.16) it follows that for each m ∈ N the sequence
Xm := (xm+n)n∈N is a Cauchy sequence in the Banach space Em . Let y denote the
limit of X1 in E1. Since ‖y − xm+n‖1 ≤ ‖y − xm+n‖m , y is also the limit of the
sequence Xm in Em for each m ∈ N0. Therefore, y ∈ E∞.

Settingm = n = 0 and letting r → ∞ in (3.16) we get ‖y − x0‖ = ‖y − x‖ ≤ ε.
This proves that E∞ is dense in E0. �

The next proposition is an application of the Mittag-Leffler lemma.
First we recall theCayley transform u of a densely defined closed symmetric oper-

ator a on aHilbert spaceH; see, e.g., [Sch12, Sect. 13.1]. The operator u is defined by
u(a + iI )ϕ = (a − iI )ϕ, ϕ ∈ D(a). The operator u is a partial isometry with initial
space (a + iI )D(a) = H � H+ and final space (a − iI )D(a) = H � H−, where
H± := N (a∗ ∓ iI ). The cardinal numbers dimH± are the deficiency indices of a.
Then we have D(a) = (I − u)(H � H+) and

(a + i)(I − u)ϕ = 2iϕ for ϕ ∈ H � H+. (3.17)

Proposition 3.31 Suppose a is a densely defined closed symmetric operator on H
such that at least one of its deficiency indices is finite. Then D∞(a) := ∩∞

n=1 D(an)
is a core for each power ak, k ∈ N0. In particular, D∞(a) is dense inH.

Proof Upon replacing a by −a we can assume that H+ is finite-dimensional. Let
u be the Cayley transform of a and let qn denote the projection of H on the finite-
dimensional, hence closed, subspace Hn := H+ + · · · + (u∗)n−1H+, n ∈ N.

First we show by induction that for n ∈ N we have

Hn+1 = (I − u∗)Hn + H+. (3.18)

SinceH1 = H+, this is clear for n = 1. Assume that (3.18) holds for n. Then, since
obviously Hk+1 = u∗Hk + H+ by definition, we derive

Hn+2 = u∗Hn+1 + H+ = u∗[(1 − u∗)Hn + H+] + H+
= (1 − u∗)[u∗Hn + H+] + H+ = (1 − u∗)Hn+1 + H+,

which proves (3.18) for n + 1.
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Our next aim is to prove, again by induction on n, that

D(an) = (I − u)n(I − qn)H for n ∈ N. (3.19)

Since D(a) = (I − u)(H � H+) = (I − u)(I − q1)H, (3.19) holds for n = 1.
Assume now that (3.19) is satisfied for n.

Let ϕ ∈ D(an+1). Then ϕ ∈ D(an), so ϕ = (I − u)nψ for some ψ ∈ (I − qn)H
by the induction hypothesis. Further, (a + iI )nϕ = (2i)nψ ∈ D(a) by (3.17) implies
that ψ = (I − u)ζ with ζ ∈ (I − q1)H. Since ζ ⊥ H+ and ψ ⊥ qnH, that is,
ψ = (I − u)ζ ⊥ H+, u∗H+, . . . , (u∗)n−1H+, it follows ζ ⊥ H+, . . . , (u∗)nH+, that
is, ζ ⊥ qn+1H. Thus,ϕ = (I − u)nψ = (I − u)n+1ζ ∈ (I − u)n+1(I − qn+1)H. This
proves thatD(an+1) ⊆ (I − u)n+1(I − qn+1)H.The converse inclusion is easily ver-
ified. This completes the proof of (3.19).

We want to apply Proposition 3.30 with the normed space En := (D(an), ‖ · ‖n),
where ‖ · ‖n := ‖(a + iI )n · ‖. Then D(an) = (I − u)n(I − qn)H by (3.19) and

‖(I − u)n(I − qn)ψ‖n = ‖(a + iI )n(I − u)n(I − qn)ψ‖ = ‖(2i)n(I − qn)ψ‖

by (3.17) for ψ ∈ H. This implies that En is complete and hence a Banach space.
Since the operator a is symmetric, we have ‖(a + i)n · ‖ ≤ ‖(a + i)n+1 · ‖, so that
‖ · ‖n ≤ ‖ · ‖n+1 on En+1. Hence the embedding of En+1 into En is continuous.

Next we prove that for each n ∈ N0 the subspace En+1 is dense in the Banach
space En . Note that En is a Hilbert space with respect to the inner product given by
〈·, ·〉n := 〈(a + iI )n·, (a + iI )n·〉. Therefore, it is sufficient to prove that the orthog-
onal complement of En+1 in (En, 〈·, ·〉n) is {0}. Suppose that ϕ ∈ En is orthogonal
to all vectors η ∈ En+1 in (En, 〈·, ·〉n). By (3.19), we can write ϕ = (I − u)nψ and
η = (I − u)n+1(I − qn+1)ζ with ψ ∈ (I − qn)H, ζ ∈ H. Then, using again (3.17),
we deduce

0 = 〈ϕ, η〉n = 〈(a + iI )nϕ, (a + iI )nη〉 = 4n〈ψ, (I − u)(I − qn+1)ζ〉
= 4n〈(I − u∗)ψ, (I − qn+1)ζ〉

for all ζ ∈ H. Hence (I − u∗)ψ ∈ qn+1H = Hn+1 and from (3.18) it follows that
(I − u∗)ψ = (I − u∗)ξ + ξ+ with ξ ∈ Hn = qnH and ξ+ ∈ H+. Thus,

〈ψ − ξ, (I − u)(I − q1)δ〉 = 〈(I − u∗)(ψ − ξ), (I − q1)δ〉 = 〈ξ+, (I − q1)δ〉 = 0

for all δ ∈ H. Therefore, ψ − ξ ⊥ (I − u)(I − q1)H = D(a). Since D(a) is
assumed to be dense in H, we get ψ = ξ. By construction, ψ ∈ (I − qn)H and
ξ ∈ qnH. Therefore, ψ = 0, hence ϕ = 0, which proves that En+1 is dense in En .

By the preceding, the sequence (En)n∈N0 of Banach spaces satisfies the assump-
tions of Proposition 3.30. Therefore,D∞(a) = ∩n En is dense in each Banach space
Ek = (D(ak), ‖(a + iI )k · ‖), k ∈ N0. This implies that D∞(a) is a core for each
operator ak . In the special case k = 0 this means that D∞(a) is dense inH. �
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3.5 Exercises

1. Suppose there exists an element a ∈ L+(D) which is a closed operator on the
underlying Hilbert space H. Prove that D = H and L+(D) = B(H).

2. Let J ⊆ R be an interval and let (hn)n∈N be a sequence of (finite) real Borel
functions on J such that h1(x) = 1 and hn(x)2 ≤ hn+1(x) for x ∈ J , n ∈ N.
DefineD = {ϕ ∈ L2(J ) : hn · ϕ ∈ L2(J ), n ∈ N} and let hn act onD as a mul-
tiplication operator in the Hilbert space L2(J ).

a. Show that each operator hn belongs to L+(D).
b. Show that the O∗-algebra A on D generated by hn, n ∈ N, is self-adjoint.
c. Determine the commutants A′

s, A′
w, A′

sym.

3. Let t = ϕ ⊗ ψ, where ϕ,ψ ∈ H. When is t ∈ B(A)+? What is ft in this case?
4. Let t = ∑n

k=1 ϕk ⊗ ψk , where ϕk,ψk ∈ H for k = 1, . . . , n, n ∈ N. When is
t inB1(A)+? What is ft in this case?

5. LetA denote the O∗-algebra from Example 3.29 for d = 1. Find t1, t2 ∈ B1(A)+
such that t1 �= t2 and ft1(a) = ft2(a) for all a ∈ A.

Hint: Look for rank one and rank two operators.

3.6 Notes

This chapter covers only a very small portion of the theory of O∗-algebras. The
monograph [Sch90] gives an extensive treatment withmany references and historical
comments. A nice presentation is given in A. Inoue’s Lecture Notes [In98]. For the
theory of partial ∗-algebras of unbounded operators we refer to [AIT02]. Proposition
3.31 was obtained in [Sch83a].



Chapter 4
∗-Representations

In this chapter we begin the study of ∗-representations which is the main topic of this
book. In Sect. 4.1, we define ∗-representations and introduce basic notions such as
adjoint, closed, biclosed, and self-adjoint representations. In Sect. 4.2, we express the
domain of the adjoint representation in terms of generators and construct a natural
maximal representation (Theorem 4.18). Section4.3 deals with invariant subspaces
and reducing subspaces. It is shown that in this respect pathological behavior can be
avoided by adding self-adjointness assumptions (Theorem 4.29).

In Sects. 4.4 and 4.5, we develop themost important technical tool in Hilbert space
representation theory, the GNS construction. It associates a ∗-representation with
any positive linear functional (Theorems 4.38 and 4.41). The ∗-radical is defined
and characterized in terms of positive functionals. In Sect. 4.6, we use the GNS
representation to represent positive semi-definite functions on groups in terms of
unitary group representations (Theorem 4.56). The GNS construction is crucial for
a deeper analysis of positive functionals which is carried out in the next chapter.

In Sect. 4.7, we briefly discuss some technical difficulties and pathologies that can
occur for unbounded ∗-representations, compared to the bounded case.

Throughout this chapter, A denotes a (not necessarily unital) complex ∗-algebra
and all inner product spaces and Hilbert spaces are complex (except for Remark 4.13
in Sect. 4.1). Further, we shall use some definitions and facts on O∗-algebras from
Chap.3 and on unbounded operators from AppendixA.

4.1 Basic Concepts on ∗-Representations

Let (D, 〈·, ·〉) be a complex inner product space and let (H, 〈·, ·〉) be its Hilbert space
completion. We denote by L(D) the algebra of linear operators a : D �→ D.
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Definition 4.1 A representation ofA onD is an algebra homomorphism π ofA into
L(D) such that π(a) is a closable operator on H for each a ∈ A. The inner product
space D is called the domain of π and denoted by D(π), and we writeH(π) := H.

If the domain D(π) is equal to the Hilbert space H(π), then each operator π(a)

is closed on H(π) and hence bounded by the closed graph theorem, that is, π is a
representation of A by bounded operators on H(π).

We introduce three standard notions. Let π1 and π2 be representations of A. We
say that π1 is a restriction of π2, or equivalently, π2 is an extension of π1, and write
π1 ⊆ π2 if D(π1) ⊆ D(π2) and π1(a) = π2(a)	D(π1) for all a ∈ A.

Next, π1 and π2 are called unitarily equivalent if there exists a unitary operator
U of H(π2) on H(π1) such that UD(π2) = D(π1) and π1(a)ϕ = Uπ2(a)U−1ϕ for
a ∈ A and ϕ ∈ D(π1); then we write π1 = Uπ2U−1.

Finally, we define the direct sum of representations. Suppose {πi : i ∈ I } is a
family of representations πi of A. Let D(π) denote the set of vectors ϕ = (ϕi )i∈I
of the direct sum Hilbert spaceH(π) := ⊕i∈I H(πi ) for which ϕi ∈ D(πi ) for i ∈ I
and π(a)ϕ := (πi (a)ϕi ) is in H(π) for all a ∈ A. It is easily checked that π is a
representation of A on the dense linear subspace D(π) of the Hilbert space H(π).
We write π := ⊕i∈I πi and call π the direct sum of the family {πi : i ∈ I }.

In this book representations appear only as auxiliary objects to study adjoints of
∗-representations. Our main objects are ∗-representations of ∗-algebras:
Definition 4.2 A ∗-representation of A on D is an algebra homomorphism π of A
into L(D) such that for all a ∈ A,

〈π(a)ϕ,ψ〉 = 〈ϕ,π(a+)ψ〉, ϕ,ψ ∈ D. (4.1)

By definition, the domain D(π(a)∗) of the adjoint operator π(a)∗ consists of all
vectors ψ ∈ H for which there exists an η ∈ H such that 〈π(a)ϕ,ψ〉 = 〈ϕ, η〉 for
all ϕ ∈ D; in this case η = π(a)∗ψ. Hence Eq. (4.1) says that D ⊆ D(π(a)∗) and
π(a)∗ψ = π(a+)ψ for ψ ∈ D. That is, by (4.1), the operator π(a+) is the restriction
to D of the adjoint operator π(a)∗ of π(a) on the Hilbert space H. If a = a+, then
(4.1) means that π(a) is a symmetric operator on D.

In general, the domainD(π(a)∗) of the adjoint operator is much larger thanD and
the adjoint of the symmetric operator π(a) for a = a+ is no longer symmetric. Since
the distinction between π(a+) and π(a)∗ is crucial in unbounded operator theory,
we denote throughout this book the algebra involution always by a �→ a+ and the
adjoint of an operator T by T ∗.

As noted above, D ⊆ D(π(a)∗) by (4.1). Hence the adjoint of π(a) is densely
defined, so the operator π(a) is closable. Therefore, each ∗-representation is a rep-
resentation.

The ∗-algebra L+(D) was introduced in Definition 3.1 and Lemma 3.2. If π is an
algebra homomorphism of A into L(D), then condition (4.1) holds for a ∈ A if and
only if

π(a) ∈ L+(D) and π(a+) = π(a)+ for a ∈ A. (4.2)



4.1 Basic Concepts on ∗-Representations 61

Therefore, by a slight reformulation of Definition 4.2, a ∗-representation of A on D
is a ∗-homomorphism of the ∗-algebra A in the ∗-algebra L+(D).

The counterpart of ∗-representations in single operator theory is densely defined
symmetric operators. For such operators, closures, adjoints, and notions such as
closedness, self-adjointness, and essential self-adjointness are useful. Self-adjoint
and essentially self-adjoint representations will be important in this book. Before we
define similar concepts for ∗-representations, we prove three technical lemmas.

Let π be a representation of A. First we define the adjoint representation π∗ :

D(π∗) := ⋂

a∈A
D(π(a)∗) and π∗(a) := π(a+)∗	D(π∗), a ∈ A. (4.3)

Let H(π∗) denote the closure of D(π∗) in H(π). If π is a ∗-representation, then
D(π) ⊆ D(π∗) and hence H(π) = H(π∗). Since π∗(a+) ⊆ π(a)∗ by definition,

〈π(a)ψ,ϕ〉 = 〈ψ,π∗(a+)ϕ〉 for a ∈ A, ψ ∈ D(π), ϕ ∈ D(π∗). (4.4)

Lemma 4.3 Let π be a representation of A. Then:

(i) π∗ is a representation of A on D(π∗), called the adjoint representation to π.
(ii) π is a ∗-representation of A if and only if π ⊆ π∗.
(iii) Suppose H(π∗) = H(π). Then we have π ⊆ π∗∗, π∗ = π∗∗∗, π∗∗ = π∗∗∗∗,

where π∗∗ := (π∗)∗, π∗∗∗ := (π∗∗)∗, π∗∗∗∗ := (π∗∗∗)∗.

Proof (i): Suppose a, b ∈ A and α,β ∈ C. Let ϕ ∈ D(π∗) and ψ ∈ D(π).
Using (4.3) and (4.4) we derive

〈π∗(αa + βb)ϕ,ψ〉 = 〈π(α a+ + β b+)∗ϕ,ψ〉
= 〈ϕ,π(α a+ + β b+)ψ〉 = α〈ϕ,π(a+)ψ〉 + β〈ϕ,π(b+)ψ〉
= 〈(απ(a+)∗ + βπ(b+)∗)ϕ,ψ〉 = 〈(απ∗(a) + βπ∗(b))ϕ,ψ〉.

Since D(π) is dense in H(π), this implies π∗(αa + βb) = απ∗(a) + βπ∗(b).
Further, again by (4.3) and (4.4), we obtain

〈π(a+)ψ,π∗(b)ϕ〉 = 〈π(a+)ψ,π(b+)∗ϕ〉 = 〈π(b+)π(a+)ψ,ϕ〉
= 〈π((ab)+)ψ,ϕ〉 = 〈ψ,π((ab)+)∗ϕ〉 = 〈ψ,π∗(ab)ϕ〉

and conclude that π∗(b)ϕ ∈ D(π(a+)∗) and π(a+)∗π∗(b)ϕ = π∗(ab)ϕ. Since
a ∈ A was arbitrary, π∗(b)ϕ ∈ D(π∗) and hence π∗(a)π∗(b)ϕ = π∗(ab)ϕ by
(4.3). Since π∗(a) ⊆ π(a+)∗ by definition and the operator π(a+)∗ on H(π) is
closed, π∗(a) is closable onH(π∗). This proves that π∗ is a representation of A
on D(π∗).

(ii): Comparing (4.1) with (4.3) resp. (4.4) it follows that π is a ∗-representation if
and only if D(π) ⊆ D(π∗) and π(a) ⊆ π(a+)∗ for a ∈ A, that is, π ⊆ π∗.
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(iii): Since H(π∗) = H(π), we conclude from (4.4) that D(π) ⊆ D(π∗(a+)∗) and
π(a) ⊆ π∗(a+)∗ for all a ∈ A, so thatD(π) ⊆ D((π∗)∗) = D(π∗∗) and π(a) =
π∗(a+)∗	D(π) = π∗∗(a)	D(π). This shows that π ⊆ π∗∗.
By (i), π∗∗ is a representation and so is π∗∗∗. We prove that π∗ = π∗∗∗. Since
π ⊆ π∗∗ and hence H(π) = H(π∗∗), it follows at once from the definition
of the adjoint representation that π∗∗∗ ⊆ π∗. (This follows also from Lemma
4.4(ii) below, applied with ρ = π∗∗.) Further, since H(π∗) = H(π) = H(π∗∗)
by assumption, we can replace π by π∗ in the inclusion π ⊆ π∗∗ and get
π∗ ⊆ π∗∗∗. Thus, π∗ = π∗∗∗.
Finally, replacing π by π∗ in the equality π∗ = π∗∗∗ we obtain π∗∗ = π∗∗∗∗. �

Lemma 4.4 Let π and ρ be representations of A such that π ⊆ ρ. Let PH(π) denote
the projection of the Hilbert space H(ρ) onH(π). Then:

(i) PH(π)ρ
∗(a) ⊆ π∗(a)PH(π) for a ∈ A.

(ii) IfH(π) = H(ρ), then ρ∗ ⊆ π∗.
(iii) IfH(ρ∗) = H(ρ), then π∗∗ ⊆ ρ∗∗.

Proof (i): We abbreviate P := PH(π) and fix ψ ∈ D(ρ∗). Let ϕ ∈ D(π) and a ∈ A.
Using the assumption π ⊆ ρ we obtain

〈π(a+)ϕ, Pψ〉 = 〈Pπ(a+)ϕ,ψ〉 = 〈π(a+)ϕ,ψ〉 = 〈ρ(a+)ϕ,ψ〉
= 〈ϕ, ρ(a+)∗ψ〉 = 〈ϕ, ρ∗(a)ψ〉 = 〈Pϕ, ρ∗(a)ψ〉 = 〈ϕ, Pρ∗(a)ψ〉.

From this equality it follows that Pψ ∈ D(π(a+)∗) and π(a+)∗Pψ = Pρ∗(a)ψ.
Hence Pψ ∈ ∩b∈A D(π(b)∗) = D(π∗) andπ∗(a)Pψ = Pρ∗(a)ψ forψ ∈ D(ρ∗).
This proves that Pρ∗(a) ⊆ π∗(a)P.

(ii) follows at once from (i), since P = I by the assumption H(π) = H(ρ).

(iii): Let ξ ∈ D(π∗∗) and ψ ∈ D(ρ∗). Since H(π∗∗) ⊆ H(π∗) ⊆ H(π) by defini-
tion, we have Pξ = ξ and Pπ∗∗(a)ξ = π∗∗(a)ξ. From (i) we get Pψ ∈ D(π∗)
and Pρ∗(a+)ψ = π∗(a+)Pψ for a ∈ A. Using these facts we derive

〈ρ∗(a+)ψ, ξ〉 = 〈ρ∗(a+)ψ, Pξ〉 = 〈Pρ∗(a+)ψ, ξ〉 = 〈π∗(a+)Pψ, ξ〉 (4.5)

= 〈ψ, Pπ∗(a+)∗ξ〉 = 〈ψ, Pπ∗∗(a)ξ〉 = 〈ψ,π∗∗(a)ξ〉. (4.6)

Since H(ρ) = H(ρ∗) by assumption and H(π∗∗) ⊆ H(π) ⊆ H(ρ) by π ⊆ ρ,
both vectors ξ and π∗∗(a)ξ belong to the Hilbert space H(ρ∗). Hence we con-
clude from (4.5)–(4.6) that ξ ∈ D(ρ∗(a+)∗) and ρ∗(a+)∗ξ = π∗∗(a)ξ for all
a ∈ A. These relations imply that ξ ∈ ∩b∈AD(ρ∗(b)∗) = D(ρ∗∗) and ρ∗∗(a)ξ =
ρ∗(a+)∗ξ = π∗∗(a)ξ. This proves that π∗∗ ⊆ ρ∗∗. �

For a ∗-representation π of A, we define

D(π ) := ⋂

a∈A
D(π(a)) and π(a) := π(a)	D(π), a ∈ A, (4.7)

D(π∗∗) := ⋂

a∈A
D(π∗(a)∗) and π∗∗(a) := π∗(a+)∗	D(π∗∗), a ∈ A. (4.8)
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Lemma 4.5 Let π be a ∗-representation of A. Then π and π∗∗ are also
∗-representations of A, called the closure and biclosure of π, respectively, and

π ⊆ π ⊆ π∗∗ ⊆ π∗, (4.9)

D(π∗∗) = ⋂

a∈A
D(π∗∗(a)). (4.10)

Proof First we show that π is a ∗-representation. Comparing equations (4.7) and
(3.2) it follows that D(π) is the domain D(π(A)) of the closure π(A) of the O∗-
algebra π(A) and j (π(a)) = π(a) for a ∈ A. Then π is the composition of the ∗-
homomorphismπ : A �→ π(A) and the ∗-isomorphism j : π(A) �→ π(A) (by Propo-
sition 3.8), so π is a ∗-homomorphism and hence a ∗-representation of A.

We verify (4.10). LetD0 denote the set on the right-hand side of (4.10). Trivially,
D(π∗∗) ⊆ D0. By definition, π∗∗(a) ⊆ π∗(a+)∗ and hence π∗∗(a) ⊆ π∗(a+)∗ for
a ∈ A. Taking the intersections of the domains over a ∈ A yields D0 ⊆ D(π∗∗).
Thus, D(π∗∗) = D0, which proves (4.10).

Sinceπ is a ∗-representation, it follows fromLemma4.3(ii) thatπ ⊆ π∗. Applying
Lemma4.4(iii) toπ ⊆ π∗ givesπ∗∗ ⊆ π∗∗∗. Therefore,π∗∗ is a∗-representation again
by Lemma 4.3(ii).

Further, since π∗ = π∗∗∗ by Lemma 4.3(iii) and π∗∗ ⊆ π∗∗∗, we have π∗∗ ⊆ π∗,
which is the third inclusion of (4.9). The first inclusion π ⊆ π is obvious.

From the relation π ⊆ π∗∗ (by Lemma 4.3(iii)) it follows that π(a) ⊆ π∗∗(a) for
a ∈ A. Hence, by (4.7) and (4.10), D(π) ⊆ D(π∗∗) and π ⊆ π∗∗, which proves the
middle inclusion of (4.9). �

The following definition collects a number of basic concepts of ∗-representations.
Definition 4.6 A ∗-representation π of A is called
• closed if π = π, or equivalently, if D(π) = D(π),
• biclosed if π = π∗∗, or equivalently, if D(π) = D(π∗∗),
• self-adjoint if π = π∗, or equivalently, if D(π) = D(π∗),
• essentially self-adjoint if π∗ is self-adjoint, that is, if π∗ = π∗∗, or equivalently, if
D(π∗∗) = D(π∗).

It should be noted that this definition of essential self-adjointness differs from the
one given in [Sch90], where a ∗-representation π was called essentially self-adjoint
if π is self-adjoint, or equivalently, if π = π∗.

The adjoint π∗, the closure π, and the biclosure π∗∗ of a ∗-representation π and
their domains have been defined by formulas (4.3), (4.7), and (4.8), respectively. By
comparing the corresponding domains we obtain necessary and sufficient criteria
when the conditions in Definition 4.6 are fulfilled. Note that the adjoint π∗ of a ∗-
representationπ is not necessarily a∗-representation just as the adjoint of a symmetric
operator is not symmetric in general.

Though these notions are in close analogy with the corresponding concepts for
single symmetric operators, there is at least one important difference: It may happen
that π �= π∗∗, that is, π is closed, but not biclosed; see Example 4.20 below.
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Let π be a ∗-representation. The ∗-representations π and π∗∗ are closed (by (4.7)
and (4.10)) and π∗∗ is biclosed (by Lemma 4.3(iii)). It is easily seen that (π)∗ = π∗.

The following two definitions introduce further useful notions.

Definition 4.7 The graph topology of π is the locally convex topology tπ on the
domain D(π) defined by the family of norms { ‖ · ‖ + ‖π(a) · ‖ : a ∈ A}.

Thus, a ∗-representation π is a ∗-homomorphism of A on the O∗-algebra π(A),
and the graph topology tπ coincides with the graph topology tπ(A) of the O∗-algebra
π(A) from Definition 3.4. By comparing the corresponding definitions we see that
a ∗-representation π of A is closed resp. self-adjoint if and only if the O∗-algebra
π(A) is closed resp. self-adjoint according to Definition 3.7 resp. 3.12. Further, since
tπ = tπ(A), it follows from Proposition 3.9 that a ∗-representation π is closed if and
only if the locally convex space D(π)[tπ] is complete.

If all operators π(a), a ∈ A, are bounded (in particular, if D(π) = H(π)), then
the graph topology tπ is just the topology given by the Hilbert space norm.

Definition 4.8 A ∗-representation π of A is called
• faithful if π(a) = 0 for a ∈ A implies a = 0,
• nondegenerate if π(A)D(π):=Lin {π(a)ϕ : a ∈ A,ϕ ∈ D(π)} is dense inH(π).

The nondegeneracy excludes trivial cases such as π(a) = 0 for all a ∈ A. In the
unital case, it is equivalent to π(1) = I , as shown in Lemma 4.9(iii).

In [Sch90], ∗-algebras are always unital and the requirement π(1) = I is part of
the definition of a ∗-representation.

Throughout this book, all ∗-representations π of unital ∗-algebras are nondegen-
erate and satisfy π(1) = I .

Lemma 4.9 Suppose π is a ∗-representation of a unital ∗-algebra A. For a ∈ A and
ψ ∈ D(π0) := π(A)D(π), we define π0(a)ψ = π(a)ψ. Then:

(i) π0 is a nondegenerate ∗-representation of A.
(ii) For a ∈ A, we have π(a) = 0 if and only if π0(a) = 0.
(iii) π is nongenerate if and only if π(1) = ID(π). In this case, π0 = π.

Proof (i): Since π is a ∗-representation, D(π0) is invariant under π0(a) and π0 is
again a∗-representation. Sinceπ0(1)π(a)ϕ = π(1)π(a)ϕ = π(1 · a)ϕ = π(a)ϕ
for ϕ ∈ D(π), we have π0(A)D(π0) = D(π0), so π0 is nondegenerate.

(ii): Since π0 ⊆ π, π(a) = 0 implies π0(a) = 0. Conversely, suppose π(a) �= 0.
Then π(a)ϕ �= 0 for some ϕ ∈ D(π), so π0(a)π(1)ϕ=π(a)π(1)ϕ=π(a)ϕ �=
0.

(iii): If π(1) = I , then trivially π(A)D(π) = D(π) and π0 = π is nondegenerate.
Conversely, suppose π is nondegenerate. Clearly, π(1)π(a)ϕ = π(a)ϕ for a ∈
A, ϕ ∈ D(π), so π(1)ψ = ψ for ψ ∈ π(A)D(π). Since π(1) is closable and
π(A)D(π) is dense in H(π) (because π is nondegenerate), we conclude that
π(1)ψ = ψ for ψ ∈ D(π), that is, π(1) = I . �
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In the next example we develop an important general construction. It will be used
in Example 4.48 to describe the GNS representations of trace functionals.

Example 4.10 (∗-Representations on Hilbert–Schmidt operators)
First we recall some facts on Hilbert–Schmidt operators (see [BS87, Chap.11,
Sect. 3]) on a Hilbert space H. An operator x ∈ B(H) is called Hilbert–Schmidt
if for one (and then for any) orthonormal basis {ϕi : i ∈ J } of the Hilbert space H,

∑

i
‖xϕi‖2 < ∞. (4.11)

The set of Hilbert–Schmidt operators on H is denoted by B2(H). It is a two-sided
∗-ideal of B(H). Each Hilbert–Schmidt operator is compact and the product of two
Hilbert–Schmidt operators is trace class. The complex vector spaceB2(H) is aHilbert
space with inner product given by

〈x, y〉HS = Tr y∗x, x, y ∈ B2(H).

Now we suppose that π is a ∗-representation of A and define

D(πHS) := {
x ∈ B2(H(π)) : xH(π) ⊆ D(π), π(a) · x ∈ B2(H(π)) for a ∈ A

}
,

πHS(a)x := π(a) · x for a ∈ A, x ∈ D(πHS),

where “π(a) · x” means the product of the operators π(a) and x .
We abbreviate H := H(π). Each finite rank operator x = ∑n

k=1 ϕk ⊗ ψk , with
ϕk ∈ H, ψk ∈ D(π), is in D(πHS) and we have πHS(a)x = ∑n

k=1 ϕk ⊗ π(a)ψk .
Clearly, the set of such finite rank operators x is dense in the Hilbert space B2(H).

Statement 1: πHS is ∗-representation of A on the Hilbert space (B2(H), 〈·, ·〉HS).
Proof From the definition of D(πHS) it is clear that the operator π(a) · x is again in
D(πHS) and themap a �→ πHS(a) is an algebra homomorphism ofA into L(D(πHS)).
It remains to show that πHS preserves the involution.

Let x, y ∈ D(πHS) and a ∈ A. We fix an orthonormal basis {ϕi : i ∈ J } of the
Hilbert spaceH. Recall that Tr t = ∑

i 〈tϕi ,ϕi 〉 for each trace class operator t onH.
Therefore, since xϕi , yϕi ∈ D(π) by the definition of D(πHS), we derive

〈πHS(a)x, y〉HS = Tr y∗(πHS(a)x) =
∑

i∈J
〈(y∗πHS(a)x)ϕi ,ϕi 〉

=
∑

i∈J
〈πHS(a)xϕi , yϕi 〉 =

∑

i∈J
〈xϕi ,πHS(a

+)yϕi 〉
=

∑

i∈J
〈(πHS(a

+)y)∗xϕi ,ϕi 〉 = Tr (πHS(a
+)y)∗x = 〈x,πHS(a

+)y〉HS,

which proves that πHS is a ∗-representation of A. �
Statement 2: If π is self-adjoint, so is πHS.
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Proof Let y ∈ B2(H) and suppose y ∈ D((πHS)
∗). Let ϕ ∈ H and ψ ∈ D(π). Then

x = ϕ ⊗ ψ ∈ D(πHS). For a ∈ A, we compute

〈πHS(a)x, y〉HS = 〈ϕ ⊗ π(a)ψ, y〉HS = Tr y∗(ϕ ⊗ π(a)ψ)

= Tr (ϕ ⊗ y∗π(a)ψ) = 〈y∗π(a)ψ,ϕ〉 = 〈π(a)ψ, yϕ〉,
〈x, (πHS)

∗(a+)y〉HS = Tr [(πHS)
∗(a+)y]∗(ϕ ⊗ ψ) = Tr ϕ ⊗ [(πHS)

∗(a+)y]∗ψ
= 〈[(πHS)

∗(a+)y]∗ψ,ϕ〉 = 〈ψ, [(πHS)
∗(a+)y]ϕ〉.

Therefore, since 〈πHS(a)x, y〉HS = 〈x, (πHS)
∗(a+)y〉HS, these equalities imply that

〈π(a)ψ, yϕ〉 = 〈ψ, [(πHS)
∗(a+)y]ϕ〉 for ψ ∈ D(π) and a ∈ A. Hence, because π

is self-adjoint, yϕ ∈ D(π) and π(a+)yϕ = [(πHS)
∗(a+)y]ϕ for all ϕ ∈ H. There-

fore, since [(πHS)
∗(a+)y] ∈ B2(H), we have π(a+) · y ∈ B2(H). It follows from

the definition of the domain D(πHS) that y ∈ D(πHS). Thus, we have proved that
D((πHS)

∗) ⊆ D(πHS). Hence the ∗-representation πHS is self-adjoint. �
There is a unitary operator U of the Hilbert space B2(H) of Hilbert–Schmidt

operators on the tensor productH ⊗ H of Hilbert spaces which maps each rank one
operator ϕ ⊗ ψ of B2(H) on the vector ϕ ⊗ ψ ofH ⊗ H [KR83, Proposition 2.6.9].
Here H denotes the conjugate Hilbert space to H, that is, the scalar multiplication
and the inner product of H are replaced by the corresponding complex conjugate
numbers. Using this unitary U the ∗-representation πHS can be also realized on the
Hilbert space H ⊗ H, which is sometimes more convenient to deal with. �

Next we derive a simple but useful technical result.

Lemma 4.11 Let a = a+ ∈ A and λ± ∈ C, Im λ+ > 0, Im λ− < 0. Suppose A is
unital and a − λ± is invertible in A with inverse denoted by x±. If π is a non-
degenerate ∗-representation of A, then π(a) is self-adjoint, π(x±) is bounded, and
π(x±) = (π(a) − λ± I )−1.

Proof Set D := D(π). Since π is nondegenerate, π(1) = I and therefore

D ⊇ (π(a) − λ± I )D = π(a − λ±)D ⊇ π(a − λ±)π(x±)D = π(1)D = D,

so (π(a)−λ± I )D = D is dense and π(a) is self-adjoint by Proposition A.1.
Let ϕ ∈ D and set ψ± := (π(a) − λ± I )ϕ. Then ψ± = (π(a) − λ± I )ϕ and hence

ϕ = (π(a) − λ± I )−1ψ±. Since π(a) is symmetric, we have

‖ψ±‖ = ‖(π(a) − λ± I )ϕ‖ ≥ |Im λ±| ‖ϕ‖. (4.12)

Fromπ(x±)ψ± = π(x±(a − λ±))ϕ = π(1)ϕ = ϕ = (π(a) − λ± I )−1ψ± and (4.12)
we conclude that

‖π(x±)ψ±‖ = ‖ϕ‖ ≤ |Im λ±|−1‖ψ±‖,
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so π(x±) is bounded on (π(a)−λ± I )D = D. Hence π(x±) = (π(a) − λ± I )−1 is a
bounded operator defined on the whole Hilbert space H(π). �

We state an immediate consequence of Lemma 4.11 and Proposition 2.71(i).

Corollary 4.12 If π is a nondegenerate ∗-representation of a hermitian ∗-algebra,
then π(a) is self-adjoint for all hermitian elements a ∈ A.

Remark 4.13 In this book, ∗-representations are treated only for complex ∗-
algebras on complex inner product spaces. In this remark we discuss the case of
real ∗-algebras.

Let us suppose that A is a real ∗-algebra and D is a real inner product space. As
in the complex case, a ∗-representation π of the real ∗-algebra A on D is defined by
Definition 4.2.

Let AC denote the complexification of A according to Definition 2.9. Further, ifK
denotes the Hilbert space completion ofD, letKC be the complexification of the real
Hilbert space K (see Appendix A). Then DC := D + iD is a complex inner product
space and a dense subspace of KC. For a, b ∈ A and ϕ,ψ ∈ D, we define

πC(a + ib)(ϕ + iψ) := π(a)ϕ − π(b)ψ + i(π(a)ψ + π(b)ϕ).

By lengthy, but straightforward computations it is shown that πC is a ∗-representation
of the complex ∗-algebra AC on the complex inner product space DC.

Since π(a)ϕ = πC(a)(ϕ + i0), the ∗-representation π of the real ∗-algebra A can
be recovered from the ∗-representation πC of its complexification AC. Thus, by the
close interplay between operators T onK and its extensions TC to the complexifica-
tion KC (see Appendix A and [MV97]), the study of the real ∗-representation π can
be reduced to that of the complex ∗-representation πC.

Further, as discussed in Sect. 2.5 (see Lemma 2.48), each positive and hermitian
functional on A can be uniquely extended to a positive functional on the complexifi-
cation AC. In particular, states on A extend to states on AC. This allows one to apply
all results concerning states on complex ∗-algebras to the real case. �

4.2 Domains of Representations in Terms of Generators

Throughout this section, π denotes a ∗-representation of the ∗-algebra A.
First we describe the domain D(π∗) in terms of algebra generators.

Lemma 4.14 Suppose {a j : j ∈ I } is a subset of A such that A is the linear span of
products {a j1 · · · a jr : ( j1, . . . , jr ) ∈ J }, where J is an index set. Then

D(π∗) = ⋂

( j1,..., jr )∈J
D(

π(a jr )
∗ · · ·π(a j1)

∗). (4.13)
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Proof Let D0 denote the set on the right-hand side of (4.13).
Suppose ϕ ∈ D(π∗) and fix ( j1, . . . , jr ) ∈ J . Then ϕ ∈ D(π(a j1)

∗) by the defi-
nition of D(π∗) and π∗(a+

j1
)ϕ = π(a j1)

∗ϕ is again in D(π∗) by Proposition 4.5 and
hence in D(π(a j2)

∗). Continuing this reasoning we get ϕ ∈ D(π(a jr )
∗ · · · π(a j1)

∗).
Thus ϕ ∈ D0. This proves that D(π∗) ⊆ D0.

Let a ∈ A. By the assumption a is a finite sum
∑

λ( j1,..., jr )a j1 · · · a jr with complex
coefficients λ( j1,..., jr ). Then π(a)∗ ⊇ ∑

λ( j1,..., jr ) π(a jr )
∗ · · · π(a j1)

∗. This in turn
implies D(π∗) ⊇ D0. �
Corollary 4.15 Suppose there are elements a1, . . . , ad ∈ A such that A is the span
of {an11 · · · andd : (n1, . . . , nd) ∈ N

d
0}. Then

D(π∗) = ⋂

(n1,...,nr )∈Nd
0

D(
(π(ad)∗)nd · · · (π(a1)∗)n1

)
.

Proof Apply Lemma 4.14 to the set {a1 · · · a1a2 · · · a2 · · · ad · · · ad}. �
Corollary 4.16 Suppose B is a subset of A which generates A as an algebra. Let π1

and π2 be ∗-representations of A acting on the same Hilbert spaceH(π1) = H(π2).
If π1(b) = π2(b) for all b ∈ B, then π∗

1 = π∗
2 .

Proof Clearly, π1(b) = π2(b) implies π1(b)∗ = π2(b)∗ for b ∈ B. Therefore, by
Lemma 4.14, D(π∗

1) = D(π∗
2) and hence

π∗
1(b

+) = π1(b)
∗	D(π∗

1) = π2(b)
∗	D(π∗

2) = π∗
2(b

+).

Since π∗
1 and π∗

2 are algebra homomorphisms and {b+ : b ∈ B} generates the algebra
A as well, it follows that π∗

1(a) = π∗
2(a) for all a ∈ A. Thus π∗

1 = π∗
2 . �

The next corollary is another application of Lemma 4.14. The main assertion
therein follows also from Lemma 3.19(ii).

Corollary 4.17 Suppose B is a subset of Aher such that B generates the ∗-algebra
A. If π is a ∗-representation of A, then π(A)′w = ∩b∈B

{
π(b)

}′
w = ∩b∈B

{
π(b)

}′
w.

Proof By Lemma 3.16(iii), we have {π(b)}′w = { π(b) }′w for b ∈ B. This gives the
second equality. If T ∈ π(A)′w, then obviously T ∈ {π(b)}′w for b ∈ B.

Conversely, let T ∈ ∩b∈B {π(b)}′w. Then Tπ(b) ⊆ π(b)∗T for b ∈ B. Using this
fact it follows by induction on n that Tϕ ∈ D(π(b1)∗ · · ·π(bn)∗) and

Tπ(b1) · · · π(bn)ϕ = π(b1)
∗ · · · π(bn)

∗Tϕ (4.14)

for b1, . . . , bn ∈ B, n ∈ N, andϕ ∈ D(π). Since the ∗-algebraA is generated byB,A
is the span of products b1 · · · bn , where b j ∈ B. Therefore, by Lemma 4.14, T maps
D(π) into D(π∗). Because π and π∗ are representations, (4.14) yields
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Tπ(b1 · · · bn)ϕ = Tπ(b1) · · · π(bn)ϕ = π(b1)
∗ · · · π(bn)

∗Tϕ

= π∗(b1) · · · π∗(bn)Tϕ = π∗(b1 · · · bn)Tϕ.

Hence Tπ(a)ϕ = π∗(a)Tϕ for a ∈ A, so T ∈ π(A)′w; see, e.g., Proposition 3.15. �
Let π be a ∗-representation of A and let B be a set of algebra generators of A.

We are looking for closed ∗-representations ρ such that π ⊆ ρ and π(b) = ρ(b) for
b ∈ B. (Definition 9.47 below deals with such a situation.) In general there are many
representations having this property (see Example 4.20), but there is always a largest
such ∗-representation, as Theorem 4.18(ii) shows.

Often ∗-representations are described in terms of the actions of generators, and
one easily finds an invariant domain D for these operators. (For instance, if the
generators act as weighted shifts on an orthonormal basis, the span of basis vectors
is invariant.) Then we obtain a ∗-representation π of A onD. Theorem 4.18 provides
a “natural” extension of π to a ∗-representation ρ of A that has nice properties.

Theorem 4.18 Suppose π is a ∗-representation of A and B is a subset of A which
generates A as an algebra. We define ρ := π∗	D(ρ), where

D(ρ) = ⋂

k∈N

⋂

b1,...,bk∈B
D(

π(bk) · · · π(b1)
)
. (4.15)

(i) ρ is a closed ∗-representation of A on the domain D(ρ) and

ρ(bk · · · b1)ϕ = π(bk) · · · π(b1)ϕ for b1, . . . , bk ∈ B, ϕ ∈ D(ρ). (4.16)

Moreover, we have π ⊆ ρ and ρ∗ = π∗.
(ii) ρ is the largest among all closed ∗-representations ρ0 acting onH(ρ0) = H(π)

and satisfying π ⊆ ρ0 and π(b) = ρ0(b) for all b ∈ B.
(iii) If π(b) = π(b+)∗ for b ∈ B, then ρ = π∗ and π is essentially self-adjoint.

Proof (i): For b1, . . . , bn ∈ B, we have π(bk) · · · π(b1) ⊆ π(b+
k )∗ · · ·π(b+

1 )∗.
Therefore, sinceB+ alsogeneratesA, (4.13) implies thatD(ρ) ⊆ D(π∗).From its
definition it is obvious thatD(ρ) is invariant under each operatorπ(b), b ∈ B.We
have π(b) ⊆ π(b+)∗ and hence π(b)	D(ρ) = π∗(b)	D(ρ) = ρ(b). ThusD(ρ) is
invariant under π∗(b). Since π∗ is an algebra homomorphism andB generatesA,
D(ρ) is invariant under π∗(a) for all a ∈ A and ρ is an algebra homomorphism
of A into L(D(ρ)).
Nextwe show that ρ preserves the involution. It suffices to prove this for elements
of B. Let ψ ∈ D(ρ). As noted above, D(ρ) ⊆ D(π∗), so that

〈π(b)η,ψ〉 = 〈η,π∗(b+)ψ〉, η ∈ D(π). (4.17)

Since ρ(b)ϕ = π(b)ϕ and ρ(b+)ϕ = π∗(b+)ϕ forϕ ∈ D(ρ), (4.17) implies that

〈ρ(b) ϕ,ψ〉 = 〈π(b) ϕ,ψ〉 = 〈ϕ,π∗(b+)ψ〉 = 〈ϕ, ρ(b+)ψ〉.
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Putting the preceding together we have proved that ρ is a ∗-representation of A.
Obviously, π ⊆ ρ. The equality ρ(b) = π(b)	D(ρ) mentioned above gives
ρ(b) = π(b) for b ∈ B. Hence ρ∗ = π∗ by Corollary 4.16.
Now we prove that ρ is closed. Let ϕ ∈ D(ρ). Since the O∗-algebra ρ(A) is the
closure of ρ(A), by Proposition 3.8 there is a net (ϕi ) of vectors ϕi ∈ D(ρ) such
that ϕ = limi ϕi in the graph topology of ρ(A). To prove that ρ is closed we
have to show that ϕ ∈ D(ρ). For this it suffices to prove that

ϕ ∈ D(
π(bk) · · · π(b1)

)
and ρ(bk · · · b1)ϕ = π(bk) · · ·π(b1) ϕ (4.18)

forb1, . . . , bk ∈ B.Weproceedby inductionon k. For k = 1 this has been already
noted above. Assume that (4.18) is true for fixed k. Let b1, . . . , bk+1 ∈ B. Using
that ρ is a representation and the relation ρ(bk+1) ⊆ π(bk+1) we obtain

ρ(bk+1 · · · b1)ϕi = ρ(bk+1) ρ(bk · · · b1)ϕi = π(bk+1) ρ(bk · · · b1)ϕi . (4.19)

Sinceϕ = limi ϕi in the graph topology,ρ(bk+1 · · · b1)ϕ = limi ρ(bk+1 · · · b1)ϕi

and ρ(bk · · · b1)ϕ = limi ρ(bk · · · b1)ϕi . Therefore, it follows from (4.19) that
ρ(bk · · · b1)ϕ ∈ D(

(π(bk+1)
)

and ρ(bk+1 · · · b1)ϕ = π(bk+1) ρ(bk · · · b1)ϕ.

Inserting the induction hypothesis (4.18) into the latter we obtain the assertion
(4.18) in the case k + 1. This completes the induction proof. Thus ρ = ρ.
Using that ρ = ρ the second equality of (4.18) yields (4.16).

(ii): Suppose ρ0 is another ∗-representation of A onH(ρ0) = H(π) such that π ⊆ ρ0
and ρ0(b) = π(b) for b ∈ B. Let ϕ ∈ D(ρ0). Then, for b1, . . . , bk ∈ B,

ρ0(bk · · · b1) ϕ = ρ0(bk) · · · ρ0(b1) ϕ = π(bk) · · · 4π(b1) ϕ

andϕ ∈ D(
π(b1) · · ·π(bk)

)
. Therefore, it follows from (4.15) and (4.16) that we

have ϕ ∈ D(ρ) and ρ0(bk · · · b1)ϕ = ρ(bk · · · b1)ϕ. This implies that ρ0 ⊆ ρ.

(iii): Suppose that π(b) = π(b+)∗ for b ∈ B. From the definition (4.15) of D(ρ) and
the formula forD(π∗) in Lemma 4.14 it follows thatD(ρ) = D(π∗). Hence ρ =
π∗, since ρ ⊆ π∗ by definition. Thus π∗ is a ∗-representation. Therefore, π∗ ⊆
(π∗)∗. But π ⊆ π∗ implies (π∗)∗ ⊆ π∗, so we get π∗ = (π∗)∗, that is, π∗ = ρ is
self-adjoint. �

The next proposition clarifies the notions from Definition 4.6 in the simplest case
of the polynomial algebra A = C[x] in a single variable. Among others, it shows
that the biclosure π∗∗ depend only on the closed symmetric operator π(x). This is
one reason why the biclosedness of representations is more useful than closedness.

In the proofs of Proposition 4.19 and Example 4.20 we use some technical results
on symmetric operators and their adjoints (see, e.g., [Sch12] andAppendixA). Recall
that D∞(T ) := ∩∞

n=1D(T n) for an operator T .

Proposition 4.19 Suppose π is a ∗-representation of A = C[x]. Then:
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(i) D(π) = ∩n∈N D(
π(xn)

)
and π(x) = π(x) 	D(π).

(ii) D(π∗) = D∞(π(x)∗) and π∗(x) = π(x)∗ 	D(π∗).
(iii) D(π∗∗) = D∞(

π(x)
)
and π∗∗(x) = π(x) 	D(π∗∗).

(iv) π is biclosed if and only if D(π) = D∞(
π(x)

)
.

(v) π is essentially self-adjoint if and only if π(x) is essentially self-adjoint.
(vi) π is self-adjoint if and only if the operator π(x) is essentially self-adjoint and

D(π) = D∞(
π(x)

)
.

(vii) π is self-adjoint if and only if π(x)n is essentially self-adjoint for all n ∈ N.

Proof (i): If p ∈ C[x] is a polynomial of degree n, the domain of the closure of
π(p(x)) = p(π(x)) is equal to the domain of the closure of π(xn) = π(x)n .
This yields the first formula. The second formula only restates the definition of
π(x).

(ii): Follows at once from Corollary 4.15 and the definition of π∗(x).

(iii): Obviously, π(x) ⊆ π∗∗(x). First we prove that π(x) = π∗∗(x). Assume to the
contrary that π(x) � π∗∗(x). If T is a closed symmetric operator, then the map
ϕ �→ (T + iI )ϕ is a bijection of D(T ) on the closed subspace ran (T + iI ).
Therefore, ran (π(x) + iI ) and ran (π∗∗(x) + iI ) are closed subspaces ofH(π)

such that ran (π(x) + iI ) � ran (π∗∗(x) + iI ), so that

ker (π∗∗(x) ∗ − iI ) = (ran (π∗∗(x) + iI ))⊥

� (ran (π(x) + iI ))⊥ = ker (π(x)∗ − iI ).

Hence there exists a vector ξ ∈ ker (π(x)∗ − iI ) such that ξ /∈ ker (π∗∗(x) ∗ − iI ).
We show that ξ /∈ D(π∗∗(x)∗). Otherwise, for η ∈ D(π) ⊆ D(π∗∗),

〈π∗∗(x)∗ξ, η〉 = 〈ξ,π∗∗(x)η〉 = 〈ξ,π(x)η〉 = 〈π(x)∗ξ, η〉 = 〈i ξ, η〉,

so thatπ∗∗(x) ∗ξ = i ξ, which contradicts the choice of ξ. Since ξ /∈ D(π∗∗(x)∗),
we have ξ /∈ D(π∗∗∗). But ξ ∈ D∞(π(x)∗) = D(π∗) by (ii). This contradicts the
relation π∗ = π∗∗∗ and completes the proof of π(x) = π∗∗(x).
Let ρ be the ∗-representation ofA defined by ρ(x) = π(x) 	D(ρ) on the domain
D(ρ) := D∞(π(x)). Obviously, π(x) ⊆ ρ(x) ⊆ π(x), so that π(x) = ρ(x).
Therefore, π∗ = ρ∗ by Corollary 4.16 and hence π∗∗ = ρ∗∗. Using the equality
π(x) = π∗∗(x) proved above, we derive

D(ρ∗∗) = D(π∗∗) ⊆ ∩n∈N D(
π∗∗(x)n

) ⊆ ∩n∈N D(
π∗∗(x) n

)

= D∞(
π∗∗(x)

) = D∞(
π(x)

) = D(ρ).

Since ρ ⊆ ρ∗∗, this implies ρ = ρ∗∗. Thus, ρ = π∗∗, which is the assertion.

(iv): Follows from (iii) and the relation π ⊆ π∗∗.
(v): Supposeπ(x) is essentially self-adjoint. Then, sinceπ∗(x) ⊆ π(x)∗ = π(x), the

operator π∗(x) is symmetric, so π∗ is a ∗-representation. Therefore, π∗ = π∗∗
by Lemma 4.3(ii), that is, π is essentially self-adjoint.
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Conversely, suppose that π(x) is not essentially self-adjoint. Then there exists
a vector ξ �= 0 in a deficiency space of π(x) [Sch12, Proposition 3.8]. Since
ξ ∈ D∞(π(x)∗) = D(π∗),π∗(x) is not symmetric, soπ∗ is not a∗-representation.
Hence π∗ �= π∗∗, which means that π is not essentially self-adjoint.

(vi): Clearly, π is self-adjoint (i.e., π = π∗) if and only if π is biclosed (i.e., π = π∗∗)
and π is essentially self-adjoint (i.e., π∗ = π∗∗). Using this fact the assertion of
(vi) follows easily by combining (ii), (iii), and (v).

(vii): First suppose π is self-adjoint. Note that π(a) = π(a) for a ∈ A. Hence, by
(vi), D(π) = D∞(π(x)) and π(x) is self-adjoint. From Proposition 3.31 (or
from spectral theory) it follows that D∞(π(x)) is a core for π(x)

n
. Obviously,

D(π) ⊆ D(
π(x)n

)
. Combining these facts it follows that the closure of π(x)n

is the self-adjoint operator π(x)
n
, so π(x)n is essentially self-adjoint.

Conversely, assume π(x)n is essentially self-adjoint for all n ∈ N. Then,
since π(xn) = π(x)n ⊆ (π(x)∗)n ⊆ (π(x)n)∗ = π(xn)∗, we obtain π(xn) =
(π(x)∗)n = π(xn)∗ for n ∈ N. Hence D(π) = D(π∗) by (i) and (ii). Since
π ⊆ π∗, we get π = π∗ = (π)∗, that is, π is self-adjoint. �

The preceding proposition is nicely illustrated by the next example. The proofs
of some assertions are only sketched; the reader may fill the details as an exercise.

Example 4.20 Let us consider the self-adjoint operator T = −i d
dx with domain

D(T ) = {ϕ ∈ H 1(0, 1) : ϕ(0) = ϕ(1)}

in the Hilbert space L2(0, 1). We define a ∗-representation π∞ of A = C[x] on

D(π∞) := D∞(T ) = {
ϕ ∈ C∞([0, 1]) : ϕ(k)(0) = ϕ(k)(1) for k ∈ N0

}

by π∞(p) = p(T )	D(π∞), p ∈ C[x]. By Proposition 4.19(vi), π∞ is self-adjoint.
Let πn, n ∈ N0, denote the restriction of π∞ to the invariant linear subspace

D(πn) = {
ϕ ∈ D(π∞) : ϕ(k)(0) = 0 for k ≥ n

}
.

Obviously, πn ⊆ πm if n ≤ m. The linear functional ϕ �→ ϕ(k)(0) on D(π∞) is con-
tinuous in the graph norm ‖T k+1 · ‖ + ‖ · ‖ of the operator T k+1 and hence in the
graph topology tπ∞ . This implies that each ∗-representation πn is closed.

Clearly,D(π0) = D∞(π0(x)) and π0(x) has deficiency indices (1, 1). Therefore,
by Proposition 4.19,(iv), π0 is biclosed, but not essentially self-adjoint.

It can be shown that, given c0, . . . , cn ∈ C, there exists a function ϕ ∈ D(πn+1)

such that ϕ(k)(0) = ck for k = 0, . . . , n. The following assertions are derived from
this fact. We omit the details and state only the results. For this suppose n ∈ N0.

First, we have D(πn) �= D(πm) and hence πn �= πm if n �= m, n,m ∈ N0.
Next, for k = 0, . . . , n, the symmetric operator πn(xk) = T k	D(πn) is essentially

self-adjoint, or equivalently, D(πn) is a core for T k . Further, D(πn) is not a core for
T j when j > n. That is, πn(xk) = T k if and only if k = 0, . . . , n.
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Finally, (πn+1)
∗ = π∞. Hence (πn+1)

∗∗ = (π∞)∗ = π∞ = (πn+1)
∗, so πn+1 is

essentially self-adjoint, and (πn+1)
∗∗ = π∞ �= πn+1, so πn+1 is not biclosed for

n ∈ N0. Recall that each ∗-representation πn+1 is closed, as noted above.
Now we set π := π1 and B := {x} in Theorem 4.18. Then, each ∗-representation

πn , n ∈ N ∪ {∞}, satisfies πn(b) = π(b) for b ∈ B, and ρ = π∞ is the largest ∗-
representation which has this property.

However, if we take π := π1 and B = {x, x2}, then ρ = π1 is the largest
∗-representation ρ such that ρ(b) = π(b) for all b ∈ B. This shows that the
∗-representation ρ in Theorem 4.18 depends also on the set B of generators and
that ρ is not necessarily biclosed. �
Example 4.21 (Algebras of measurable functions)
Let A be a unital ∗-algebra of measurable functions on R

d with pointwise algebraic
operations and involution f +(t) := f (t). Suppose that A ⊆ L2

loc(R
d). Let μ be a

Radon measure on R
d . Define π( f )ϕ = f · ϕ for f ∈ A and ϕ in the domain

D(π) = {
ϕ ∈ L2(Rd;μ) : f · ϕ ∈ L2(Rd;μ) for f ∈ A

}
.

Since A ⊆ L2
loc(R

d), D(π) contains Cc(R
d). Hence D(π) is a dense linear subspace

of H(π) = L2(Rd;μ). It is easily checked that π is a ∗-representation of A.
We prove that π is self-adjoint. Let ψ ∈ D(π∗). Fix f ∈ A and set η := π( f )∗ψ.

Then, for ϕ ∈ D(π) we derive

〈 f · ϕ,ψ〉 = 〈π( f )ϕ,ψ〉 = 〈ϕ,π( f )∗ψ〉 = 〈ϕ, η〉.

Thus,
∫

ϕ
(
f · ψ − η

)
dμ = 0 for ϕ ∈ D(π). Hence f · ψ = η, since D(π) is dense.

In particular, f · ψ = η ∈ L2(Rd;μ). Therefore, ψ ∈ D(π) and π is self-adjoint.
An important special case is the ∗-algebraA = C[x1, . . . , xd ]. Ifμ is the Lebesgue

measure on R
d , then the ∗-representation π defined above is faithful. �

4.3 Invariant Subspaces and Reducing Subspaces

In this section, π is a ∗-representation of A.

Definition 4.22 Let E be a linear subspace of D(π). We shall say that E is
• invariant under π if π(a)E ⊆ E for all a ∈ A,
• a core for π if it is a core for all operators π(a), i.e., π(a)	E = π(a) for a ∈ A.

A closed linear subspace K of H(π) is called invariant under π if there exists a
linear subspace E of D(π) ∩ K which is invariant under π and dense in K.

Let E be an invariant linear subspace of D(π). The map a �→ πE(a) := π(a)	E
defines a ∗-representation πE of A with domain D(πE) = E in the Hilbert space E .
Such a ∗-representation πE is called a subrepresentation of π. Obviously, π itself
and π	{0} are subrepresentations of π; they are the trivial subrepresentations of π.
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As in the case of single operators, a ∗-representation can be restored from a core
and a core is often easier to describe than the full domain. Clearly, E is a core for π
if and only if E is dense in D(π) with respect to the graph topology tπ. Hence, if E
is a core for π, then πE has the same closure, biclosure, and adjoint as π.

Suppose now that K is a closed linear subspace ofH(π) which is invariant under
π according to the second part of Definition 4.22. Let E(K) denote the set of vectors
ϕ ∈ D(π) ∩ K such that π(a)ϕ ∈ K for all a ∈ A. Then E(K) is the largest linear
subspace of D(π) ∩ K which is invariant in the sense of the first part of Definition
4.22. We denote the corresponding ∗-representation πE(K) = π	E(K) also by πK.

Let K be a closed subspace of H(π) which is invariant under π. Then, in con-
trast to bounded ∗-representations acting on the whole Hilbert space, the orthogonal
complement K⊥ is in general not invariant and π does not split into a direct sum
with respect to the decomposition H(π) = K ⊕ K⊥; see Example 4.33 below. To
describe when the latter happens we introduce the following notions.

Definition 4.23 A linear subspace E of D(π) (resp. a closed linear subspace K of
H(π)) is called reducing for π if there exist ∗-representations π1 and π2 of π such
π = π1 ⊕ π2 and E = D(π1) (resp. K = H(π1)).

A ∗-representation π is said to be irreducible, or indecomposable, if {0} andH(π)

are the only closed linear subspaces of H(π) that are reducing for π.

Remark 4.24 In algebra there are the following (in general different) notions for
modules over a ring: A module is called simple, or irreducible, if it has no proper
submodule, indecomposable if it is not a direct sum of two proper submodules,
and a Schur module if its endomorphism ring is a division algebra. For bounded
∗-representations acting on the whole Hilbert space the counterparts of these three
notions are equivalent (see Exercise 6), but for unbounded ∗-representations they are
not! To circumvent pathological behavior we have defined irreducibility as in Defini-
tion 4.23. This fits to the corresponding notion for single operators (see Appendix A),
and it leads to the expected results: The Schrödinger representation of theWeyl alge-
bra becomes irreducible (Example 4.32) and Proposition 9.29 holds. �

We mention some simple consequences of Definition 4.23.
Suppose that E is a linear subspace of D(π) which is reducing for π. Clearly, E

is invariant under π and we have D(π) ∩ E = E and πE = πE .
Let K be a closed linear subspace of H(π), and let PK denote the orthogonal

projection on K. If K is reducing for π, then K is invariant under π, K⊥ is also
reducing for π and we have D(π) ∩ K = PKD(π) = D(πK).

Some further slight reformulations are given in the following two propositions.

Proposition 4.25 For a closed subspace K of H(π) the following are equivalent:

(i) K is a reducing subspace for π.
(ii) PK ∈ π(A)′s.
(iii) The linear subspacesD(π) ∩ K andD(π) ∩ K⊥ ofD(π) are invariant under π

and PKD(π) ⊆ D(π).
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If one of these conditions is satisfied, then π = πK ⊕ πK⊥ , with πK = π	PKD(π)

and πK⊥ = π	PK⊥D(π).

Proof The proof is given by straightforward verifications. We sketch the proof of
(iii)→(i). Since PKD(π) ⊆ D(π) and D(π) ∩ K is invariant, PKD(π) = D(PK).
Similarly, PK⊥D(π) = D(PK⊥). These relations imply that π = πK ⊕ πK⊥ andK =
H(πK). �
Proposition 4.26 The following statements are equivalent:

(i) π is irreducible.
(ii) If π = π1 ⊕ π2 is a direct sum decomposition, thenH(π1 = {0} orH(π2)={0}.
(iii) The only projections in the strong commutant π(A)′s are 0 and I .

If π is closed, then π is irreducible if and only if π(A)′sym = C · I .
If π is self-adjoint, then π is irreducible if and only if π(A)′w = C · I .
Proof The equivalence of conditions (i)–(iii) follows at once from Proposition 4.25.

If π is closed, then π(A) is a closed O∗-algebra, so by Proposition 3.17(ii),
π(A)′sym = π(A)′s ∩ (π(A)′s)∗ and this set is a von Neumann algebra. If π is self-
adjoint, then π(A) is a self-adjoint O∗-algebra and therefore π(A)′w = π(A)′s is a von
Neumann algebra by Proposition 3.15. Hence, in these cases, (iii) is equivalent to
π(A)′sym = C · I and π(A)′w = C · I , respectively. �
Corollary 4.27 If the closure π of π is irreducible, so is π.

Proof Since π(A)′s ⊆ π(A)′s by Proposition 3.17(i), this follows from Proposition
4.26,(iii)↔(i). �

The next proposition contains the technical ingredients for Theorem 4.29, which
is the main result of this section.

Proposition 4.28 Let E be a linear subspace of D(π).

(i) Suppose E is invariant under π. If πE := π	E is self-adjoint, then PE is in π(A)′s,
E is reducing for π, and we have πE = πE and E = PED(π).

(i)′ Suppose E is invariant under π. If πE := π	E is essentially self-adjoint, then PE
is in π∗∗(A)′s, E is reducing for π∗∗, and D((πE)∗∗) = PED(π∗∗).

(ii) Suppose E is reducing forπ. If π is self-adjoint (resp. essentially self-adjoint),
then πE is self-adjoint (resp. essentially self-adjoint).

Proof In the proofs of (i) and (i)′ we abbreviate P := PE and ρ := πE .

(i): The crucial step in this proof is the relation Pπ∗(a) ⊆ ρ∗(a)P which holds by
Lemma 4.4(i). Note that ρ ⊆ π, π ⊆ π∗ (because π is a ∗-representation), and
ρ = ρ∗ (since ρ is self-adjoint). Using these facts we derive forϕ ∈ D(π), a ∈ A,

Pπ(a)ϕ = Pπ∗(a)ϕ = ρ∗(a)Pϕ = ρ(a)Pϕ = π(a)Pϕ,

that is, P ∈ π(A)′s. Therefore, E is reducing for π and ρ ⊆ πE = π	PD(π) by
Proposition 4.25. Since ρ is a self-adjoint representation on E , it follows that
ρ = πE , so E = D(ρ) = D(πE) = PD(π).
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(i)′: By Lemma 4.4(iii), the inclusion ρ ⊆ π implies ρ∗∗ ⊆ π∗∗. Since ρ is essen-
tially self-adjoint, ρ∗ = ρ∗∗ and hence ρ∗∗ = ρ∗∗∗, which means that ρ∗∗ is self-
adjoint. Thus, (i) applies to ρ∗∗ and π∗∗. Therefore, P ∈ π∗∗(A)′s, E is reducing
for π∗∗, and D(ρ∗∗) = PD(π∗∗).

(ii): Since E is reducing, there is a direct sum decomposition π = πE ⊕ π0. It is
straightforward to verify that π∗ = (πE)∗ ⊕ (π0)

∗ and π∗∗ = (πE)∗∗ ⊕ (π0)
∗∗.

If π is self-adjoint (resp. essentially self-adjoint), then π = π∗ (resp. π∗ = π∗∗)
and therefore πE = (πE)∗ (resp. (πE)∗ = (πE)∗∗). This shows that πE is self-
adjoint (resp. essentially self-adjoint). �

Theorem 4.29 (i) If ρ is a self-adjoint subrepresentation of π, then the projection
PH(ρ) of H(π) on H(ρ) is in π(A)′s and ρ = π	PH(ρ)D(π).

(i)′ If ρ is an essentially self-adjoint subrepresentation ofπ, then the projection PH(ρ)

of H(π) on H(ρ) is in π∗∗(A)′s and ρ∗∗ = π∗∗	PH(ρ)D(π∗∗).
(ii) If π is self-adjoint and P is a projection in π(A)′s, then π	PD(π) is a self-adjoint

subrepresentation of π.

Proof (i): Apply Proposition 4.28(i) to E := D(ρ).

(i)′: Apply Proposition 4.28(i)′ to E := D(ρ).

(ii): Apply Propositions 4.25 and 4.28(ii) to E := PH(π). �
The next two corollaries follow easily from Theorem 4.29 or Proposition 4.28.

They illustrate how self-adjointness assumptions rule out pathological behavior.

Corollary 4.30 A self-adjoint representation π is irreducible if and only if the only
self-adjoint subrepresentations of π are the trivial subrepresentations π and π	{0}.
Corollary 4.31 Suppose π is a self-adjoint representation of A and ρ is a ∗-
representation of A acting on a possibly larger Hilbert space such that π ⊆ ρ. Then
there is a ∗-representation π0 of A on the Hilbert space H(ρ) � H(π) such that
ρ = π ⊕ π0. In particular, ifH(π) = H(ρ), then we have π = ρ.

Let us discuss all this for our main guiding example in this book.

Example 4.32 (Schrödinger representation of the Weyl algebra)
Let W be the Weyl algebra C〈p, q|p = p+, q = q+, pq − qp = −i〉. The self-
adjoint operators P := −i d

dx and Q := x on L2(R) leave the Schwartz space

S(R) = {
ϕ ∈ C∞(R) : sup{|xkϕ(n)(x)| : x ∈ R} < ∞ for k, n ∈ N0

}

invariant and satisfy the relation PQϕ − QPϕ = −iϕ,ϕ ∈ S(R). Hence there is
a ∗-representation πS , called the Schrödinger representation, of W with domain
D(πS) := S(R) on L2(R) given by πS(p) = P	D(πS), πS(q) = Q	D(πS). This
representation of the Weyl algebra will play a crucial role in Chap. 8.

The image πS(W) of W is just the O∗-algebra A for d = 1 from Example 3.11.
As noted therein, the graph topology of πS(W) = A is the usual Frechet topology of
the Schwartz space S(R). Hence πS is closed.
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Statement: πS is irreducible and self-adjoint.

Proof Clearly, S(R) is a core for Q. Hence π(W)′s ⊆ {πS(q)}′s ⊆ {Q}′s by Lemma
3.16. Let T ∈ π(W)′s. Then T commutes with Q, hence with all functions of Q,
and so with L∞(R) acting by multiplication on L2(R). Since L∞(R)′ = L∞(R), T
is a multiplication operator by some function f ∈ L∞(R). Because T leaves S(R)

invariant, f ∈ C∞(R). Since T commutes with πS(p), f must be constant. Thus,
π(W)′s = C · I and πS is irreducible by Proposition 4.26.

Since S(R) is a core for the self-adjoint operators Q and P , πS(q)∗ = Q and
πS(p)∗ = P . Thus, D((πS)

∗) ⊆ D(P) ∩ D(Q). Clearly, S(R) is the largest linear
subspace of L2(R)which is invariant under P and Q. Hence it follows fromTheorem
4.18 and formula (4.15), applied with B = {p, q}, that D((πS)

∗) = D(ρ) = S(R).
Therefore, since S(R) = D(πS), πS is self-adjoint. �

Another proof of the self-adjointness goes as follows. The Hermite functions
Hn, n ∈ N0, (see Sect. 8.4) form an orthonormal basis of the Hilbert space L2(R),
and they are eigenfunctions of the operator T := πs(q2 + p2) = x2 − d2

dx2 . Hence
T n = πS((q2 + p2)n) is essentially self-adjoint for n ∈ N0. Therefore,

D((πS)
∗) ⊆

∞⋂

n=0
D(

(T n)∗
) =

∞⋂

n=0
D(

T n
)
.

But ∩∞
n=0D(T n) = S(R); see, e.g., [RS72, Theorem V.13]), so D((πS)

∗) ⊆ D(πS).
Hence πS is self-adjoint. �
Example 4.33 (An invariant subspace which is not reducing)
Let π be the Schrödinger representation πS of the Weyl algebra W from Example
4.32. The closed linear subspaces K := { f ∈ L2(R) : f (t) = 0 a.e. on (0,+∞)}
and K⊥ of H(π) are invariant under π, but they are not reducing. In fact,

D(πK ⊕ πK⊥) = {
f ∈ D(π) : f (n)(0) = 0 for n ∈ N0

} �= D(π).

Moreover, since π is self-adjoint and irreducible, π(W)′w = π(W)′s = C · I . Hence
the projection PK is not in π(W)′w. �

4.4 The GNS Construction

Suppose π is a ∗-representation of the ∗-algebra A and ϕ ∈ D(π). Then

fπ,ϕ(a) := 〈π(a)ϕ,ϕ〉, a ∈ A, (4.20)

defines a positive linear functional fπ,ϕ on A. Indeed, for a ∈ A, we have

fπ,ϕ(a+a) = 〈π(a+a)ϕ,ϕ〉 = 〈π(a)ϕ,π(a)ϕ〉 ≥ 0.
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Any positive functional of the form (4.20) is called a vector functional of π. In this
section we will show (by Corollary 4.39 below) that a positive linear functional f
is a vector functional of some ∗-representation if and only if f is extendable. In
particular, each positive functional on a unital ∗-algebra is of the form (4.20).

Definition 4.34 Let π be a ∗-representation of A. We say that π is
• algebraically cyclic if there exists a vector ϕ ∈ D(π) such that D(π) = π(A)ϕ; in
this case, ϕ is called an algebraically cyclic vector,
• cyclic if the there exists a vector ϕ ∈ D(π), called then a cyclic vector for π, such
that π(A)ϕ is dense in D(π) with respect to the graph topology tπ .

Obviously, cyclic ∗-representations are nondegenerate.
Before we develop the GNS construction we prove a preliminary result.

Lemma 4.35 Suppose f is a positive linear functional on a ∗-algebra A. Then

N f := {x ∈ A : f (x+x) = 0} = {x ∈ A : f (ax) = 0 for all a ∈ A} (4.21)

is a left ideal of the algebra A. There exists an inner product 〈·, ·〉 on the quotient
space D f := A/N f defined by

〈x + N f , y + N f 〉 = f (y+x), x, y ∈ A. (4.22)

Proof Firstwe prove the second equality in (4.21). If f (ax) = 0 for all a ∈ A, setting
a = x+ yields f (x+x) = 0. Conversely, suppose that f (x+x) = 0. Let a ∈ A. Then,
by the Cauchy–Schwarz inequality (2.34),

| f (ax)|2 ≤ f (x+x) f (aa+) = 0,

so that f (ax) = 0.
From the second description in (4.21) it follows at once that N f is a left ideal.
We define a sesquilinear form 〈·, ·〉′ on A by 〈x, y〉′ = f (y+x) for x, y ∈ A. Let

u, v ∈ N f . Using that f (v+x) = f (x+v) (by (2.35)) and (4.21) we derive

〈x + u, y + v〉′ = 〈x, y〉′ + 〈u, y + v〉′ + 〈x, v〉′
= 〈x, y〉′ + f ((y + v)+u) + f (v+x) = 〈x, y〉′ + 0 + f (x+v) = 〈x, y〉′.

Therefore, Eq. (4.22) defines unambiguously a sesquilinear form on the quotient
space D f = A/N f . Since f is positive, (2.35) holds by Lemma 2.33, so the form
〈·, ·〉 is positive semi-definite and hermitian. By (4.21), 〈x, x〉 = f (x+x) = 0 if and
only if x ∈ N f . Thus 〈·, ·〉 is positive definite and hence an inner product on D f . �
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Proposition 4.36 Suppose f is a positive linear functional on A. There exists a
∗-representation π f on the complex inner product space D f = A/N f , with inner
product (4.22), such that for a, x, y ∈ A,

π f (a)(x + N f ) = ax + N f , (4.23)

f (y+ax) = 〈π f (a)(x + N f ), y + N f 〉. (4.24)

Proof Since N f is a left ideal by Lemma 4.21, we have a(x + u) ∈ ax + N f for
a, x ∈ A and u ∈ N f . Hence Eq. (4.23) defines unambiguously a linear operator
π f (a) on the vector space D f . Obviously, a �→ π f (a) is an algebra homomorphism
of A into L(D f ). For a, x, y ∈ A we have

〈π f (a)(x + N f ), y + N f 〉 = 〈ax + N f , y + N f 〉 = f (y+ax)
= f ((a+y)+x) = 〈x + N f , a

+y + N f 〉 = 〈x + N f ,π f (a
+)(y + N f )〉.

This shows that π f is a ∗-representation of A on the complex inner product space
D f and that Eq. (4.24) is satisfied. �

From the view point of representation theory, the following assertion is the main
reason for requiring condition (2.23) in the definition of a pre-quadratic module.

Corollary 4.37 Let Q be a pre-quadratic module and f a positive linear functional
on A. If f is Q-positive, so is the ∗-representation π f , that is, π f (a) ≥ 0 for a ∈ Q.

Proof Let a ∈ Q and x ∈ A. Since x+ax ∈ Q by (2.23) and f is Q-positive,
f (x+ax) ≥ 0. Hence, by (4.24), the symmetric operator π f (a) is positive. �
The next theorem is the major result of this chapter.

Theorem 4.38 Suppose A is a unital ∗-algebra and f is a positive linear functional
on A. Then the ∗-representation π f on the complex inner product space D f defined
by (4.23) is algebraically cyclic with algebraically cyclic vector ϕ f := 1 + N f and

f (y+ax) = 〈π f (a)π f (x)ϕ f ,π f (y)ϕ f 〉, a, x, y ∈ A. (4.25)

In particular,

f (a) = 〈π f (a)ϕ f ,ϕ f 〉, a ∈ A. (4.26)

If ρ is another algebraically cyclic ∗-representation ofA with algebraically cyclic
vector ψ such that f (a) = 〈ρ(a)ψ,ψ〉 for a ∈ A, then there is a unitary operator U
of H(π f ) on H(ρ) such that UD(π f ) = D(ρ), Uϕ f = ψ and

ρ = Uπ f U
−1.
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Proof Let π f be the ∗-representation from Proposition 4.36. Since z + N f =
π f (z)(1 + N f ) = π f (z)ϕ f for z = x, y by (4.23), (4.24) gives (4.25). Setting
x = y = 1 in (4.25) we obtain (4.26). Since D f = {x + N f : x ∈ A} = π f (A)ϕ f

by (4.23), ϕ f is algebraically cyclic for π f .
Next we prove the uniqueness assertion. Let x ∈ A. Applying (4.25) with x =

y, a = 1 and the assumption on ρ we derive

‖π f (x)ϕ f ‖2 = f (x+x) = 〈ρ(x+x)ψ,ψ〉 = 〈ρ(x)ψ, ρ(x)ψ〉 = ‖ρ(x)ψ‖2.

Hence there exists a well-defined isometric linear map U of D f = π f (A)ϕ f on
D(ρ) = ρ(A)ψ given by Uπ f (x)ϕ f = ρ(x)ψ, x ∈ A. It extends by continuity to a
unitary operator, denoted again by U , of the corresponding Hilbert spaces H(π f )

andH(ρ). Setting x = 1 we getUϕ f = Uπ f (1)ϕ f = ρ(1)ψ = ψ. For a, x ∈ A, we
have U−1ρ(x)ψ = π f (x)ϕ f and

Uπ f (a)U−1ρ(x)ψ = Uπ f (a)π f (x)ϕ f = Uπ f (ax)ϕ f = ρ(ax)ψ = ρ(a)ρ(x)ψ.

This proves that Uπ f U−1 = ρ. �
Corollary 4.39 A positive linear functional f on a ∗-algebra A is extendable if and
only if there exists a ∗-representation π of A and a vector ϕ ∈ D(π) such that

f (a) = 〈π(a)ϕ,ϕ〉 for a ∈ A. (4.27)

Proof First suppose f is extendable. Then f extends to a positive linear functional
f1 of the unitization A1. If π denotes the restriction of the ∗-representation π f1 of A

1

to A and ϕ := ϕ f1 , then (4.27) holds by (4.26).
Conversely, suppose (4.27) is satisfied. Then, for a ∈ A,

f (a+) =〈π(a+)ϕ,ϕ〉 = 〈ϕ,π(a)ϕ〉 = f (a),

| f (a)|2 = |〈π(a)ϕ,ϕ〉|2 ≤ ‖ϕ‖2 ‖π(a)ϕ‖2 = ‖ϕ‖2 〈π(a+a)ϕ,ϕ〉 = ‖ϕ‖2 f (a+a).

This shows that f is hermitian and condition (2.37) is satisfied. Therefore, f is
extendable by Proposition 2.35. �
Example 4.40 (Example 2.39 continued)
Let f be the non-extendable positive functional on the ∗-algebra A = xC[x] defined
by f (xp(x)) = p(0), p ∈ C[x]. Since f ((xp(x))+xp(x)) = 0 for p ∈ C[x], we
have A = N f , so that D f = {0} and π f (a) = 0 for all a ∈ A. �

The following is the counterpart of Theorem 4.38 for closed ∗-representations.
Theorem 4.41 Suppose f is a positive linear functional on a unital ∗-algebra A.
Then the closure π f of the ∗-representation π f defined by (4.23) is a closed cyclic
∗-representation with cyclic vector ϕ f := 1 + N f and
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f (a) = 〈π f (a)ϕ f ,ϕ f 〉, a ∈ A.

If ρ is a cyclic closed ∗-representation of A with cyclic vector ψ such that f (a) =
〈ρ(a)ψ,ψ〉 for a ∈ A, then there is a unitary operator U of H(π f ) on H(ρ) such
that UD(π f ) = D(ρ), Uϕ f = ψ, and ρ = Uπ f U−1.

Proof The first group of assertions follows at once from Theorem 4.38.
We prove the uniqueness. Let ρ0 denote the restriction of ρ to D(ρ0) := ρ(A)ψ.

Then ψ is algebraically cyclic for ρ0 and f (·) = 〈ρ0(·)ψ,ψ〉, so by the unique-
ness assertion of Theorem 4.38 there is a unitary U of H(π f ) on H(ρ0) such that
UD(π f ) = D(ρ0), Uϕ f = ψ, ρ0 = Uπ f U−1. Taking the closures by using that ψ
is cyclic for ρ we get UD(π f ) = D(ρ) and ρ = Uπ f U−1. �
Definition 4.42 The ∗-representationπ f with algebraically cyclic vectorϕ f defined
by (4.23) and satisfying (4.26), likewise its closure π f , is called the GNS represen-
tation associated with the positive functional f on the unital ∗-algebra A.

The notations π f , π f , ϕ f will be kept throughout this book.
Theorems 4.38 and 4.41 are key results of the theory of ∗-representations on

Hilbert spaces. The significance of these results and of the preceding consider-
ations lies in the ingenious construction, discovered by I.M. Gelfand and M.A.
Naimark and studied by I. Segal, of an inner product and a Hilbert space action of the
∗-algebra A derived from the positive functional. This method is usually called the
Gelfand–Naimark–Segal construction or briefly theGNS construction. It is an impor-
tant technical tool in various parts ofmathematics such as group representation theory,
operator algebras, reproducing kernels, moment problems, and others.

Definition 4.43 The ∗-radical, or the reducing ideal, Rad A of a ∗-algebra A is the
intersection of kernelsN (π) := {a ∈ A : π(a) = 0} of all ∗-representations π of A.
A ∗-algebra A is called ∗-semisimple, or reduced, if Rad A = {0}.

That is, a ∗-algebra A is ∗-semisimple if and only if their ∗-representations sep-
arate the points of A. Clearly, Rad A is a two-sided ∗-ideal of A and the quotient
∗-algebra A/(Rad A) is always ∗-semisimple.

Proposition 4.44 For any ∗-algebra A we have

Rad A = {
x ∈ A : f (x+x) = 0 for all f ∈ Pe(A)∗

}

= {
x ∈ A : f (ax) = 0 for all a ∈ A, f ∈ Pe(A)∗

}
,

where Pe(A)∗ denotes the set of all extendable positive linear functionals on A.

Proof By Corollary 4.39, the functionals f of Pe(A)∗ are precisely the vector func-
tionals f (·) = 〈π(·)ϕ,ϕ〉 of ∗-representations. Then f (x+x) = ‖π(x)ϕ‖2, which
yields the first equality. The second equality follows from (4.21). �



82 4 ∗-Representations

Corollary 4.45 Let a1, . . . , an be elements of A such that
∑n

k=1(ak)
+ak = 0. Then

a1, . . . , an ∈ Rad A. In particular, if A admits a faithful ∗-representation, then we
obtain a1 = · · · = an = 0.

Proof Let f ∈ Pe(A)∗. Then we have f ((ak)+ak) ≥ 0. Therefore, the equation 0 =
f
( ∑

k (ak)+ak
) = ∑

k f ((ak)+ak) implies that f ((ak)+ak) = 0 for each k. Hence
ak ∈ Rad A by Proposition 4.44. �
Example 4.46 Let A be the ∗-algebra of rational functions in one variable with
complex conjugation as involution. Then A has no nonzero positive linear functional
and hence RadA = A.

Indeed, assume to the contrary that there is a positive functional f �= 0 on A.
Then π f (A) is a complex division algebra and an O∗-algebra, so that π f (A) = C · I
by [Sch90, Proposition 2.1.12]. Since f �= 0,H(π f ) �= {0}. Hence π f (a) = λ(a)I,
a ∈ A, defines a hermitian character λ of A. This is a contradiction, since A has no
character, as noted in Example 2.52. �

4.5 Examples of GNS Representations

The GNS representation is a useful tool for the operator-theoretic approach to
the multi-dimensional moment problem. This is elaborated in detail in [Sch17,
Sect. 12.5]. We do not repeat this here. The following example relates the deter-
minacy of the one-dimensional Hamburger moment problem to Hilbert space repre-
sentations.

Example 4.47 (One-dimensional Hamburger moment problem)
Let s = (sn)n∈N0 be a real sequence. The Riesz functional of s is the linear func-
tional fs on A := C[x] defined by fs(xn) = sn, n ∈ N0. Suppose fs is a positive
functional onA; see also Example 2.40. Then, by a classical result on the Hamburger
moment problem [Sch17, Theorem3.8], s is amoment sequence, that is, there exists a
Radon measure μ on R such that fs(p) = ∫

p(x)dμ(x) for p ∈ A. To avoid trivial
cases assume that μ has infinite support. ThenN fs = {0} and the GNS representation
π fs is faithful and acts on the complex inner product spaceD(π fs) = C[x], with inner
product 〈q1, q2〉 = ∫

q1q2 dμ,q1, q2 ∈ C[x], byπ fs(p)q = p · q, p ∈ A, q ∈ D(π fs).

Statement: The GNS representation π fs is essentially self-adjoint if and only if the
moment sequence s is determinate.

Proof A basic result on the Hamburger moment problem [Sch17, Theorem 6.10]
states that s is determinate if and only if the operator π fs(x) is essentially self-
adjoint. By Proposition 4.19(v), this holds if and only if the ∗-representation π fs of
A = C[x] is essentially self-adjoint. �

By Proposition 4.19(vii), the closure π fs is self-adjoint if and only if all powers of
π fs(x) are essentially self-adjoint. This is a strong condition, and there are moment
sequences s such that π fs is essentially self-adjoint, but π fs is not self-adjoint. �
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Now we return to the setup at the beginning of Sect. 4.4 and consider a ∗-
representation π of a unital ∗-algebra A and a vector ϕ ∈ D(π). We want to describe
the GNS representations π f , π f of the positive functional f (·) := 〈π(·)ϕ,ϕ〉.
Let ρϕ denote the restriction of π to the domain D(ρϕ) := π(A)ϕ. Then ρ is an
algebraically cyclic ∗-representation of A with algebraically cyclic vector ϕ and
f (·) = 〈ρϕ(·)ϕ,ϕ〉.Hence, by the uniqueness assertions of Theorems 4.38 and 4.41,
ρϕ (resp. ρϕ) is unitarily equivalent to the GNS representation π f (resp. π f ), with a
unitary U defined by U (π f (a)ϕ f ) = ρϕ(a)ϕ, a ∈ A, and satisfying ρϕ = Uπ f U−1

and ρϕ = Uπ f U−1. In general, it can be difficult to determine the domains D(ρϕ)

and D(ρϕ) explicitly. We illustrate this with two examples.

Example 4.48 (Trace functionals; see Sect.3.3)
Let ρ be a closed ∗-representation of a unital ∗-algebra A and t a trace class operator
of B1(ρ(A))+; see Definition 3.22. There is a positive functional ft on A defined by

ft (a) = Tr ρ(a)t, a ∈ A.

Let t = ∑
n ϕn ⊗ (λnϕn) be a representation (3.8) of the operator t . We denote

by H∞ the direct sum ⊕∞
n=1 H(ρ) of countably many copies of the Hilbert space

H(ρ). Then, by Proposition 3.24(i), (ρ(b)λ1/2
n ϕn)n∈N ∈ H∞ for all b ∈ A. Hence

ρ�(a)(ρ(b)λ1/2
n ϕn)n∈N := (ρ(ab)λ1/2

n ϕn)n∈N, a, b ∈ A,

defines a ∗-representation ρ� of A on the subspace {(ρ(a)λ
1/2
n ϕn)n∈N : a ∈ A} of

H∞ with algebraically cyclic vector � := (λ
1/2
n ϕn)n∈N. Using (3.7) we derive

ft (a) =
∞∑

n=1

〈ρ(a)ϕn,λnϕn〉 =
∞∑

n=1

〈ρ(a)λ1/2
n ϕn,λ

1/2
n ϕn〉 = 〈ρ�(a)�,�〉, a ∈ A.

Therefore, by the uniqueness assertion in Theorem 4.38, the GNS representation π ft
is unitarily equivalent to ρ�.

Now we assume in addition that t1/2H(ρ) ⊆ D(ρ). We use the ∗-representation
ρHS from Example 4.10 to obtain a realization of π ft on Hilbert–Schmidt operators.
Since t is trace class, t1/2 is Hilbert–Schmidt. First we prove that t1/2 belongs to
the domain D(ρHS). For this we have to show that, for any a ∈ A, the operator s :=
ρ(a)t1/2 is in B2(H(ρ)). Clearly, s∗ ⊇ t1/2ρ(a+), so that s∗s ⊇ t1/2ρ(a+)ρ(a)t1/2 =
t1/2ρ(a+a)t1/2. But t1/2ρ(a+a)t1/2 is defined on the whole Hilbert spaceH(ρ) by the
assumption t1/2H(ρ) ⊆ D(ρ). Thus, s∗s = t1/2ρ(a+a)t1/2 and this operator is trace
class by Proposition 3.24(iii). Hence s is Hilbert–Schmidt, so that t1/2 ∈ D(ρHS).
Further, since ft (a) = Tr t1/2at1/2 by (3.10), we obtain

〈ρHS(a)t1/2, t1/2〉HS = Tr t1/2ρ(a)t1/2 = ft (a) for a ∈ A. (4.28)
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This shows that the positive functional ft is realized as a vector functional of the ∗-
representationρHS.Hence, as discussed above, theGNSrepresentationπ ft is unitarily
equivalent to the restriction of ρHS to the domain ρHS(A)t1/2. �
Example 4.49 (Vector functionals of the Schrödinger representation)
Let π be the Schrödinger representation of the Weyl algebra W on L2(R); see
Example 4.32. Suppose ϕ ∈ C∞

0 (R) is a fixed function satisfying the following con-
dition:

ϕ(x) �= 0 for x ∈ (0, 1), ϕ(x) = 0 for x ∈ (−∞, 0] ∪ [1,+∞). (4.29)

Define f (·) := 〈π(·)ϕ,ϕ〉. Let π0 denote the restriction of π to the dense domain

D(π0) = {
ψ ∈ C∞([0, 1]) : ψ(k)(0) = ψ(k)(1) = 0 for k ∈ N0

}

of the Hilbert space L2(0, 1). The following result says π0 is unitarily equivalent to
the GNS representation π f .

Statement: There exists a unitary operator U of H(π f ) on L2(0, 1), given by
U (π f (a)ϕ) = π0(a)ϕ for a ∈ W, such that π0 = Uπ f U−1.

Proof Let ρϕ denote the restriction of π to D(ρϕ) = π(W)ϕ. As noted above, the
unitary operator U defined by U (π f (a)ϕ f ) = ρϕ(a)ϕ ≡ π0(a)ϕ, a ∈ W, provides
the unitary equivalence ρϕ = Uπ f U−1. Clearly, ρϕ ⊆ π0, since π0 is closed. To
prove the statement it therefore suffices to show that π(W)ϕ is dense inD(π0) in the
graph topology of π0(W). For this we will use Lemma 4.51 below.

Each element a ∈ W is a finite sum of terms f (q)pn , with n ∈ N0 and f ∈ C[q].
Since the operators π0( f (q)) are bounded, the graph topology tπ0(W) is generated by
the seminorms ‖π0(ip)n · ‖, n ∈ N0, on D(π0). Let ψ ∈ D(π0).

First assume that ψ vanishes in neighborhoods of the points 0 and 1. Then, by
Lemma 4.51, for any m ∈ N there is sequence ( fn)n∈N of polynomials such that

lim
n

π0((ip)
k)(π0( fn(q))ϕ − ψ) = lim

n
(( fnϕ)(k) − ψ(k)) = 0, k = 0, . . . ,m,

in L2(0, 1). This shows that ψ is in the closure of π0(W)ϕ in the graph topology.
In the general case we setψε(x) := ψ((1 + 2ε)x − ε) for ε > 0, whereψ(x) := 0

on R/[0, 1]. Then ψε vanishes in neighborhoods of 0 and 1, so it is in the closure of
π0(W)ϕ by the preceding. By the dominated Lebesgue convergence theorem,

lim
ε→+0

π0((ip)
k)(ψε − ψ) = lim

ε→+0
(ψ(k)

ε − ψ(k)) = 0 for k ∈ N0

in L2(0, 1). Therefore, since ψε is in the closure of π0(W)ϕ, so is ψ. ��
Lemma 4.50 Let k ∈ N and g ∈ C (k)([0, 1]). There exists a sequence ( fn)n∈N of
polynomials such that f ( j)

n =⇒ g( j) uniformly on [0, 1] for j = 0, . . . , k.
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Proof By the Weierstrass theorem there is a sequence (hn)n∈N of polynomials such
that hn =⇒ g(k) uniformly on [0, 1]. Set hn,k := hn . Then

hn,k−1(x) := g(k)(0) +
∫ x

0
hn,k(y)dy =⇒ g(k−1)(x) = g(k)(0) +

∫ x

0
g(k)(y)dy.

Clearly, (hn,k−1)n∈N is sequence of polynomials such that h′
n,k−1(x) = hn,k(x). Pro-

ceeding by induction we obtain sequences (hn,k− j )n∈N, j = 0, . . . , k, of polynomials
such that hn,k− j =⇒ g(k− j) uniformly on [0, 1] and h′

n,k− j (x) = hn,k+1− j (x). Then
the sequence ( fn := hn,0)n∈N has the desired properties. �
Lemma 4.51 Suppose that ϕ ∈ C∞

0 (R) satisfies condition (4.29). Let m ∈ N and
ψ ∈ C (m)

0 ([0, 1]). Then there exists a sequence ( fn)n∈N of polynomials such that
limn→∞ ( fnϕ)(k) = ψ(k) in L2(0, 1) for k = 0, . . . ,m.

Proof By the assumption, ψ vanishes in neighborhoods of 0 and 1. Hence ψϕ−1

is in C (m)([0, 1]). By Lemma 4.50, there exists a sequence ( fn)n∈N of polynomials
such that f ( j)

n =⇒ (ψϕ−1)( j) for j = 0, . . . ,m uniformly on [0, 1]. Then

( fnϕ)(k) =
k∑

j=0

(
k

j

)

f ( j)
n ϕ(k− j) =⇒

k∑

j=0

(
k

j

)

(ψϕ−1)( j)ϕ(k− j) = ψ(k)

uniformly on [0, 1] and hence in the Hilbert space L2(0, 1). �

4.6 Positive Semi-definite Functions on Groups

In this section, we use the GNS construction to relate positive semi-definite functions
on groups to unitary representations. First suppose G is an arbitrary group.

Definition 4.52 A unitary representation of a group G on a Hilbert space H is an
algebra homomorphism U of G into the group of unitary operators onH(U ) := H.

Since a unitary representation U is a homomorphism into the unitaries, we have

U (e) = I and U (g−1) = U (g)−1 = U (g)∗ for g ∈ G.

As noted in Example 2.40, there is a one-to-one correspondence between positive
linear functionals on the group ∗-algebra C[G] and positive semi-definite functions
on the group G. Recall that positive semi-definite functions on groups were intro-
duced in Definition 2.41.
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Proposition 4.53 A function f on a group G is positive semi-definite if and only if
there exist a unitary representation U of G and a vector ξ ∈ H(U ) such that

f (g) = 〈U (g)ξ, ξ〉, g ∈ G. (4.30)

Proof First suppose that f is a positive semi-definite function on G. Let F be the
positive functional on C[G] given by F(

∑
g αgg) = ∑

g αg f (g) and let πF be its
GNS representation. For g ∈ G and ϕ ∈ D(πF ), we obtain

‖πF (g)ϕ‖2 = 〈πF (g)ϕ,πF (g)ϕ〉 = 〈πF (g+)πF (g)ϕ,ϕ〉
= 〈πF (g−1g)ϕ,ϕ〉 = 〈πF (e)ϕ,ϕ〉 = ‖ϕ‖2.

Therefore, since πF (g)D(πF ) ⊇ πF (g)πF (g−1)D(πF ) = πF (e)D(πF ) = D(πF ) is
dense inH(πF ), πF (g) extends by continuity to a unitary operator U (g) onH(πF ).
Since πF is a ∗-representation of C[G], g �→ U (g) is a unitary representation of G.
Then, f (g) = F(g) = 〈πF (g)ϕF ,ϕF 〉 = 〈U (g)ϕF ,ϕF 〉 for g ∈ G, which proves
(4.30) with ξ = ϕF .

Now suppose f is of the form (4.30). Define π(
∑

g αgg) = ∑
g αgU (g). Since

U is a unitary representation of G, π is a ∗-representation of the ∗-algebra C[G].
Hence F(a) = 〈π(a)ξ, ξ〉, a ∈ C[G], is a positive linear functional on C[G]. Then,
F(g) = 〈π(g)ξ, ξ〉 = 〈U (g)ξ, ξ〉 = f (g), g ∈ G, so the restriction of F to G is f .
Hence f is a positive semi-definite function. �

Now we turn to topological groups.
A topological group is a groupG equippedwith a topology such that themappings

(g, h) �→ g · h of G × G into G and g �→ g−1 of G into G are continuous.

Definition 4.54 A unitary representation of a topological group G is a unitary rep-
resentationU of the group G (according to Definition 4.52) such that for each vector
ϕ ∈ H(U ) the map G � g �→ U (g)ϕ ∈ H(U ) is continuous.

The continuity condition in Definition 4.54 is the continuity in the strong operator
topology. A scalar characterization of the continuity is contained in the next lemma.

Lemma 4.55 Suppose G is a topological group and U is a homomorphism of G
into the unitary group of a Hilbert spaceH. Let D be a dense subset ofH. Then the
following statements are equivalent:

(i) U is a unitary representation of the topological group G.

(ii) For all ϕ,ψ ∈ H, the function g �→ 〈U (g)ϕ,ψ〉 is continuous on G.
(iii) For all ϕ ∈ H, the function g �→ 〈U (g)ϕ,ϕ〉 is continuous at the unit e of G.

(iv) For all ϕ ∈ D, the function g �→ 〈U (g)ϕ,ϕ〉 is continuous on G.

Proof The implications (i)→(ii)→(iii)→(iv) are obvious, so it suffices to prove
(iii)→(i) and (iv)→(iii).
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(iii)→(i): Let g, h ∈ G. Using that U is a homomorphism and the operators
U (g),U (h) are unitary, we derive

‖U (g)ϕ −U (h)ϕ‖2
= 〈U (g)ϕ,U (g)ϕ〉 + 〈U (h)ϕ,U (h)ϕ〉 − 〈U (g)ϕ,U (h)ϕ〉 − 〈U (h)ϕ,U (g)ϕ〉
= 2〈ϕ,ϕ〉 − 〈U (h−1g)ϕ,ϕ〉 − 〈ϕ,U (h−1h)ϕ〉 = 2‖ϕ‖2 − 2Re 〈U (h−1g)ϕ,ϕ〉.

If g → h in G, then h−1g → e in G, hence 〈U (h−1g)ϕ,ϕ〉 → 〈U (e)ϕ,ϕ〉 = ‖ϕ‖2
by (iii), and therefore U (g)ϕ → U (h)ϕ inH by the preceding equality.

(iv)→(iii): Let ϕ ∈ H(U ) and ε > 0. Since D is dense, we can find a vector
ϕ′ ∈ D such that ‖ϕ − ϕ′‖ ≤ ε. Then

|〈U (g)ϕ,ϕ〉 − 〈U (g)ϕ′,ϕ′〉| = |〈U (g)ϕ,ϕ − ϕ′〉 + 〈U (g)(ϕ − ϕ′),ϕ′〉|
≤ (‖ϕ‖ + ‖ϕ′‖) ‖ϕ − ϕ′‖ ≤ (2 ‖ϕ‖ + ε) ε.

Therefore, by (iv), the function 〈U (g)ϕ,ϕ〉 is uniform limit of continuous functions
〈U (g)ϕ′,ϕ′〉. Hence 〈U (g)ϕ,ϕ〉 is continuous on G. �

The following is the counterpart of Proposition 4.53 for topological groups.

Theorem 4.56 Suppose G is a topological group. A function f on G is positive
semi-definite and continuous if and only if there exist a unitary representation U of
the topological group G and a vector ξ ∈ H(U ) such that (4.30) holds. The vector
ξ can be chosen as a cyclic vector for the representation U.

Proof The if part is clear by Proposition 4.53 and Definition 4.54.
Conversely, suppose that f is positive semi-definite and continuous. By Proposi-

tion 4.53, there are a unitary representation V of the group G and a vector ξ ∈ H(V )

such that f (g) = 〈V (g)ξ, ξ〉, g ∈ G. Let H be the closure of the linear subspace
D := Lin {V (g)ξ : g ∈ G} in H(V ). Then V leaves D invariant and so H. Hence
U := V 	H is a unitary representation of the group G with cyclic vector ξ.

Let ϕ ∈ D. Then ϕ is of the form ϕ = ∑
j V (h j )ξ, where h j ∈ G, and

〈U (g)ϕ,ϕ〉 =
∑

j,k
〈U (g)V (h j )ξ, V (hk)ξ〉

=
∑

j,k
〈V (h−1

k gh j )ξ, ξ〉 =
∑

j,k
f (h−1

k gh j )

is continuous onG, because f is continuous. Therefore, sinceD is dense inH, it fol-
lows from Lemma 4.55,(iv)→(i), thatU is a unitary representation of the topological
group G. By construction, f (g) = 〈V (g)ξ, ξ〉 = 〈U (g)ξ, ξ〉 for g ∈ G. �
Example 4.57 (Positive semi-definite functions on R

d )
Suppose f is a continuous positive semi-definite function on the topological group
G = R

d . Then, by Bochner’s theorem (see, e.g., [RS75]), there exists a unique finite
Radon measure μ on R

d such that
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f (x) =
∫

Rd

e i (x,y)dμ(y), x ∈ R
d , (4.31)

where (x, y) denotes the inner product of x, y ∈ R
d .

Let U be the unitary representation of R
d on H(U ) = L2(Rd;μ) defined by

(U (x) f )(y) = e i (x,y) f (y), x, y ∈ R
d , and ξ(y) ≡ 1. Then (4.31) reads as f (x) =

〈U (x)ξ, ξ〉, which is Eq. (4.30) in this case. �

4.7 Pathologies with Unbounded Representations

It is well known that unbounded operators can lead to many technical difficulties and
subtleties, but unbounded ∗-representations are even worse. In this short section we
mention and briefly discuss some of these problems.

(1) Orthogonal complements of subrepresentations

If K is an invariant closed linear subspace for a bounded ∗-representation π on a
Hilbert space H = D(π), then K⊥ is also invariant and π is the direct sum of the
subrepresentations π	K and π	K⊥.

In contrast, for unbounded ∗-representations these facts are no longer true, see
Example 4.33. It may even happen that E is an invariant linear subspace of D(π)

such that E⊥ �= {0}, but E⊥ ∩ D(π) = {0}; see [Sch90, Example 8.3.8].

(2) Decomposition into a direct sum of cyclic subrepresentations

Each bounded ∗-representation π on a Hilbert space H = D(π) is a direct sum of
cyclic ∗-representations. The standard proof of this fact goes as follows: Let π0 on
H0 be a maximal direct sum of cyclic subrepresentations of π. If H0 �= H, then
(H0)

⊥ is invariant and there is a nonzero vector ϕ ∈ H⊥
0 . Then Kϕ := π(A)ϕ is

an invariant subspace and π ⊕ (π	Kϕ) is a larger sum of cyclic subrepresentations,
which contradicts the maximality of the chosen family. Thus,H0 = H.

This procedure fails for unbounded representations, since it can happen that
(H0)

⊥ ∩ D(π) = {0}, as noted in (1). In fact, there exists a closed ∗-representation of
the ∗-algebraA = C[x1, x2] that is not a direct sum of cyclic representations [Sch90,
Corollary 11.6.8]. In general it is a difficult task to prove that all representations of
some class of representations are direct sums of cyclic representations of this class.

(3) Irreducible representations of commutative algebras

If a bounded ∗-representation π of ∗-commutative algebra on a Hilbert space
H = D(π) is irreducible, then dimH = 1. This is no longer true for unbounded
representations. In Example 7.6 we construct an irreducible self-adjoint representa-
tion of A = C[x1, x2] that acts on an infinite-dimensional Hilbert space.

(4) Self-adjoint representations are not necessarily well behaved

As noted in (3), there exists an irreducible self-adjoint representation of the commu-
tative ∗-algebra A = C[x1, x2] on an infinite-dimensional Hilbert space.
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However, for an irreducible integrable ∗-representation (Definition 7.7) of a com-
mutative ∗-algebra, the Hilbert space is always one-dimensional (Corollary 7.15).

(5) Pure states and irreducibility of GNS representations

A state on a C∗-algebra is pure if and only if its GNS representation is irreducible.
For states on general unital ∗-algebras this is not true in general.

A state f on a unital∗-algebraA is pure if and only theweak commutantπ f (A)′w =
π f (A)′w is trivial (Corollary 5.4), while the GNS representation π f (resp. π f ) is
irreducible if and only if the strong commutant π f (A)′s (resp. π f (A)′s) does not
contain a nontrivial projection (Proposition 4.26). A nonpure state for which theGNS
representations π f and π f are irreducible will be constructed in Example 5.6. In this
example, π f is an irreducible closed ∗-representation of the polynomial algebraC[x]
in one variable acting on an infinite-dimensional Hilbert space!

(6) Positivity for representations of commutative algebras

Let X be a compact topological Hausdorff space. Suppose π is a bounded ∗-
representation of the C∗-algebra A = C(X ) on a Hilbert space H. Then, for each
function a ∈ C(X ) such that a(x) ≥ 0 on X , we have π(a) ≥ 0 on H. Further, if
(ai j (x))ni, j=1 is a matrix of entries ai j ∈ C(X ) which is positive semi-definite for
each x ∈ X , then the matrix (π(ai j ))ni, j=1 of Hilbert space operators is positive semi-
definite on the Hilbert space ⊕n

i=1H.
Again, all this is no longer true for unbounded representations of A = C[x1, x2].

It will be shown in Example 7.5 that there exist a positive functional f on A and a
polynomial p ∈ A such that p(x) ≥ 0 on R

2, but f (p) = 〈π f (p)ϕ f ,ϕ f 〉 < 0.
Even more, there exists a ∗-representation π of A which is 1-positive, but not

2-positive [Sch90, Theorem 11.6.7]. That π is 1-positive means that π(p) ≥ 0 for
each nonnegative polynomial p on R

2. Being not 2-positive means that there is a
matrix (pi j (x))2i, j=1 with pi j ∈ A which is positive semi-definite for each x ∈ R

2,
but the operator matrix (π(pi j ))2i, j=1 is not positive semi-definite on D(π) ⊕ D(π).
An example of such a matrix is given by formula (14.19) in Chap.14.

4.8 Exercises

1. Suppose A is a commutative real unital ∗-algebra with the identity map as invo-
lution. Let AC be its complexification. Show that for each positive functional
f : A �→ R there exist a nondegenerate ∗-representation π of AC and a vector
ϕ ∈ D(π) such that f (a) = 〈π(a)ϕ,ϕ〉 for a ∈ A.

2. Let A be a ∗-algebra, π an algebra homomorphism of A into L(D) for some
complex inner product space D and A0 a subset of A which generates A as a
∗-algebra. Show that if (4.1) holds for a ∈ A0, it does for all a ∈ A and π is a
∗-representation.

3. In the notation of Remark 4.13, show that πC is a ∗-representation of the complex
∗-algebra AC on the complex inner product space DC.
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4. Let π be a ∗-representation ofA = C[x] on L2(R) such thatD(π) ⊆ C∞(R) and
π(x) = −i d

dx . Describe the ∗-representation ρ from Theorem 4.18 and decide
whether or not it is self-adjoint:

a. B = {x}, D(π) = C∞
0 (R).

b. B = {x}, D(π) = {
ϕ ∈ C∞

0 (R) : ϕ(n)(0) = 0, n ∈ N0
}
.

c. B = {x}, D(π) = {
ϕ ∈ C∞

0 (R) : ϕ(n)(0) = 0, n ∈ N
}
.

d. B = {x, x2}, D(π) = {
ϕ ∈ C∞

0 (R) : ϕ(n)(0) = 0, n ∈ N
}
.

5. (q-Oscillator algebra and Fock representation, see also Sect. 11.7)
Suppose that q > 0, q �= 1. Let A = C〈x, x+|xx+ − qx+x = 1〉.
a. Show that there exists a ∗-representation π of A on l2(N0) with domain

D(π) = Lin {ek : k ∈ N0} such that π(x)ek =
√

1− qk

1−q ek−1, k ∈ N0, where

{ek} is the standard orthonormal basis of l2(N0) and e−1 := 0.
b. Show that the corresponding ∗-representation ρ for B = {x, x+} from The-

orem 4.18 is self-adjoint.

6. Let π be a ∗-representation of a ∗-algebra A acting by bounded operators on a
Hilbert space D(π) = H(π). Show that the following are equivalent:

(i) H(π) and {0} are the only closed linear subspaces ofH(π)which are invari-
ant under π.

(i) If π = π1 ⊕ π2 is a direct sum of ∗-representations π1 and π2 of A, then
H(π1) or H(π2) is {0}.

(iii) π(A)′ = C · I .
7. Let A be the (nonunital!) ∗-algebra Cc(R) with pointwise multiplication and

complex conjugation as involution. Show that the positive functional f on
A defined by f (ϕ) = ∫

R
ϕ(x)dx, ϕ ∈ A, is not extendable. Describe the ∗-

representation π f from Proposition 4.36.
Hint: Look for ϕ ∈ A such that ϕ(x) = 1 if |x | ≤ n, ϕ(x) = 0 if |x | ≥ n + 1.

8. Suppose ϕ ∈ Cc(R
d). Define a positive linear functional f on the polynomial

algebra A = Cd [x] by f (p) = ∫
p(x)|ϕ(x)|2dx , p ∈ A.

Describe the GNS representation π f . What is the domain of π f ?
9. Let πS be the Schrödinger representation of the Weyl algebra. Suppose that

ϕ1,ϕ2 ∈ C∞
0 (R), ϕ1(x) �= 0 if and only if x ∈ (0, 1), and ϕ2(x) �= 0 if and

only if x ∈ (2, 3). Describe the GNS representation π ft for ft (·) = Tr πS(·)t :
a. t = ϕ1 ⊗ ϕ1 + ϕ2 ⊗ ϕ2.
b. t = (ϕ1 + ϕ2) ⊗ (ϕ1 + ϕ2).
c. t = ϕ ⊗ ϕ, where ϕ(x) := e−αx2 ,α > 0.

10. (Unitary implementation of ∗-automorphisms for invariant positive functionals)
Let g �→ αg be a homomorphism of a group G in the group of ∗-automorphisms
of a unital ∗-algebra A. Suppose f is a positive functional on A such that
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f (αg(a)) = f (a) for a ∈ A, g ∈ G. Show that there exists a unitary represen-
tation U of G on H(π f ) such that U (g)D(π f ) = D(π f ), U (g)ϕ f = ϕ f ,

π f (αg(a)) = U (g)π f (a)U (g)−1 for a ∈ A, g ∈ G.

Hint: Define U (g)(π f (a)ϕ f ) = π f (αg(a))ϕ f .
11. Let f be a positive functional on a ∗-algebra A and a ∈ A. Show that pr (x) :=

f (a+x+xa)1/2 and pl(x) := f (x+a+ax)1/2 define seminorms pr and pl on A.
12. Show that the polynomial algebra C[x1, . . . , xd ] is ∗-semisimple.
13. Let f be a positive semi-definite function on a group G and let g, h ∈ G. Use

Eq. (4.30) to prove the following:

a. | f (g)| ≤ f (e) and f (g−1) = f (g).
b. | f (g) − f (h)|2 ≤ 2 f (e)( f (e) − Re f (g−1h)).

In Exercises 14–16, A1 and A2 are unital ∗-algebras and A = A1 ⊗ A2 is the tensor
product ∗-algebra with involution determined by (a1 ⊗ a2)+ = a+

1 ⊗ a+
2 .

14. Suppose that ρ1 and ρ2 are nondegenerate ∗-representations of A1 and A2,
respectively, actingon the samedomainD(ρ1) = D(ρ2) such thatρ1(a1)ρ2(a2) =
ρ2(a2)ρ1(a1) for a1 ∈ A1, a2 ∈ A2. Show that there exists a unique
∗-representation ρ of A onD(ρ) := D(ρ1) such that ρ(a1 ⊗ a2) = ρ1(a1)ρ2(a2)
for a1 ∈ A1, a2 ∈ A2. Show that each nondegenerate ∗-representation ofA arises
in this manner.

15. Show that for nondegenerate ∗-representations π1 of A1 and π2 of A2 there is a
unique ∗-representation π1 ⊗ π2 of A on D(π1 ⊗ π2) := D(π1) ⊗ D(π2) such
that (π1 ⊗ π2)(a1 ⊗ a2) = π1(a1) ⊗ π2(a2), a1 ∈ A1, a2 ∈ A2.

16. Let f1 and f2 be positive linear functionals on A1 and A2, respectively. Show
that there is a well-defined positive linear functional f1 ⊗ f2 on A such that
( f1 ⊗ f2)(a1 ⊗ a2) = f1(a1) f2(a2) for a1 ∈ A1, a2 ∈ A2.

Hint: Apply Exercise 15 to the GNS representations π f1 and π f2 .

4.9 Notes

TheGNS construction for bounded representations and normed algebras was discov-
ered by I.M. Gelfand and M.A. Naimark in their seminal paper [GN43]. It was made
explicit by Segal [Se47b] who invented also the term “state.” This construction was
used for the field algebra byBorchers [B62] andUhlmann [U62]. For unbounded rep-
resentations of general ∗-algebras it was elaborated by Powers in [Pw71]. The repre-
sentability of positive functionals as vector functionals of bounded ∗-representations
was studied in [Sb84, Sb86]. Representations of symmetric ∗-algebras were inves-
tigated in [In77, Bh84]. Theorem 4.18 was obtained in [Sch90].

A natural question is when an abstract unital ∗-algebra admits a faithful ∗-
representation. A sufficient condition was given in Corollary 4.45. This problem
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was studied for general representations in [Po08] and for bounded representations in
[T99, La97, GM90].

Positive semi-definite functions play an important role in representation theory
of locally compact groups; see, e.g., [Di77b, Part II] and [F89].

This chapter and the next follow partly the monograph [Sch90, Chap.8], but a
number of new results have been also added.



Chapter 5
Positive Linear Functionals

Positive functionals and states are fundamental objects in the theory of ∗-algebras.
The GNS construction provides a powerful method for their study which is the aim
of this chapter. This can lead to difficult problems already for very simple algebras.
For instance, the one-dimensional classical moment problem is, in fact, the study of
positive functionals on the polynomial algebra R[x] (or C[x]) in one variable!

In Sect. 5.1, we develop an ordering of positive functionals which is related to
operators in the weak commutantFor of the GNS representation (Theorem 5.3).
Section5.2 deals with orthogonal positive functionals (Theorem 5.13). Sections5.3
and 5.4 provide a detailed study of the transition probability of two positive func-
tionals. We characterize it in terms of the symmetrized commutant (Theorem 5.18)
and obtain explicit formulas for trace functionals or functionals which are defined as
integrals (Theorems 5.23 and 5.25). Section5.5 contains a Radon–Nikodym theorem
for positive functionals. In Sect. 5.6, we use the Choquet theory to represent positive
functionals as integrals over pure states (Theorems 5.35 and 5.36). Section5.7 is
about quadratic modules defined by families of ∗-representations.

Throughout this chapter, A is a complex unital ∗-algebra. Recall that P(A)∗
denotes the set of positive linear functionals and S(A) is the set of states on A.

5.1 Ordering of Positive Functionals

For positive linear functionals f and g on A, we define

f ≤ g if f (a+a) ≤ g(a+a) for all a ∈ A.

Let [0, f ] denote the set of all functionals g ∈ P(A)∗ such that g ≤ f .
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Definition 5.1 A positive functional f on the unital ∗-algebra A is said to be pure
if [0, f ] consists only of multiples λ f of f , where λ ∈ [0, 1].

It is easy to check that a state on A is pure according to Definition 5.1 if and only
if it is an extreme point of the convex set S(A), so Definitions 2.60 and 5.1 coincide
for states.

Remark 5.2 For a nonunital ∗-algebra, a positive functional f is called pure if each
extendable positive functional g satisfying g ≤ f is a multiple λ f , with λ ∈ [0, 1].
But in this chapter we study only positive functionals on unital ∗-algebras. �

By [0, I ] we denote the set {T = T ∗ ∈ B(H) : 0 ≤ T ≤ I }, equipped with the
usual order relation of self-adjoint operators.

Theorem 5.3 Let f ∈ P(A)∗. If T = T ∗ ∈ π f (A)′w and T ≥ 0, then the equation

fT (a) := 〈Tπ f (a)ϕ f , ϕ f 〉, a ∈ A,

defines a positive linear functional fT on A.
The map T 	→ fT is an order isomorphism of π f (A)′w ∩ [0, I ] onto [0, f ], that is,

this map is bijective and we have T1 ≤ T2 if and only if fT1 ≤ fT2 for any T1, T2 ∈
π f (A)′w ∩ [0, I ].
Proof Let a ∈ A. Using that T in the weak commutant π f (A)′w we derive

fT (a+a) = 〈Tπ f (a
+)π f (a)ϕ f , ϕ f 〉 = 〈Tπ f (a)ϕ f , π f (a)ϕ f 〉. (5.1)

Since T ≥ 0, this gives fT (a+a) ≥ 0, so fT is a positive linear functional on A.
Now suppose T ∈ π f (A)′w ∩ [0, I ]. Since T ≤ I , (5.1) and (4.25) imply that

fT (a+a) ≤ 〈π f (a)ϕ f , π f (a)ϕ f 〉 = f (a+a), a ∈ A,

that is, fT ≤ f . Since D(π f ) = π f (A)ϕ f is dense in H(π f ), it follows from (5.1)
that fT1 ≤ fT2 is equivalent to T1 ≤ T2 for T1, T2 ∈ π f (A)′w ∩ [0, I ] and that the map
T 	→ fT is injective. It remains to prove that this map is surjective.

For suppose g ∈ P(A)∗ and g ≤ f . We show that there is a well-defined bounded
sesquilinear form 〈·, ·〉g on the complex inner product space D(π f ) such that

〈π f (x)ϕ f , π f (y)ϕ f 〉g = g(y+x), x, y ∈ A. (5.2)

First we prove that 〈·, ·〉g is well defined by (5.2). Suppose π f (x)ϕ f = π f (x ′)ϕ f ,
where x, x ′ ∈ A. Then, by (4.25),

f ((x − x ′)+(x − x ′)) = ‖π f (x − x ′)ϕ f ‖2 = 0.
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Hence g((x − x ′)+(x − x ′)) = 0, since g ≤ f , and therefore

|g(y+(x − x ′))|2 ≤ g(y+y)g((x − x ′)+(x − x ′)) = 0

by the Cauchy–Schwarz inequality (2.34). Thus, g(y+x) = g(y+x ′). The same rea-
soning works for the variable y as well. Hence 〈·, ·〉g is well defined by (5.2).

The functional g is positive and hence hermitian, so is the sesquilinear form 〈·, ·〉g .
It is bounded on the complex inner product space D(π f ), since for x ∈ A,

〈π f (x)ϕ f , π f (x)ϕ f 〉g = g(x+x) ≤ f (x+x) = 〈π f (x)ϕ f , π f (x)ϕ f 〉. (5.3)

Hence 〈·, ·〉g extends to a bounded positive sesquilinear form on the Hilbert space
H(π f ). Then there is a positive self-adjoint operator T ∈ B(H(π f )) such that

g(y+x) = 〈Tπ f (x)ϕ f , π f (y)ϕ f 〉, x, y ∈ A. (5.4)

Combining (5.3) and (5.4) yields T ≤ I . For a, x, y ∈ A, we derive

〈Tπ f (a)π f (x)ϕ f , π f (y)ϕ f 〉 = 〈Tπ f (ax)ϕ f , π f (y)ϕ f 〉
= g(y+ax) = g((a+y)+x) = 〈Tπ f (x)ϕ f , π f (a

+y)ϕ f 〉
= 〈Tπ f (x)ϕ f , π f (a

+)π f (y)ϕ f 〉.

Therefore, T ∈ π f (A)′w. Thus we have shown that T ∈ π f (A)′w ∩ [0, I ] and g = fT
by (5.4). This proves the surjectivity of the map T 	→ fT . �
Corollary 5.4 A positive linear functional f on A is pure if and only if the weak
commutant π f (A)′w is trivial, that is, π f (A)′w = C · I.
Proof Theorem 5.3 implies that f is pure if and only if π f (A)′w ∩ [0, I ] is equal to
{λ · I : 0 ≤ λ ≤ 1}.Sinceπ f (A)′w is a ∗-invariant vector space, the latter is obviously
equivalent to π f (A)′w = C · I. �
Corollary 5.5 If a positive linear functional f is pure, the GNS representations π f

and π f are irreducible.

Proof Since f is pure, π f (A)′w = C · I by Corollary 5.4. Proposition 3.15 implies
thatπ f (A)′w = π f (A)′w. Since the weak commutantsπ f (A)′w andπ f (A)′w are trivial,
so are the corresponding strong commutants. Hence π f and π f are irreducible by
Proposition 4.26. �

In contrast to C∗-algebras, the converse direction in Corollary 5.5 is not true, as
shown by the next example. In this example we use the some advanced results from
the theory of indeterminate Hamburger moment problems (see [Sch17, Chap.7]).
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Example 5.6 (A nonpure state with irreducible GNS representation)
Suppose μ is a von Neumann solution, or equivalently an N -extremal solution, of an
indeterminate Hamburger moment problem such that μ(R) = 1. ThenC[x] is dense
in the Hilbert space H := L2(R;μ). Hence there exists a ∗-representation of the ∗-
algebra A := C[x] with domain D(π) := C[x] on H defined by
(π(p)q)(x) = p(x)q(x), p, q ∈ C[x]. Since π(C[x])1 = D(π) = C[x] and

fπ,1(p) = 〈π(p)1, 1〉 =
∫
R

p(x)dμ(x), p ∈ C[x], (5.5)

it follows from Theorem 4.38 that π is (unitarily equivalent to) the GNS representa-
tion of the state fπ,1.

Statement 1: The state f ≡ fπ,1 on the ∗-algebra C[x] is not pure.
Proof For any Borel set M , fM(p) := ∫

M p(x)dμ(x), p ∈ C[x], defines a positive
functional such that fM ≤ f . If μ(M) �= 0 and M is bounded, π fM (x) is a nonzero
bounded operator. Since π f (x) is unbounded, fM is not a multiple of f . �

For the next result we recall some facts about the indeterminate Hamburger
moment problem [Sch17, Theorem 7.7]. The symmetric operator T := π(x) has
deficiency indices (1, 1) and its self-adjoint extensions At of T onH are parametrized
by R ∪ {∞}. Each operator At has a discrete spectrum consisting of eigenvalues of
multiplicity one. For t ∈ R these eigenvalues are zeros of the function B(z) + t D(z),
where A, B,C, D are the Nevanlinna entire functions of the indeterminate moment
problem. The operators At1 and At2 for different reals t1, t2 have no common eigen-
value (otherwise there is a λ such that B(λ) = D(λ) = 0, which contradicts the rela-
tion A(z)B(z)−C(z)D(z) = 1.) It is not difficult to verify that all bounded functions
of any self-adjoint extension At belong to the weak commutant π(C[x])′w.

Statement 2: π f and π f are irreducible.

Proof By Corollary 4.27, it suffices to prove that π f is irreducible. Assume that
π f = π1 ⊕ π2. Then T = π f (x) = π f (x) = T1 ⊕ T2, where Tj = π j (x). Let Pj

be the projection on H(π j ) and set ϕ j = Pj (1). Since

〈π j (p)ϕ j , ϕ j 〉 =
∫

p(x)|ϕ j (x)|2dμ(x), p ∈ C[x],

the operator Tj comes from a moment problem with measure dμ j = |ϕ j |2dμ, so
Tj has equal deficiency indices. Since T has deficiency indices (1, 1), one of the
operators Tj , say T1, is self-adjoint. Clearly, π1(x) ⊆ π f (x) ⊆ At gives T1 ⊆ At .

This implies that σ(T1) ⊆ σ(At ) for all t ∈ R. Since At1 and At2 for t1 �= t2 have no
common eigenvalue, H(T1) = {0}. Thus, π ∼= π f is irreducible. ��
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5.2 Orthogonal Positive Functionals

First we introduce another important technical notion in representation theory.

Definition 5.7 For representations π1 and π2 ofA, the intertwining space I (π1, π2)

is the vector space of bounded linear operators T of H(π1) inH(π2) satisfying

Tϕ ∈ D(π2) and Tπ1(a)ϕ = π2(a)Tϕ for a ∈ A, ϕ ∈ D(π1). (5.6)

It is instructive to consider two special cases: If π is a ∗-representation, then
I (π, π) is just the strong commutant π(A)′s of the O∗-algebra π(A) and I (π, π∗)
coincides with the weak commutant π(A)′w.

Lemma 5.8 If π1 and π2 are representations of A such that H(π∗
1 ) = H(π1) and

H(π∗
2 ) = H(π2), then we have

I (π1, π2)
∗ ⊆ I (π∗

2 , π∗
1 ) and I (π1, π2) ⊆ I (π∗∗

1 , π∗∗
2 ). (5.7)

Proof Suppose T ∈ I (π1, π2). Let ψ ∈ D(π∗
2 ). Then, for a ∈ A and ϕ ∈ D(π1),

〈T ∗ψ,π1(a)ϕ〉 = 〈ψ, Tπ1(a)ϕ〉 = 〈ψ,π2(a)Tϕ〉 = 〈T ∗π∗
2 (a+)ψ, ϕ〉.

From this equation it follows that

T ∗ψ ∈ ∩a∈AD(π1(a)∗) = D(π∗
1 ), π1(a)∗T ∗ψ = π∗

1 (a+)T ∗ψ = T ∗π∗
2 (a+)ψ,

so that T ∗ ∈ I (π∗
2 , π∗

1 ). This proves the first inclusion of (5.7).
Since H(π∗

j ) = H(π j ), we have π j ⊆ π∗∗
j by Lemma 4.3(ii) and therefore

H(π∗∗
j ) = H(π∗

j ) for j = 1, 2. Hence, applying the preceding with T replaced by
T ∗, we get T = T ∗∗ ∈ I (π∗∗

1 , π∗∗
2 ). This is the second inclusion of (5.7). �

Corollary 5.9 For any ∗-representation π of A, we have π(A)′s ⊆ π∗∗(A)′s and
π(A)′w ⊆ π∗∗(A)′w.

Proof Using the second inclusion of (5.7) we derive

π(A)′s = I (π, π) ⊆ I (π∗∗, π∗∗) = π∗∗(A)′s,
π(A)′w = I (π, π∗) ⊆ I (π∗∗, π∗∗∗) = π∗∗(A)′w. �

Corollary 5.10 If π is a ∗-representation of A and essentially self-adjoint, then
π(A)′w = π∗(A)′w = π∗(A)′s.

Proof Since π is essentially self-adjoint, π∗ is self-adjoint, so π∗(A)′w = π∗(A)′s
and π∗ = π∗∗. From π ⊆ π∗ we obtain π∗(A)′s = I (π∗, π∗) ⊆ I (π, π∗) = π(A)′w.
Further, π(A)′w = I (π, π∗) ⊆ I (π∗∗, π∗∗∗) = I (π∗, π∗) = π∗(A)′s by the second
inclusion of (5.7). Therefore, π(A)′w = π∗(A)′s. �
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Now let f, g ∈ P(A)∗. We say that g is dominated by f and write g � f if there
exists a number λ > 0 such that g ≤ λ f . In this case, we have

‖πg(a)ϕg‖2 = g(a+a) ≤ λ f (a+a) = λ‖π f (a)ϕ f ‖2, a ∈ A.

Therefore, the equation

K f,g(π f (a)ϕ f ) = πg(a)ϕg, a ∈ A, (5.8)

defines unambiguously a bounded linear operator of D(π f ) onto D(πg). Its contin-
uous extension to a bounded operator of the Hilbert space H(π f ) in H(πg) is also
denoted by K f,g . Some simple properties are collected in the next proposition.

Proposition 5.11 Suppose f, g ∈ P(A)∗ and g � f . Then:

(i) K f,g ∈ I (π f , πg) and K f,gϕ f = ϕg .
(ii) T := (K f,g)

∗K f,g ∈ π f (A)′w and g = fT .
(iii) If g ≤ f , then I = (K f,g)

∗K f,g + (K f, f −g)
∗K f, f −g .

Proof (i): Setting a = 1 in (5.8) yields K f,gϕ f = ϕg . For a, b ∈ A,

K f,gπ f (a)(π f (b)ϕ f ) = K f,gπ f (ab)ϕ f = πg(ab)ϕg = πg(a)K f,g(π f (b)ϕ f ),

which proves that K f,g ∈ I (π f , πg).
(ii): From K f,g ∈ I (π f , πg) and Lemma 5.8, (K f,g)

∗ ∈ I ((πg)
∗, (π f )

∗). Since πg ⊆
(πg)

∗, this implies that (K f,g)
∗ ∈ I (πg, (π f )

∗). Therefore,

(K f,g)
∗K f,g ∈ I (πg, (π f )

∗) · I (π f , πg) ⊆ I (π f , (π f )
∗) = π f (A)′w.

Further, for a ∈ A we derive

fT (a) = 〈(K f,g)
∗K f,gπ f (a)ϕ f , ϕ f 〉

= 〈K f,gπ f (a)ϕ f , K f,gϕ f 〉 = 〈πg(a)ϕg, ϕg〉 = g(a).

(iii): Set T := (K f,g)
∗K f,g and S := (K f, f −g)

∗K f, f −g . Then g = fT and f − g = fS
by (ii). Therefore, f = fT + fS and hence I = T + S. �

Definition 5.12 We say two positive functionals f, g on A are orthogonal and write
f ⊥g if h � f and h � g for some positive functional h on A implies that h = 0.

This notion is justified by Eq. (5.9) in the following theorem. Recall that |T |
denotes the operator (T ∗T )1/2 for any densely defined closed operator T .

Theorem 5.13 Suppose f and g are positive functionals on A. If |K f +g, f | is an
orthogonal projection, then f ⊥g. Conversely, if f ⊥g and π f +g is self-adjoint, then
π f and πg are self-adjoint, P := |K f +g, f | is an orthogonal projection, and

π f +g
∼= π f ⊕ πg on H(π f +g) = PH(π f +g) ⊕ (I − P)H(π f +g). (5.9)
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Proof Throughout this proof we set F := f + g. Clearly, F ∈ P(A)∗, f ≤ F, and
g ≤ F.

Suppose |KF, f | is a projection. Then |KF, f | = |KF, f |2 = (KF, f )
∗KF, f =: T . By

Proposition 5.11(iii), S := (KF,g)
∗KF,g = I − T , so S is also a projection. Further,

f = FT and g = FS by Proposition 5.11(iii). Now let h ∈ P(A)∗ and suppose that
h � f and h � g. Upon scaling h we can assume that h ≤ f and h ≤ g. Then
h ≤ F . By Theorem 5.3, there exists an operator R ∈ πF (A)′w, 0 ≤ R ≤ I , such that
h = FR . Since h = FR ≤ f = FT and h = FR ≤ g = FS , we obtain 0 ≤ R ≤ T
and 0 ≤ R ≤ S = I − T again by Theorem 5.3. Since T is a projection, this implies
R = 0 and so h = 0. This proves that f ⊥g.

Conversely, assume that π F is self-adjoint and f ⊥g. Then πF (A)′w = π F (A)′w =
π F (A)′s is a von Neumann algebra. Hence, since T := (KF, f )

∗KF, f ∈ πF (A)′w by
Proposition 5.11(ii), Z := T (I − T ) is also in πF (A)′w. Proposition 5.11(iii) implies
that 0 ≤ T ≤ I , so 0 ≤ Z ≤ I.By Theorem 5.3, FZ is a positive linear functional on
A. From Z ≤ T and Z ≤ I − T it follows that FZ ≤ FT = f and FZ ≤ FI−T = g.
Hence, by f ⊥g, we obtain FZ = 0 and so Z = 0. Since Z = T (I − T ) = 0 has the
spectrum {0}, T is an orthogonal projection.

Set K := TH(πF ). Since T = PK ∈ π F (A)′s is a projection, it follows from
Proposition 4.25 that π F = πK ⊕ πK⊥ . Then TϕF ∈ K ∩ D(π F ). Further, we have
f = FT by Proposition 5.11(ii). For a ∈ A, we derive

〈π F (a)TϕF , TϕF 〉 = 〈Tπ F (a)ϕF , TϕF 〉 = 〈TπF (a)ϕF , ϕF 〉 = FT (a) = f (a).

Since ϕF is cyclic for π F , the vector space Tπ F (A)ϕF = πK(A)TϕF is dense in
D(πK) with respect to the graph topology of πK. This means that TϕF is cyclic
for πK. Therefore, by the uniqueness assertion for the GNS representation, πK is
(unitarily equivalent to) the GNS representation π f . Similarly, πK⊥ has the cyclic
vector (I − T )ϕF and is (unitarily equivalent to) the GNS representation πg . Now
the relation π F = πK ⊕ πK⊥ yields π F

∼= π f ⊕ πg, which proves (5.9). Since π F

is self-adjoint, it is clear that πK ∼= π f and πK⊥ ∼= πg are also self-adjoint. �

5.3 The Transition Probability of Positive Functionals

Let RepA denote the family of all nondegenerate ∗-representations of A. Given
π ∈ RepA and f ∈ P(A)∗, let S(π, f ) be the set of representing vectors for f in
D(π), that is, S(π, f ) is the set of vectors ϕ ∈ D(π) such that f (a) = 〈π(a)ϕ, ϕ〉,
a ∈ A. Note that S(π, f ) may be empty, but by the GNS construction for each
f ∈ P(A)∗ there exists a π ∈ RepA for which S(π, f ) is not empty. Clearly, if f is
a state, all vectors ϕ ∈ S(π, f ) are unit vectors.

The following definition introduces two closely related notions associated with a
pair of positive linear functionals.
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Definition 5.14 Let f, g ∈ P(A)∗. The transition probability PA( f, g) is

PA( f, g) := sup
π∈RepA

sup
ϕ∈S(π, f ),ψ∈S(π,g)

|〈ϕ,ψ〉|2 (5.10)

and the Bures distance dA( f, g) is

dA( f, g) := inf
π∈RepA

inf
ϕ∈S(π, f ),ψ∈S(π,g)

‖ ϕ − ψ‖. (5.11)

The quantity PA( f, g) has the following interpretation in quantum physics: For
vector states with representing vectors ϕ,ψ , the number |〈ϕ,ψ〉|2 is considered as
their transition probability.1 If f and g are states on an (abstract) observable algebra
A, then PA( f, g) is the supremum of transition probabilities for all realizations of f
and g as vector states in the same nondegenerate ∗-representation of A.

In the literature on quantum information theory the number
√
PA( f, g) is called

the fidelity of f and g.

Proposition 5.15 The Bures distance and the transition probability are related by

dA( f, g)2 = f (1) + g(1) − 2
√
PA( f, g), f, g ∈ P(A)∗. (5.12)

Proof Clearly, ϕ ∈ S(π, f ) if and only if zϕ ∈ S(π, f ) for z ∈ T. Hence we can
restrict ourselves in (5.10) to vectors ϕ,ψ such that 〈ϕ,ψ〉 ≥ 0. Then, since

‖ϕ − ψ‖2 = ‖ϕ‖2 + ‖ψ‖2 − 2Re 〈ϕ,ψ〉 = f (1) + g(1) − 2|〈ϕ,ψ〉|,

the infimum of ‖ϕ − ψ‖ corresponds to the supremum of |〈ϕ,ψ〉|, which in turn
implies (5.12). �

Let us begin with a simple special case.

Lemma 5.16 Let f and g be states on A and suppose there is a projection p ∈ A
(that is, p = p∗ = p2) such that

f (p) = 1 and pap = f (a)p for a ∈ A. (5.13)

Then PA( f, g) = g(p) and for arbitrary ϕ ∈ S(π, f ) and ψ ∈ S(π, g) we have

PA( f, g) = |〈ϕ̃, ψ〉|2,

where we set ϕ̃ := ϕ if PA( f, g) = 0 and ϕ̃ := ‖π(p)ψ‖−1π(p)ψ ∈ S(π, f ) if
PA( f, g) �= 0.

1The expression |〈ϕ,ψ〉|2 for the transition probability was proposed by Max Born (1925/1926).
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Proof Let ϕ ∈ S(π, f ) and ψ ∈ S(π, g). Using that p is a projection we derive

‖π(p)ϕ − ϕ‖2 = 〈π(p)ϕ, π(p)ϕ〉 + 〈ϕ, ϕ〉 − 〈π(p)ϕ, ϕ〉 − 〈ϕ, π(p)ϕ〉
= 〈ϕ, ϕ〉 − 〈π(p)ϕ, ϕ〉 = 1 − f (p) = 0

by (5.13). Hence π(p)ϕ = ϕ and

|〈ϕ,ψ〉|2 = |〈π(p)ϕ, ψ〉|2 = |〈ϕ, π(p)ψ〉|2 ≤ ‖π(p)ψ‖2 = g(p). (5.14)

By taking the supremum over ϕ,ψ this yields PA( f, g) ≤ g(p).
Therefore, if g(p) = 0, then |〈ϕ̃, ψ〉|2 = |〈ϕ,ψ〉|2 = 0 = PA( f, g) by (5.14).

Now suppose g(p) �= 0. Since ‖π(p)ψ‖2 = 〈π(p)ψ,ψ〉 = g(p) �= 0, the vector
ϕ̃ = ‖π(p)ψ‖−1π(p)ψ has norm 1 and satisfies π(p)ϕ̃ = ϕ̃. Hence, by (5.13),

f (a) = f (a)〈ϕ̃, ϕ̃〉 = 〈π( f (a)p)ϕ̃, ϕ̃〉 = 〈π(pap)ϕ̃, ϕ̃〉 = 〈π(a)ϕ̃, ϕ̃〉, a ∈ A,

so ϕ̃ ∈ S(π, f ). Now we replace ϕ by ϕ̃ = g(p)−1/2π(p)ψ in (5.14) and obtain

|〈ϕ̃, ψ〉|2 = |〈g(p)−1/2π(p)ψ,ψ〉|2 = g(p)−1g(p)2 = g(p),

so that g(p) ≤ PA( f, g). Thus, PA( f, g) = g(p) = |〈ϕ̃, ψ〉|2. �
Example 5.17 (Vector states on O∗-algebras)
Suppose A is a unital O∗-algebra on D. For a unit vector ξ ∈ D, let fξ denote the
vector state defined by fξ (a) = 〈aξ, ξ 〉, a ∈ A. Suppose the rank one projection
pξ := ξ ⊗ ξ is in A. Then fξ satisfies condition (5.13). Hence, by Lemma 5.16,
PA( fξ , g) = g(pξ ) for each state g on A. In particular, setting g = fη, this gives

PA( fξ , fη) = fη(pξ ) = |〈ξ, η〉|2 for ξ, η ∈ D, ‖ξ‖ = ‖η‖ = 1. (5.15)

That is, for vector states fξ and fη we obtain the expected expression |〈ξ, η〉|2. �
Our main result in this section is the following theorem. It expresses the transition

probability in terms of the symmetrized commutant π(A)′sym (see Definition 3.12).
Recall that π(A)′sym is always a von Neumann algebra (Proposition 3.17(iv)).

Theorem 5.18 Let f, g ∈ P(A)∗. Suppose the GNS representations π f and πg are
essentially self-adjoint. Let π be a nondegenerate biclosed ∗-representation of A
such that S(π, f ) and S(π, g) are not empty. Fix ϕ ∈ S(π, f ), ψ ∈ S(π, g). Then

PA( f, g) = sup
T∈π(A)′sym,‖T ‖≤1

|〈Tϕ,ψ〉|2 (5.16)

and the supremum at the right-hand side of (5.16) is a maximum.
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Proof First, let π0 ∈ RepA and suppose that there exist vectors ϕ0 ∈ S(π0, f ) and
ψ0 ∈ S(π0, g). Set F(a) := 〈π0(a)ϕ0, ψ0〉, a ∈ A. Then, for a, b ∈ A,

|F(b+a)|2 = |〈π0(a)ϕ0, π0(b)ψ0〉|2 ≤ ‖π0(a)ϕ0‖2‖π0(b)ψ0‖2
= f (a+a)g(b+b) = ‖π f (a)ϕ f ‖2‖πg(b)ϕg‖2. (5.17)

From this inequality it follows that the map (π f (a)ϕ f , πg(b)ϕg) 	→ F(b+a) gives a
densely defined bounded sesquilinear form on H(π f ) × H(πg). Hence there exists
a bounded linear operator T0 of H(π f ) intoH(πg) such that

F(b+a) = 〈T0π f (a)ϕ f , πg(b)ϕg〉 for a, b ∈ A. (5.18)

By (5.17), we have ‖T0‖ ≤ 1. Further, for a, b, c ∈ A, we derive

〈T0π f (a)ϕ f , πg(c)πg(b)ϕg〉 = F((cb)+a) = F(b+(c+a))

= 〈T0π f (c
+)π f (a)ϕ f , πg(b)ϕg〉.

Therefore, T0π f (a)ϕ f ∈ D(πg(c)∗) and πg(c)∗T0π f (a)ϕ f = T0π f (c+)π f (a)ϕ f .
Because c ∈ A is arbitrary, we conclude that T0π f (a)ϕ f ∈ D((πg)

∗) and hence
(πg)

∗(c+)T0(π f (a)ϕ f ) = T0π f (c+)(π f (a)ϕ f ) for a, c ∈ A. Since a, c ∈ A are arbi-
trary, the latter implies that T0 ∈ I (π f , (πg)

∗).
Nextwe consider the ∗-representationπ appearing in Theorem5.18 and set ρ f :=

π�π(A)ϕ and ρg := π�π(A)ψ . Since ϕ ∈ S(π, f ) andψ ∈ S(π, g) by assumption,
Theorem 4.41 implies that ρ f and ρg are unitarily equivalent to the GNS representa-
tionsπ f andπg , respectively. For notational simplicity we identify ρ f withπ f and ρg

with πg . Since ρ f ⊆ π and π is biclosed, Lemma 4.4(iii) implies (ρ f )
∗∗ ⊆ π∗∗ = π .

By assumption, (π f )
∗ = (ρ f )

∗ is self-adjoint, so (ρ f )
∗ = (ρ f )

∗∗ is a self-adjoint sub-
representation of π . Hence, by Corollary 4.31, there is a subrepresentation ρ1 of π

such that π = (ρ f )
∗ ⊕ ρ1. Similarly, (ρg)

∗ = (ρg)
∗∗ and π = (ρg)

∗ ⊕ ρ2.
Now, as above, let ϕ0 ∈ S(π0, f ) and ψ0 ∈ S(π0, g) be arbitrary. As shown in

the paragraph before last, the operator T0 is in I (π f , (πg)
∗) = I (ρ f , (ρg)

∗). Hence
it follows from Lemma 5.8 that

T ∗
0 ∈ I ((ρg)

∗∗, (ρ f )
∗) = I ((ρg)

∗, (ρ f )
∗), (5.19)

T0 ∈ I ((ρ f )
∗∗, (ρg)

∗∗∗) = I ((ρ f )
∗, (ρg)

∗). (5.20)

Next we define an operator T of H(π) intoH(π) by

T : H((ρ f )
∗) ⊕ H(ρ1) 	→ H((ρg)

∗) ⊕ H(ρ2), T (ξ f , ξ1) = (T0ξ f , 0),

where ξ f ∈ H((ρ f )
∗) and ξ1 ∈ H(ρ1). Then, T ∗(ηg, η2) = (T ∗

0 ηg, 0). Recall that
π = (ρ f )

∗ ⊕ ρ1 = (ρg)
∗ ⊕ ρ2. From (5.19) and (5.20)wederive that T, T ∗ ∈ π(A)′s.

Hence T ∈ π(A)′sym by Proposition 3.17(i). Clearly, ‖T ‖ = ‖T0‖ ≤ 1. By (5.18),
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〈ϕ0, ψ0〉 = 〈π0(1)ϕ0, ψ0〉 = F(1) = 〈T0ϕ f , ϕg〉 = 〈Tϕ f , ϕg〉 = 〈Tϕ,ψ〉.

Taking the supremum of |〈ϕ0, ψ0〉|2 over ϕ0, ψ0, it follows that PA( f, g) is less than
or equal to the supremum of |〈Tϕ,ψ〉|2 over T ∈ π(A)′sym, ‖T ‖ ≤ 1.

To prove the converse inequality, we fix an operator T ∈ π(A)′sym, ‖T ‖ ≤ 1. By
the Russo–Dye theorem [Dv96, Theorem 1.8.4], the unit ball of the unitalC∗-algebra
π(A)′sym is the closed convex hull of unitaries of π(A)′sym. Thus, given ε > 0, there
exist unitaries Uk ∈ π(A)′sym and numbers λk ∈ [0, 1], k = 1, . . . , n, such that

n∑
k=1

λk = 1 and
∥∥∥T −

n∑
k=1

λkUk

∥∥∥ ≤ ε. (5.21)

Since π is biclosed, hence closed, we have π(A)′sym ⊆ π(A)′s by Proposition 3.17(ii).
SinceUk ∈ π(A)′s is unitary and ϕ ∈ S(π, f ), it follows thatUkϕ ∈ S(π, f ). Hence
|〈Ukϕ,ψ〉|2 ≤ PA( f, g). Therefore, by (5.21),

|〈Tϕ,ψ〉| ≤ ε‖ϕ‖ ‖ψ‖ +
n∑

k=1

λk |〈Ukϕ,ψ〉| ≤ ε‖ϕ‖ ‖ψ‖ + PA( f, g)1/2.

Letting ε → +0, we get |〈Tϕ,ψ〉| ≤ PA( f, g)1/2, which gives the converse inequal-
ity. Now the proof of the equality (5.16) is complete.

The unit ball of the von Neumann algebra π(A)′sym is compact in the weak
operator topology [KR83]. Therefore, the supremum of the continuous function
T 	→ |〈Tϕ,ψ〉| on the unit ball is a maximum. Hence the supremum in (5.16) is a
maximum. �

Theorem 5.18 states that if the two GNS representations π f and πg are essen-
tially self-adjoint, then the transition probability PA( f, g) is given by (5.16) in each
biclosed ∗-representation π for which the sets S(π, f ) and S(π, g) are not empty
and for arbitrary vectors ϕ ∈ S(π, f ) and ψ ∈ S(π, g)! For instance, we may set
π := (π f )

∗ ⊕ (πg)
∗, ϕ := ϕ f , ψ := ϕg.

Corollary 5.19 Let us retain the assumptions and the notation of Theorem 5.18.
Let Fϕ and Fψ denote the vector functionals on the von Neumann algebra M :=
(π(A)′sym)′ given by Fϕ(x) = 〈xϕ, ϕ〉 and Fψ(x) = 〈xψ,ψ〉, x ∈ M. Then

PA( f, g) = PM (Fϕ, Fψ). (5.22)

Proof Since π(A)′sym is a von Neumann algebra, we have T ∈ π(A)′sym if and only
if T ∈ (π(A)′sym)′′ = M′. Therefore, applying formula (5.16) twice, it follows that
the supremum of |〈Tϕ,ψ〉|2 over all operators T ∈ π(A)′sym, ‖T ‖ ≤ 1, is equal to
PA( f, g) and also to PM (Fϕ, Fψ). This yields (5.22). �
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Formula (5.22) reduces the computation of the transition probability PA( f, g) to
the von Neumann algebra M = (π(A)′sym)′. We will use this fact in the proofs of
Theorems 5.23 and 5.25 in the next section.

Corollary 5.20 Suppose A is a unital C∗-algebra and b, c are elements of A such
that c+b ∈ ∑

A2. Let h ∈ P(A)∗. Define positive linear functionals f, g on A by
f (a) = h(b+ab) and g(a) = h(c+ac) for a ∈ A. Then

PA( f, g) = h(c+b)2.

Proof SinceA is aC∗-algebra, theGNS representationπh acts by bounded operators
onH(πh), so it is obviously self-adjoint and biclosed. By the definitions of f and g,
we have πh(b)ϕh ∈ S(πh, f ) and πh(c)ϕh ∈ S(πh, g). The positive element c+b of
theC∗-algebraA has a positive square root (c+b)1/2 ∈ A. Then, for T ∈ πh(A)′sym ≡
πh(A)′, we compute

|〈Tπh(c)ϕh, πh(b)ϕh〉| = |〈Tϕh, πh(c
+b)ϕh〉|

= |〈Tπh((c
+b)1/2)ϕh, πh((c

+b)1/2)ϕh〉|. (5.23)

Clearly, the supremum in (5.23) over the unit ball of πh(A)′ is attained at T =
I and it is 〈πh((c+b)1/2)ϕh, πh((c+b)1/2)ϕh〉 = 〈πh(c+b)ϕh, ϕh〉 = h(c+b). Hence
PA( f, g) = h(c+b)2 by Theorem 5.18 and (5.16), applied with π = πh . �

5.4 Examples of Transition Probabilities

Our first application deals with trace functionals (see Sect. 3.3). We begin with some
preparations and use the notation and facts established in Example 4.10. For a Hilbert
space H and T ∈ B(H), we define an operator T1 on B2(H) by T1x = xT for
x ∈ B2(H). Clearly, T1 is a bounded operator on the Hilbert space B2(H).

Lemma 5.21 Suppose π is an irreducible self-adjoint ∗-representation of A. Then
the ∗-representation πHS from Example 4.10 is self-adjoint and we have

πHS(A)′sym = {
T1 : T ∈ B(H(π))

}
. (5.24)

Proof As shown in Example 4.10, πHS is self-adjoint, so all three bounded com-
mutants coincide by Proposition 3.17(iii). It only remains to prove that the equality
(5.24) holds. Throughout this proof, we abbreviateH = H(π).

Let T ∈ B(H) and x ∈ D(πHS). Then, for a ∈ A, π(a)x and xT are also in
D(πHS). Using the associativity of operator multiplication we get

T1πHS(a)x = T1(π(a) · x) = (π(a) · x)T = π(a) · (xT ) = πHS(a)T1x,

which proves that T1 ∈ πHS(A)′s.
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Conversely, let S ∈ πHS(A)′s. Fix ϕ,ψ ∈ H. We define a sesquilinear form sϕ,ψ

onH × H by

sϕ,ψ(η, ξ) = 〈S(ϕ ⊗ η), ψ ⊗ ξ 〉HS, η, ξ ∈ H. (5.25)

Then, since

|sϕ,ψ(η, ξ)| = |〈S(ϕ ⊗ η), ψ ⊗ ξ 〉HS| = |Tr [(ψ ⊗ ξ)∗S(ϕ ⊗ η)] |
≤ ‖ψ ⊗ ξ‖ ‖S(ϕ ⊗ η)‖ ≤ ‖S‖ ‖ϕ‖ ‖η‖ ‖ψ‖ ‖ξ‖, (5.26)

the form sϕ,ψ is bounded. Hence it is given by a bounded operator Sϕ,ψ onH, so

〈S(ϕ ⊗ η), ψ ⊗ ξ 〉HS = sϕ,ψ(η, ξ) = 〈Sϕ,ψη, ξ 〉, η, ξ ∈ H. (5.27)

Let η, ξ ∈ D(π). Then ϕ ⊗ η,ψ ⊗ ξ ∈ D(πHS). Using that S ∈ πHS(A)′s we derive

〈Sϕ,ψπ(a)η, ξ 〉 = sϕ,ψ(π(a)η, ξ) = 〈S(ϕ ⊗ π(a)η), ψ ⊗ ξ 〉
= 〈S πHS(a)(ϕ ⊗ η), ψ ⊗ ξ 〉HS = 〈πHS(a)S(ϕ ⊗ η), ψ ⊗ ξ 〉HS
= 〈S(ϕ ⊗ η), πHS(a

+)(ψ ⊗ ξ)〉HS = 〈S(ϕ ⊗ η), ψ ⊗ π(a+)ξ 〉HS
= sϕ,ψ(η, π(a+)ξ) = 〈Sϕ,ψη, π(a+)ξ 〉, a ∈ A.

This shows that the operator Sϕ,ψ belongs to the weak commutant π(A)′w. Since π

is self-adjoint, π(A)′w = π(A)′s is a von Neumann algebra (Proposition 3.15). It is
equal to C · I , because π is irreducible. Thus, Sϕ,ψ = cϕ,ψ · I for some cϕ,ψ ∈ C.

From (5.25) we derive that Sϕ,ψ , hence cϕ,ψ , is linear in ψ and conjugate lin-
ear in ϕ. Hence (ψ, ϕ) 	→ cϕ,ψ is a sesquilinear form on H × H. From (5.26) and
(5.27) we deduce that |cϕ,ψ | = ‖Sϕ,ψ‖ ≤ ‖ϕ‖ ‖ψ‖. Hence there exists an operator
T ∈ B(H) such that cϕ,ψ = 〈Tψ, ϕ〉 for ϕ,ψ ∈ H. For ϕ,ψ, η, ξ ∈ H, we compute
(ψ ⊗ ξ)∗(ϕ ⊗ η)T = 〈η, ξ 〉 T ∗ϕ ⊗ ψ and

〈S(ϕ ⊗ η), ψ ⊗ ξ 〉HS = sϕ,ψ(η, ξ) = 〈cϕ,ψη, ξ 〉 = 〈ψ, T ∗ϕ〉〈η, ξ 〉
= 〈η, ξ 〉Tr (T ∗ϕ ⊗ ψ) = Tr [(ψ ⊗ ξ)∗(ϕ ⊗ η)T ] = 〈(ϕ ⊗ η)T, ψ ⊗ ξ 〉HS.

Therefore, since the span of rank one operators ψ ⊗ ξ is dense in the Hilbert space
B2(H), we conclude that S(ϕ ⊗ η) = (ϕ ⊗ η)T for ϕ, η ∈ H and hence Sx = xT
for all x ∈ B2(H). This proves that S = T1. �

The next lemma determines the transition probability for normal states on B(H).

Lemma 5.22 LetH be a Hilbert space and τ the ∗-representation of B := B(H) on
the Hilbert space B2(H) defined by τ(x)y = x · y, x ∈ B, y ∈ B2(H), see
Example 4.10. Suppose s, t ∈ B1(H)+. Let gs(·) = Tr τ(·)s and gt (·) = Tr τ(·)t be
the corresponding positive linear functionals on B. Then

PB(gt , gs) = (
Tr |t1/2s1/2|)2. (5.28)
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Proof 2 In this proof, we essentially use some properties of the polar decomposition
of operators (see Proposition A.3). For x ∈ B(H) let e(x) denote the projection on
ran x∗ = ran |x |. Note that if u is a partial isometry, then x = u|x | is the polar
decomposition of x if and only if u∗u = e(x).

Since ran (s1/2t1/2)∗ = ran t1/2s1/2 ⊆ ran t , we have e(t) ≥ e(|s1/2t1/2|). Simi-
larly, e(s) ≥ e(|t1/2s1/2|).

First we characterize the set S(τ, gt ) and prove that

S(τ, gt ) = {
a ∈ B2(H) : a = t1/2v∗, v∗v = e(t), v ∈ B(H)

}
. (5.29)

Indeed, let a ∈ B2(H). Since gt (x) = Tr xt = Tr t1/2xt1/2 for x ∈ B, the equality
〈τ(x)a, a〉HS = gt (x) ≡ 〈xt1/2, t1/2〉HS is equivalent to Tr a∗xa = Tr t1/2xt1/2 and
so to Tr xaa∗ = Tr xt . This holds for all x ∈ B if and only if t = aa∗, that is, t1/2 =
|a∗|. Equivalently, the polar decomposition of a∗ is the form a∗ = vt1/2 for a partial
isometry v such that v∗v = e(a∗) = e(t). Then a = t1/2v∗. Since v ∈ B(H) is a
partial isometry if and only if v∗v is a projection, this gives (5.29).

Let u denote the phase operator of t1/2s1/2. Then u∗ is the phase operator of
(t1/2s1/2)∗ = s1/2t1/2 and hence

u∗u = e(|t1/2s1/2|), uu∗ = e(|s1/2t1/2|). (5.30)

Now suppose that a = t1/2v∗ ∈ S(τ, gt ) and b = s1/2w∗ ∈ S(τ, gs), with v,w ∈
B(H). Since t1/2s1/2 = u|t1/2s1/2| and hence s1/2t1/2 = |t1/2s1/2|u∗, using the com-
mutation properties of the trace we derive

〈a, b〉HS = Tr b∗a = Trws1/2t1/2v∗ = Tr u∗v∗w|t1/2s1/2|. (5.31)

By (5.29), v and w can be taken as partial isometries. Then ‖u∗v∗w‖ ≤ 1, so (5.31)
implies that |〈a, b〉HS|2 ≤ (Tr |t1/2s1/2|)2. Taking the supremum over a, b we obtain
PB(gt , gs) ≤ (Tr |t1/2s1/2|)2.

Therefore, to complete the proof of formula (5.28) it suffices to construct operators
a = t1/2v∗ ∈ S(τ, gt ) and b = s1/2w∗ ∈ S(τ, gs) such that

u∗v∗w = e(|t1/2s1/2|). (5.32)

Indeed, then it follows from (5.32) and (5.31) that

|〈a, b〉HS| = ∣∣Tr u∗v∗w|t1/2s1/2| ∣∣ = ∣∣Tr e(|t1/2s1/2|)|t1/2s1/2| ∣∣ = Tr |t1/2s1/2|,

which implies PB(gt , gs) ≥ (Tr |t1/2s1/2|)2, so (5.28) holds.
First assume thatH has finite dimension. Then the initial space u∗uH and the final

space uu∗H of the partial isometry u have the same codimensions. Hence u can be
extended to a unitary operatoru0 whichmaps (I − u∗u)H on (I − uu∗)H. Therefore,

2This elegant proof I owe to my colleague P.M. Alberti.
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u∗u0 = u∗u. Set w := u0e(s). Then w∗w = e(s)u∗
0u0e(s) = e(s) and hence b :=

s1/2w∗ ∈ S(τ, gs) by (5.29). Clearly, a := t1/2v ∈ S(τ, gt )with v = I . Using (5.30)
and the relation e(s) ≥ e(|t1/2s1/2|) noted above, we derive

u∗vw = u∗u0e(s) = u∗ue(s) = e(|t1/2s1/2|)e(s) = e(|t1/2s1/2|),

which proves (5.32).
Now we treat the case whenH has infinite dimension. Since e(t) ≥ e(|s1/2t1/2|),

e(t) − e(|s1/2t1/2|) is a projection. Then there exist partial isometries v1,w such that
v∗
1v1 = e(t) − e(|s1/2t1/2|) and w∗w = e(s). These requirements fix only the initial
spaces of v1 and w. Since dim H = ∞, we can choose w, v1 such that their final
spaces are orthogonal, so that

w∗v1 = v∗
1w = 0. (5.33)

Since u∗u = e(|t1/2s1/2|) by (5.30) and e(|t1/2s1/2|) ≤ e(s), we obtain

ue(s)u∗ = ue(|t1/2s1/2|)u∗ = uu∗uu∗ = uu∗ = e(|s1/2t1/2|) (5.34)

again by (5.30). We set v := v1 + wu∗. Then, using (5.33) and (5.34) we compute

v∗v = (v∗
1 + uw∗)(v1 + wu∗) = v∗

1v1 + uw∗wu∗

= e(t) − e(|s1/2t1/2|) + ue(s)u∗ = e(t) − e(|s1/2t1/2|) + e(|s1/2t1/2|) = e(t).

Therefore, a := t1/2v∗ ∈ S(τ, gt ) and b := s1/2w∗ ∈ S(τ, gs) by (5.29).
Finally, from (5.33) and (5.30) we obtain

u∗v∗w = u∗(v∗
1 + uw∗)w = u∗uw∗w = e(|t1/2s1/2|)e(s) = e(|t1/2s1/2|),

which gives (5.32) in the case dimH = ∞. This completes the proof. �
Our first main result in this section is the following theorem.

Theorem 5.23 Let ρ be a nondegenerate self-adjoint irreducible ∗-representation
of A. Suppose that s, t ∈ B1(ρ(A))+, s1/2H(ρ) ⊆ D(ρ), and t1/2H(ρ) ⊆ D(ρ). We
define positive functionals fs, ft on A by

fs(a) = Tr ρ(a)s, ft (a) = Tr ρ(a)t for a ∈ A.

Suppose the GNS representations π fs and π ft are essentially self-adjoint. Then

PA( ft , fs) = (
Tr |t1/2s1/2|)2 = (

Tr (s1/2ts1/2)1/2
)2

. (5.35)

In particular, if η, ξ ∈ D(ρ) are unit vectors and s := η ⊗ η, t := ξ ⊗ ξ , then



108 5 Positive Linear Functionals

PA( ft , fs) = |〈ξ, η〉|2. (5.36)

Proof Set H := H(ρ). By Lemma 5.24, ρHS is a self-adjoint ∗-representation of A
andwe have ρHS(A)′sym = {T1 : T ∈ B(H)}.Letπ denote the identity representation
of B := B(H) onH, that is, π(b)ϕ = bϕ, b ∈ B, ϕ ∈ H. Obviously, the representa-
tion π is irreducible and self-adjoint. Applying Lemma 5.24 to π and B we obtain
πHS(B)′ = {T1 : T ∈ B(H)}. Hence (ρHS(A)′sym)′ = πHS(B)′′ =: M.

It is easily checked that πHS(B) is closed in B2(H) in the strong operator
topology. Therefore, by the double commutant theorem [KR83, Theorem 5.3.1],
πHS(B)′′ = πHS(B), so that M = (ρHS(A)′sym)′ = πHS(B). As shown in Example
4.48, the functionals fs, ft on A are realized as vector functionals in ρHS with vec-
tors s1/2, t1/2 ∈ B2(H). Likewise, Fs1/2(·) := Tr · s and Ft1/2(·) := Tr · t are vector
functionals onMwith vectors s1/2 and t1/2, respectively. Thus, Corollary 5.19 applies
to ρHS, ϕ = t1/2, ψ = s1/2 and yields PA( ft , fs) = PM (Ft1/2 , Fs1/2).

Clearly, τ := πHS is the ∗-representation of B := B(H) from Lemma 5.22. It is a
∗-isomorphism of B and M and we have gs(·) = Fs1/2(τ (·)) = Tr τ(·)s and gt (·) =
Ft1/2(τ (·)) = Tr τ(·)t . Obviously, the transition probability is preserved under ∗-
isomorphism. Hence PM (Ft1/2 , Fs1/2) = PB(gt , gs). By Lemma 5.22, PB(gt , gs) =
(Tr |t1/2s1/2|)2. Combining the preceding equalities gives the first equality of (5.35).
The second equality follows at once from the first by using that |t1/2s1/2|2 =
(t1/2s1/2)∗t1/2s1/2 = s1/2ts1/2.

Formula (5.36) is a special case of (5.35). First we compute sts = |〈ξ, η〉|2s.
Since η, ξ are unit vectors, s, t are projections and Tr s = 1. Hence s1/2ts1/2 = sts
and |t1/2s1/2| = |〈ξ, η〉|s, so that (Tr |t1/2s1/2|)2 = |〈ξ, η〉|2(Tr s)2 = |〈ξ, η〉|2. By
(5.35), this gives (5.36). �
Example 5.24 (Schrödinger representation of the Weyl algebra)
Let W be the Weyl algebra and ρ the Schrödinger representation of W on H :=
L2(R), see Example 4.32. As shown there, ρ is irreducible and self-adjoint.

Suppose s, t ∈ B1(ρ(W))+, s1/2H ⊆ D(ρ), t1/2H ⊆ D(ρ). Further, suppose that
the GNS representations π fs and π ft are essentially self-adjoint.

Under these assumptions, it follows from Theorem 5.23 that the transition prob-
ability PW( ft , fs) is given by (5.35). In particular, if η, ξ ∈ D(ρ) are unit vectors
and s = η ⊗ η, t = ξ ⊗ ξ , then we have fs(·) = 〈ρ(·)η, η〉, ft (·) = 〈ρ(·)ξ, ξ 〉 and
formula (5.36) yields PW( ft , fs) = |〈ξ, η〉|2.

In general, the latter formula is no longer true if the assumption thatπ fs andπ ft are
essentially self-adjoint is omitted. To give a counter-example, we choose functions
ϕ1 ∈ C∞

0 (0, 1), ϕ2 ∈ C∞
0 (2, 3) such that ‖ϕ1‖2 = ‖ϕ2‖2 = 1

2 . Then the unit vectors
η := ϕ1 + ϕ2, ξ := ϕ1 − ϕ2 define the same state fη = fξ , so that PW( fξ , fη) = 1.
But we have 〈ξ, η〉 = 0. �

Now we turn to the second main application.

Theorem 5.25 Let X be a locally compact topological Hausdorff space and A
a ∗-subalgebra of C(X ) which contains the constant functions and separates the
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points of X . Suppose μ is a Radon measure on X such that A ⊆ L1(X ;μ) and let
η, ξ ∈ L∞(X ;μ) be nonnegative functions. Define positive functionals fη, fξ by

fη(a) =
∫
X
a(x)η(x) dμ(x), fξ (a) =

∫
X
a(x)ξ(x) dμ(x) for a ∈ A.

If the GNS representations π fη and π fξ are essentially self-adjoint, then

PA( fη, fξ ) =
( ∫

X

√
η(x)ξ(x) dμ(x)

)2
. (5.37)

Proof Wedefine a ∗-representationπ ofA on L2(X ;μ) by π(a)ϕ = a · ϕ for a ∈ A
and ϕ in D(π) := {ϕ ∈ L2(X ;μ) : a · ϕ ∈ L2(X ;μ), a ∈ A}. It is easily verified
that π is self-adjoint. Hence π is biclosed.

First we show that π(A)′sym = L∞(X ;μ), where the functions of L∞(X ;μ) act
as multiplication operators. Let A denote the ∗-subalgebra of L∞(X ;μ) gener-
ated by the functions (a ± i)−1, where a ∈ Aher. Obviously, L∞(X ;μ) ⊆ π(A)′sym.
Conversely, take T ∈ π(A)′sym. Let a ∈ Aher. Since multiplication by the function

(a ± i)−1 leaves D(π) invariant, (π(a) ± iI )D(π) is dense. Hence π(a) is self-
adjoint (Proposition A.1) and it is the multiplication operator by the function a. By
definition T commutes with π(a), hence with ( π(a) ± iI )−1 = (a ± i)−1, and so
with the whole algebra A. Since A separates the points of X , so does the ∗-algebra
A. From the Stone–Weierstrass theorem [Cw90, V.8.2], applied to the one point
compactification of X , it follows that A is norm dense in C0(X ). Hence T com-
mutes with C0(X ) and so with its closure L∞(X ;μ) in the weak operator topology.
Therefore, T ∈ L∞(X ;μ)′. Since L∞(X ;μ)′ = L∞(X ;μ), we have proved that
π(A)′sym = L∞(X ;μ).

Thus, M := (π(A)′sym)′ = L∞(X ;μ). Clearly,
√

η and
√

ξ are in D(π). By
definition, fη(a) = 〈π(a)

√
η ,

√
η 〉 and fξ (a) = 〈π(a)

√
ξ ,

√
ξ 〉. Then, by

Corollary 5.19, PA( f, g) = PM (F√
η, F√

ξ ). To compute the latter we apply Corol-
lary 5.20 to the positive functional h on the C∗-algebra M given by h(a) :=∫
a dμ, a ∈ M, and elements b := √

η, c := √
ξ ∈ M. Obviously, c+b ∈ ∑

M2.
Hence PM (F√

η, F√
ξ ) = h(c+b)2 by Corollary 5.20. Since h(c+b) = ∫ √

η ξ dμ,
this gives (5.37). �

In the following two examples we specialize Theorem 5.25 to the case X = R,
A = C[x] and reconsider the one-dimensional Hamburger moment problem.

Example 5.26 (Determinate Hamburger moment problem)
Suppose that μ is a Radon measure on R such that A := C[x] ⊆ L1(R;μ) and
η, ξ ∈ L∞(R;μ) are nonnegative on R. We define two Radon measures μη,μξ

on R by dμη = ηdμ, dμξ = ξdμ and two positive linear functionals fη, fξ on A
by fη(a) = ∫

a dμη = ∫
aη dμ, fξ (a) = ∫

a dμξ = ∫
aξ dμ. Clearly, μη and μξ

have finite moments. Then, if both measures μη and μξ are determinate, the GNS
representations π fη and π fξ are essentially self-adjoint (as shown in Example 4.47)
and hence formula (5.37) holds by Theorem 5.25. �
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Example 5.27 (Counter-example: Indeterminate Hamburger moment problem)
Let ν be a solution of an indeterminate Hamburger moment problem and ν(R) = 1.

Let Vν denote the set of all Radonmeasuresμ onRwhich have the samemoments
as ν, that is,

∫
xndμ(x) = ∫

xndν(x) for all n ∈ N0. Since ν is indeterminate and
Vν is convex and vaguely compact [Sch17, Theorem 1.19], there exists a μ ∈ Vν

that is not an extreme point of Vν . Then there are measures μ1, μ2 ∈ Vν , μ j �= μ for
j = 1, 2, such that μ = 1

2 (μ1 + μ2). Since μ j (M) ≤ 2μ(M) for all Borel sets M
and μ1 + μ2 = 2μ, there exists functions η, ξ ∈ L∞(R; ν) satisfying

η(x) ≥ 0, ξ(x) ≥ 0, η(x) + ξ(x) = 2, dμ1 = ηdμ, dμ2 = ξdμ. (5.38)

We define f (p) = ∫
p(x)dμ(x) for p ∈ A := C[x]. Since μ1, μ2, μ ∈ Vν , the

corresponding positive linear functionals fη, fξ on A coincide with f . Therefore,
since f (1) = μ(R) = ν(R) = 1, we have PA( fη, fξ ) = PA( f, f ) = 1.

Set J := (
∫ √

ηξ dμ)2. Now (5.38) yields η(x)ξ(x) = η(x)(2 − η(x)) ≤ 1, so
J ≤ 1, since μ(R) = 1. If J would be equal to 1, then η(x)(2 − η(x)) = 1, so
(η(x) − 1)2 = 0 and hence η(x) = 1 μ-a.e. on R. Then μ1 = μ2 = μ, which con-
tradicts the choice of μ1, μ2. Therefore, J �= 1 = PA( fη, fξ ), that is, formula (5.37)
is not valid in this case. �

5.5 A Radon–Nikodym Theorem for Positive Functionals

Let f and g be positive linear functionals on A.

Definition 5.28 A sequence (an)n∈N of elements an ∈ A is an ( f, g)-sequence if

limn→∞ f (a+
n an) = 0 and limn,m→∞ g((an − am)+(an − am)) = 0.

Definition 5.29 (i) g is called f -absolutely continuous if f (a+a) = 0 for a ∈ A
implies that g(a+a) = 0.

(ii) g is called strongly f -absolutely continuous if limn→∞ g(a+
n an) = 0 for each

( f, g)-sequence (an)n∈N.

Next we give reformulations of these notions in terms of the GNS representations
π f and πg . It is obvious that the strong f -absolute continuity implies the f -absolute
continuity (take constant sequences).

Recall that f (a+a) = ‖π f (a)ϕ f ‖2 and g(a+a) = ‖πg(a)ϕg‖2 for a ∈ A. There-
fore, g is f -absolutely continuous if and only if there exists a well-defined (!) linear
map K f,g : D(π f ) 	→ D(πg) such that

K f,g(π f (a)ϕ f ) = πg(a)ϕg, a ∈ A. (5.39)

(This operator appeared already in Eq. (5.8) in another context.) Further, for any
sequence (an) of elements of A, we have
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g((an − am)+(an − am)) = ‖πg(an)ϕg − πg(am)ϕg‖2,
f (a+

n an) = ‖π f (an)ϕ f ‖2, g(a+
n an) = ‖πg(an)ϕg‖2.

From these relations it follows that g is strongly f -absolutely continuous if and only
if the operator K f,g of the Hilbert space H(π f ) intoH(πg) is closable.

Proposition 5.30 Let f, g ∈ P(A)∗. Then g is strongly f -absolutely continuous if
and only if there exists a positive self-adjoint operator H on the Hilbert spaceH(π f )

such that D(π f ) = π f (A)ϕ f ⊆ D(H) and

g(b+a) = 〈Hπ f (a)ϕ f , Hπ f (b)ϕ f 〉 for a, b ∈ A. (5.40)

The operator H can be choosen such that D(π f ) is a core for H. In this case, the
positive self-adjoint operator H is uniquely determined by (5.40) and called the
Radon–Nikodym derivative of g with respect to f .

Proof First suppose that g is strongly f -absolutely continuous. Then, as noted above,
the linear operator K f,g defined by (5.39) is closable. Its domain is D(π f ), so it is
densely defined. Let UH be the polar decomposition (see Proposition A.3) of the
closure of the operator K f,g . Since UH is the closure of K f,g , D(π f ) is a core for
H . Using (5.39) and the fact that U is isometric on the range of H we derive

g(b+a) = 〈πg(a)ϕg, πg(b)ϕg〉 = 〈K f,gπ f (a)ϕ f , K f,gπ f (b)ϕ f 〉
= 〈UHπ f (a)ϕ f ,UHπ f (b)ϕ f 〉 = 〈Hπ f (a)ϕ f , Hπ f (b)ϕ f 〉,

which is Eq. (5.40).

Next we prove the converse direction. Let (an)n∈N be an ( f, g)-sequence. Then
we have limn π f (an)ϕ f = 0 and using (5.40) and Definition 5.28 we obtain

‖Hπ f (an)ϕ f − Hπ f (am)ϕ f ‖2 = 〈Hπ f (an − am)ϕ f , Hπ f (an − am)ϕ f 〉
= g((an − am)+(an − am)) → 0 as n,m → ∞.

Hence (Hπ f (an)ϕ f )n∈N is a Cauchy sequence in H(π f ), so it converges. Since
the operator H is closed and limn π f (an)ϕ f = 0, we get limn Hπ f (an)ϕ f = 0.
Applying once more (5.40) the latter yields

g(a+
n an) = 〈Hπ f (an)ϕ f , Hπ f (an)ϕ f 〉 → 0.

By Definition 5.29 this proves that g is strongly f -absolutely continuous.
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Now let G be another positive self-adjoint operator satisfying (5.40), with H
replaced by G, such that D := D(π f ) is a core for G. Then (5.40) implies that

〈Hϕ, Hψ〉 = 〈Gϕ,Gψ〉 (5.41)

for ϕ,ψ ∈ D. Let ϕ ∈ D(G). Since D is a core for G, there exists a sequence (ϕn)

of vectors ϕn ∈ D such that limn ϕn = ϕ and limn Gϕn = Gϕ. By (5.41) we have
‖Hϕn − Hϕm‖ = ‖Gϕn − Gϕm‖, so the sequence (Hϕn) converges as well. Since
H is closed, it follows that ϕ ∈ D(H) and limn Hϕn = Hϕ. Thus, D(G) ⊆ D(H)

and it follows that (5.41) holds for all ϕ,ψ ∈ D(G).
Let ψ ∈ D(G2). Then ψ ∈ D(G). Hence 〈Hϕ, Hψ〉 = 〈Gϕ,Gψ〉 = 〈ϕ,G2ψ〉

for ϕ ∈ D. Therefore, Hψ ∈ D((H�D)∗) = D(H) and H(Hψ) = G2ψ , becauseD
is a core for the self-adjoint operator H . Thus G2 ⊆ H 2, so that G2 = H 2, because
H 2 and G2 are self-adjoint. The positive self-adjoint operators G and H are square
roots of G2 = H 2. Hence G = H by the uniqueness of the positive square root
[Sch12, Proposition 5.13]. �

Let a, b, c ∈ A. Applying Eq. (5.40) twice, to both sides of the equality
g(c+(ab)) = g((a+c)+b), we obtain

〈Hπ f (a)π f (b)ϕ f , Hπ f (c)ϕ f 〉 = 〈Hπ f (b)ϕ f , Hπ f (a
+)π f (c)ϕ f 〉. (5.42)

Thus, (5.40) implies that the map π f is also a ∗-representation of A on the vector
space D(π f ) equipped with the new inner product 〈·, ·〉H := 〈H ·, H ·〉 + 〈·, ·〉.
Example 5.31 Let A be the C∗-algebra C([0, 1]) with the supremum norm and let
f and g be the states on A defined by f (a) = ∫ 1

0 a(x)dx and g(a) = a(0), a ∈ A.
Obviously, g is f -absolutely continuous. But g is not strongly f -absolutely con-

tinuous. Indeed, set an(x) := 1 − nx for x ∈ [0, 1/n], an(x) := 0 for x ∈ (1/n, 1].
Then an ∈ A for n ∈ N, limn f (a+

n an) = 0, and g((an − am)+(an − am)) = 0, so
(an)n∈N is an ( f, g)-sequence. Since g(a+

n an) = 1, g is not strongly f -absolutely
continuous. �
Example 5.32 Let A be the C∗-algebra of bounded measurable functions on a mea-
surable space (X,A) with the supremum norm. Let μ and ν be probability measures
on (X,A). We define states by f (a) = ∫

a(x)dμ and g(a) = ∫
a(x)dν, a ∈ A. The

GNS representation π f acts on L2(X;μ) by π f (a)b = a·b, a, b ∈ A, with ϕ f = 1.
One easily verifies that g is f -absolutely continuous if and only if the measure ν

is absolutely continuous with respect to μ. It can be shown (see Exercise 7.) that this
holds if and only if g is strongly f -absolutely continuous.

Suppose g is strongly f -absolutely continuous. Let dν
dμ

∈ L1(X;μ) be the cor-
responding Radon–Nikodym derivative [Ru74, Theorem 6.9] and let H denote the
multiplication operator on the Hilbert space L2(X;μ) by the function ( dν

dμ
)1/2. Then

D(π f ) = π f (A)ϕ f is a core for H and we have
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g(b+a) =
∫
X
b+a dν =

∫
X
b+a

dν

dμ
dμ = 〈Hπ f (a)ϕ f , Hπ f (b)ϕ f 〉, a, b ∈ A.

This is Eq. (5.40) and the positive self-adjoint operator H on L2(X;μ) is the Radon–
Nikodym derivative of the state g with respect to the state f . �

5.6 Extremal Decomposition of Positive Functionals

In this section, we apply the Choquet theory to obtain extremal decompositions of
positive linear functionals. To be precise, we use theBishop-de Leeuw theorem stated
as Lemma 5.33 below.

We begin with some preliminaries (see e.g. Appendix C). Let E be a real vector
space. A point x of a convex set K of E is said to be an extreme point of K if each
equation x = λx1 + (1 − λ)x2 with x1, x2 ∈ K and λ ∈ (0, 1) implies x1 = x2. The
set of all extreme points of K is denoted by ex K . By a cone in E we mean a subset
C of E such that C + C ⊆ C and λC ⊆ C for λ ≥ 0.

Suppose now that E is a real locally convex Hausdorff space. The dual space of
E is denoted by E ′. A Gδ-subset of E is a countable intersection of open subsets of
E . A subset of E is called a Baire set if it is contained in the σ -algebra generated by
the compact Gδ-subsets of E . Each Baire set of E is obviously a Borel set.

Lemma 5.33 (Bishop-de Leeuw theorem) Suppose K is a compact convex subset of
a real locally convex space E. Let x ∈ K. Then there exists a positive measure νx on
the σ -algebra generated by ex K and the Baire subsets of K with μ(K ) = 1 such
that νx (ex K ) = 1 and

ω(x) =
∫
K

ω(y) dνx (y) for all ω ∈ E ′. (5.43)

Proof [BdL59] or [Ph01, p. 22]. �
If the set K in Lemma 5.33 is metrizable, then ex K is a Gδ-set [Ph01, p. 5] and

there exists a Radon measure νx on K supported on ex K such that (5.43) holds. This
is Choquet’s theorem [Ph01, p. 13]. However, if K is not metrizable, then ex K need
not be a Borel set [Ph01, p. 5]; one way to circumvent this difficulty to change the
σ -algebra as done in Lemma 5.33.

A cap of a cone C is a nonempty compact convex subset K of C such that the
complement set C\K is also convex. The technical facts for applying the Bishop-de
Leeuw theorem are contained in the following lemma.

Lemma 5.34 Let C be a cone in a real locally convex space E and suppose that
h : C 	→ [0,+∞] is a positively homogeneous additive map (that is, we have
h(λx) = λh(x) and h(x + y) = h(x) + h(y) for x, y ∈ C, λ ≥ 0) such that the set
Kh := {x ∈ C : h(x) ≤ 1} is compact in E. Then:



114 5 Positive Linear Functionals

(i) Kh is a cap of C and 0 ∈ Kh.
(ii) Suppose that ω is a C-positive linear functional on E such that ω(x) �= 0 for

x ∈ Kh, x �= 0. If y �= 0 is an extreme point of Kh, then ω(y)−1y is an extreme
point of the convex set Bω := {x ∈ C : ω(x) = 1}.

Proof (i): We show that C\Kh is convex. Indeed, if x, y ∈ C\Kh , then h(x) > 1
and h(y) > 1, so h(λx + (1 − λ)y) = λh(x) + (1 − λ)h(y) > 1 for λ ∈ [0, 1]
and hence (λx + (1 − λ)y) ∈ C\Kh . Thus, C\Kh is convex. Similarly, Kh is
convex. Since h(0) = h(λ · 0) = λh(0), we have h(0) = 0, so 0 ∈ Kh .

(ii): First we note that h(x) �= 0 for all nonzero x ∈ Kh . (Otherwise Kh contains the
half-line {λx : λ ≥ 0}, which contradicts the compactness of Kh .)
Let y be a nonzero extreme point of Kh . We verify that h(y) = 1. As just shown,
h(y) �= 0, so h(y)−1y ∈ Kh . We have y = h(y)(h(y)−1y) + (1 − h(y))0 with
0 < h(y) ≤ 1 (by y ∈ Kh), where 0 ∈ Kh (by (i)) and h(y)−1y ∈ Kh . Since
y ∈ ex Kh and y �= 0, the latter implies h(y) = 1.
Assume thatω(y)−1y = λy1 + (1 − λ)y2 with y1, y2 ∈ Bω andλ ∈ (0, 1). Since
h is positively homogeneous and additive, we obtain

1 = h(y) = λω(y)h(y1) + (1 − λ)ω(y)h(y2). (5.44)

Let j ∈ {1, 2}. Since λ ∈ (0, 1),ω(y) > 0 (by theC-positivity ofω) and y j ∈ C ,
(5.44) yields h(y j ) ∈ [0,+∞). By y j ∈ Bω, y j �= 0 and hence h(y j ) �= 0 as
noted in the first paragraph of this proof. Thus, h(y j ) ∈ (0,+∞). There-
fore, it follows from (5.44) that λω(y)h(y1) ∈ (0, 1) and 1 − λω(y)h(y1) =
(1 − λ)ω(y)h(y2). Put z j := h(y j )−1y j . Then z1, z2 ∈ Kh and y =
λω(y)h(y1)z1 + (1 − λ)ω(y)h(y2)z2 is a convex combination of z1, z2. Since y
is an extremepoint of Kh , z1 = z2 = y.Henceω(y) = ω(z j ) = h(y j )−1ω(y j ) =
h(y j )−1, because y j ∈ Bω for j = 1, 2. Since y j = h(y j )z j and z1 = z2, the lat-
ter yields y1 = y2. This shows that ω(y)−1y is an extreme point of Bω. �

Now suppose A is a ∗-algebra. We denote by A∗
her[σ ] the real vector space A∗

her
of hermitian linear functionals on A, equipped with the locally convex topology
σ = σ(A∗

her,Aher) given by the seminorms f 	→ | f (a)|, a ∈ Aher, on A∗
her. By a

slight abuse of notation we do not distinguish in what follows between hermitian
functionals on A and their restrictions to Aher. Recall that S(A) denotes the set of
states of A. The subset S(A) of A∗

her will be endowed with the induced topology.
Let Q be a cone in Aher. The dual cone Q∧ (see (C.3)) is the set of f ∈ A∗

her
satisfying f (c) ≥ 0, c ∈ Q. We shall say that a subset Q0 of Q is Q-dominating for
A if, given a ∈ Aher, there exist c0 ∈ Q0 and λ > 0 such that λc0 − a ∈ Q.

Theorem 5.35 Suppose A is a complex unital ∗-algebra. Let Q be a cone in Aher

such that 1 ∈ Q and f (1) = 0 for f ∈ Q∧ implies f = 0. Suppose that there exists
a countable subset Q0 of Q which is Q-dominating for A.
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Then, for each linear functional f0 ∈ Q∧, there exist a topological subspace Ω

of S(A), a subset Ω0 of Ω and a positive measure μ on the σ -algebra generated by
Ω0 and the Baire subsets of Ω such that Ω0 ⊆ ex (Q∧ ∩ S(A)) and

f0(a) =
∫

Ω0

f (a) dμ( f ) for a ∈ A. (5.45)

Proof In this proof we will use some notions and results from the theory of locally
convex spaces, see e.g. Appendix C and [Sh71].

Our first aim is to apply Lemma 5.34 to C = Q∧ and E = A∗
her[σ ]. We write

Q0 = {cn : n ∈ N} and choose numbers γn > 0, n ∈ N, such that
∑

n γn f0(cn) ≤ 1.
Clearly, h( f ) = ∑

n γn f (cn), f ∈ Q∧, defines a positively homogeneous additive
map h : Q∧ 	→ [0,+∞]. Set Kh := { f ∈ Q∧ : h( f ) ≤ 1}.

Let a ∈ Aher. Since Q0 is Q-dominating, there are numbers n, k ∈ N, α > 0, and
β > 0 such that αcn − a ∈ Q and βck + a ∈ Q. Then, for f ∈ Kh ,

| f (a)| = max { f (a), f (−a)} ≤ max {α f (cn), β f (ck)} ≤ max {αγ −1
n , βγ −1

k }.

Hence Kh is bounded in the locally convex space A∗
her[σ ]. We consider the dual

pairing of the real vector spaces A∗
her and Aher and equip Aher with the finest locally

convex topology τst. Since Kh is bounded in A∗
her[σ ], its polar is a neighborhood of

zero inAher[τst]. Hence, by the Alaoglu–Bourbaki theorem [Sh71, Chap. III, 4.3], the
bipolar (Kh)

◦◦ of Kh is σ -compact in A∗
her = Aher[τst]′. From its definition it follows

easily that Kh is σ -closed. Therefore, since Kh ⊆ (Kh)
◦◦, Kh is also σ -compact and

hence a cap in A∗
her[σ ] by Lemma 5.34(i). By construction, f0 ∈ Kh .

Nowweapply theBishop-deLeeuw theorem (Lemma5.33) to the compact convex
set Kh in E = A∗

her[σ ] and x = f0. Let ν := νx be the corresponding measure. Then
ν(Kh) = ν(ex Kh) = 1 and for a ∈ E ′ we have

f0(a) =
∫
Kh

f (a) dν( f ). (5.46)

By the definition of the weak topology σ , we have Aher = E ′. Hence (5.46) holds
for a ∈ Aher. We extend each R-linear functional f ∈ A∗

her to a C-linear functional,
denoted also f , on A. Then, by linearity, (5.46) holds for all a ∈ A. Now we define
a mapping T of Kh\{0} on a subspace Ω of S(A) by f̃ ≡ T ( f ) := f (1)−1 f and a
measure μ on Ω by μ(·) = ν(T−1(·)). Set Ω0 := { f̃ : f ∈ ex Kh, f �= 0}. Since ν

is supported on ex Kh , we obtain for a ∈ A,

f0(a) =
∫
exKh\{0}

f (a) dν( f ) =
∫

Ω0

f̃ (a) f (1) dν( f ) =
∫

Ω0

f̃ (a) dμ( f̃ ).

This proves (5.45).
To show that Ω0 ⊆ ex (Q∧ ∩ S(A)) we define a linear functional ω on E

by ω( f ) = f (1), f ∈ E . By the assumptions on Q, ω fulfills the assumptions
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of Lemma 5.34(ii). Therefore, if f is a nonzero extreme point of Kh , then by
Lemma 5.34(ii), f̃ = ω( f )−1 f is an extreme point of Q∧ ∩ S(A). �

It should be noted that ex (Q∧ ∩ S(A)) in Theorem 5.35 denotes the extreme
points of the convex set of Q-positive states. Elements of ex (Q∧ ∩ S(A)) are not
necessarily extreme points of the set of all states and Ω0 is not a Borel set in general.

Our main application of Theorem 5.35 is the following result.

Theorem 5.36 Suppose A is a complex unital ∗-algebra such that
∑

A2 contains
a countable subset Q0 which is

∑
A2-dominating for A (that is, for each a ∈ Aher

there exist an element c ∈ Q0 and a number λ > 0 such that λc − a ∈ ∑
A2).

Then, for each positive linear functional f0 on A, Eq. (5.45) represents f0 as an
integral over pure states of A.

Proof Clearly, Q := ∑
A2 satisfies all assumptions of Theorem 5.35. Then Q∧ are

the positive functionals and ex (Q∧ ∩ S(A)) are the extreme points of the set of all
states on A. These are pure states, so (5.45) is an integral over pure states. �
Corollary 5.37 SupposeA is a countably generated complex unital ∗-algebra. Then
each positive functional on A is an integral over pure states of A.

Proof Let B be the real and imaginary parts of all finite products of a countable
set of algebra generators of A and let Q0 be the finite sums of elements (b ± 1)2,
where b ∈ B. Then Q0 is a countable subset of

∑
A2. Clearly, Aher is the real span

of B and so of Q0, since 4b = (b + 1)2 − (b − 1)2 for b ∈ B. Hence each a ∈ Aher

is of the form a = ∑
j λ j c j , with λ j ∈ R, c j ∈ Q0. Then λ := 1 + max j |λ j | > 0,

c := ∑
j c j ∈ Q0 and λc − a = ∑

j (λ − λ j )c j ∈ ∑
A2. This shows that Q0 is∑

A2-dominating. Thus the assertion follows from Theorem 5.36. �
Corollary 5.38 LetA be a unital O∗-algebra onD with metrizable graph topology
and A+ := {a ∈ Aher : 〈aϕ, ϕ〉 ≥ 0, ϕ ∈ D}. Then each A+-positive linear func-
tional on A is an integral over extreme points of the set of A+-positive states.

Proof The assertion follows from Theorem 5.35, applied to the cone Q = A+, once
we have shown the existence of a countable A+-dominating subset.

The graph topology tA >A is metrizable, so it is generated by countably many
seminorms {‖ · ‖an : n ∈ N}. By Lemma 3.5 we can assume that ‖ · ‖ ≤ ‖ · ‖an ≤
‖ · ‖an+1 for n ∈ N. Let a ∈ Aher. Then there are numbers n ∈ N and λ > 0 such that
‖aϕ‖ ≤ λ‖anϕ‖ for ϕ ∈ D and therefore

〈aϕ, ϕ〉 ≤ ‖aϕ‖ ‖ϕ‖ ≤ λ‖anϕ‖‖ϕ‖ ≤ λ‖anϕ‖2 = 〈λ(an)
+anϕ, ϕ〉,

so λ(an)+an − a ∈ A+. Hence Q0 := {(an)+an : n ∈ N} is A+-dominating. �



5.7 Quadratic Modules and ∗-Representations 117

5.7 Quadratic Modules and ∗-Representations

Recall that quadratic modules are introduced in Definition 2.25. An important class
of quadratic modules is obtained by means of ∗-representations.
Definition 5.39 For a familyR of ∗-representations of A, we define

A(R)+ := {
a ∈ Aher : 〈π(a)ϕ, ϕ〉 ≥ 0 for all ϕ ∈ D(π), π ∈ R}

.

Then A(R)+ is a pre-quadratic module of A. Indeed, condition (2.22) in Defini-
tion 2.25 is obvious and (2.23) follows from

〈π(x+ax)ϕ, ϕ〉 = 〈π(a)π(x)ϕ, π(x)ϕ〉 ≥ 0 (5.47)

for π ∈ R, ϕ ∈ D(π), x ∈ A, a ∈ A(R)+. Let F(R) denote the set of vector
functionals

fπ,ϕ(·) := 〈π(·)ϕ, ϕ〉, where ϕ ∈ D(π), π ∈ R.

From the equality in (5.47) we conclude that

f ∈ F(R) implies fx (·) ≡ f (x+ · x) ∈ F(R) for x ∈ A. (5.48)

Hence, by Definition 5.39, a ∈ Aher is in A(R)+ if and only if f (a) ≥ 0 for all
f ∈ F(R). This fact and Proposition 5.43 below hold also for nonunital ∗-algebras.
Clearly, if A is unital, then 1 ∈ A(R)+ and A(R)+ is a quadratic module of A.

Nowwesuppose thatA is unital andF is a set of positive functionals onA satisfying
condition (5.48), that is, f ∈ F implies fx ∈ F for all x ∈ A. LetR denote the family
ofGNS representationsπ f , f ∈ F. SinceA is unital,we have f = fπ f ,ϕ f by (4.26), so
that F ⊆ F(R). From the equality f (x+ · x) = 〈π f (·)π f (x)ϕ f , π(x)ϕ f 〉 by (4.25)
and assumption (5.48) it follows that F(R) ⊆ F. Thus, F = F(R). Therefore, the
quadratic module A(R)+ is given by

A(R)+ = {
a ∈ Aher : f (a) ≥ 0 for f ∈ F

}
.

Example 5.40 Suppose A = C[x1, . . . , xd ]. Let K be a closed subset of Rd and let
RK be the set of point evaluations at points of K . Then A(RK )+ is precisely the set
of polynomials of Aher = R[x1, . . . , xd ] that are nonnegative on K . �
Example 5.41 Suppose A is an O∗-algebra. If the family R consists only of the
identity map, then A(R)+ is the pre-quadratic module defined by (3.1). �

A natural question is to ask when A(T )+ ⊆ A(R)+ for two familiesR and T . To
answer this question by Proposition 5.43 we need the following definition.
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Definition 5.42 LetR and T be families of ∗-representations ofA. We say that R is
weakly contained in T if each vector functional fπ,ϕ , with π ∈ R, ϕ ∈ D(π), can be
weakly approximated by a finite sum of vector functionals fρ,ψ , ρ ∈ T , ψ ∈ D(ρ),
that is, given ε > 0 and a1, . . . , an ∈ A, there exist elements ρ1, . . . , ρk ∈ T and
vectors ψ1 ∈ D(ρ1), . . . , ψk ∈ D(ρk) such that

∣∣∣〈π(a j )ϕ, ϕ〉 −
k∑

i=1

〈ρi (a j )ψi , ψi 〉
∣∣∣ < ε for j = 1, . . . , n. (5.49)

Proposition 5.43 SupposeR and T are families of ∗-representations of a ∗-algebra
A. Then R is weakly contained in T if and only if A(T )+ ⊆ A(R)+.

The main ingredient of the proof of this result is the bipolar theorem on locally
convex spaces. Before we prove Proposition 5.43 we note a preliminary lemma.

Let E be a real vector space and E∗ the vector space of all linear functionals on
E . Then (E, E∗) forms a dual pairing with pairing (u, f ) 	→ f (u) and the weak
topology σ on E∗ is defined by the family of seminorms f 	→ | f (u)|, u ∈ E . Recall
that the dual cone C∧ is defined by (C.3).

Lemma 5.44 Suppose C is a cone in E∗ and f ∈ E∗. If f ∈ (C∧)∧, then f is in
the closure of C with respect to the weak topology σ of E∗.

Proof First we recall the notion of a polar M◦ (see [Sh71, IV.1.3]) of a subset M of
E∗ with respect to the dual pairing (E, E∗). This is the set

M◦ := {x ∈ E : f (x) ≤ 1 for f ∈ M}.

In a similar manner the polar of a subset of E is defined. Since λ · C ⊆ C for all
λ > 0, it is clear that c ∈ C◦ if and only if f (c) ≤ 0 for all f ∈ C . This implies that
C∧ = (−C)◦ and hence (C∧)∧ = (−(−C)◦))◦ = (C◦)◦.

Thus, the assumptionmeans that f is in the bipolar ofC . Therefore, by the bipolar
theorem [Sh71, IV.1.5], f is in the weak closure of C . �
Proof of Proposition 5.43 First suppose that R is weakly contained in T . Let
a ∈ A(T )+. We apply (5.49) with a = a1. Since fρi ,ψi (a) ≥ 0 (by a ∈ A(T )+)
and fπ,ϕ(a) is real, (5.49) implies that fπ,ϕ(a) ≥ −ε. Since ε > 0 is arbitrary,
fπ,ϕ(a) ≥ 0. Therefore, a ∈ A(R)+. This proves that A(T )+ ⊆ A(R)+.

Now we suppose that A(T )+ ⊆ A(R)+. Since fπ,ϕ and fρi ,ψi are real-valued
on Aher, we can assume that a1, . . . , an ∈ Aher in Definition 5.42. We will apply
Lemma 5.44 to E := Aher and the cone C of finite sums of functionals fρ,ψ on
E , where ρ ∈ T and ψ ∈ D(ρ). Then C∧ = A(T )+ by the corresponding defini-
tions. Let π ∈ R and ϕ ∈ D(π). Since A(T )+ ⊆ A(R)+ by assumption, we have
fπ,ϕ ∈ (C∧)∧. Therefore, fπ,ϕ is in theweak closure ofC byLemma5.44.According
to Definition 5.42, this means that R is weakly contained in T . �
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5.8 Exercises

1. Let A = C[x] and define f (p) = ∫ 1
0 p(x)dx, p ∈ A.

a. Describe the GNS representation π f and the weak commutant π f (A)′w.
b. Describe the states g on A such that g ≤ f .
c. Use b. to characterize those states g1, g2 ∈ [0, f ] for which g1⊥g2.

2. Let π be the Schrödinger representation of the Weyl algebra W (Example 4.32)
and ϕ ∈ C∞

0 (R). Suppose supp ϕ ⊆ [0, 2] andϕ(t) �= 0on (0, 1) ∪ (1, 2).Define
f (x) = 〈π(x)ϕ, ϕ〉, x ∈ W. Let T be the multiplication operator by the charac-
teristic function of [0, 1].

a. Describe the GNS representation π f .
b. Is T in the weak commutant π f (A)′w?
c. Is f is pure?

3. Let f, g ∈ P(A)∗. Show that f is dominated by g if and only if there is an operator
T ∈ I (πg, π f ) such that Tϕg = ϕ f .

4. Let f, g ∈ P(A)∗ and suppose π f (A)′w = π f (A)′s. Let Q be a quadratic module
of A. Prove that if g ≤ f and f is Q-positive, then g is also Q-positive.
Hint: Use Theorem 5.3. The main argument will be also used in the proof of
Lemma 10.19 below.

5. Let A be a unital ∗-subalgebra of a unital ∗-algebra B and f, g ∈ P(B)∗. Show
that PB( f, g) ≤ PA( f �A, g�A).

6. Let f1, f2, f, g be positive functionals on A. Prove the following:

a. 0 ≤ PA( f, g) = PA(g, f ) ≤ f (1)g(1).
b. PA( f, g) = 1 if and only if f = g.
c. λ PA( f1, g) + (1 − λ) PA( f2, g) ≤ PA(λ f1 + (1 − λ) f2, g) for λ ∈ [0, 1].

7. In Example 5.32, show that g is f -absolutely continuous if and only if g is strongly
f -absolutely continuous.

8. LetA = Cd [x]. For closed subsets K , K ′ ofRd , letRK andRK ′ be the point eval-
uations at points of K and K ′, respectively (Example 5.40).What does Proposition
5.43 say in the caseR := RK , T := RK ′? Prove Proposition 5.43 directly in this
case.

5.9 Notes

The ordering of positive functionals is due to Powers [Pw71]. Examples 5.6 is new.
Orthogonal states on ∗-algebraswere first studied in [Sch90, Sect. 8.6]. The transition
probability for general ∗-algebras was introduced by Uhlmann [U76]; it also called
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fidelity in the literature, see e.g. [Jo94]. Basic results on transition probabilities for
C∗-algebras and von Neumann algebras were obtained by Alberti [Al83, Al03].
Lemma 5.22 is a classical result on von Neumann algebras, see [Ak72, p. 341] or
[Al03, Corollary 1, p. 93]. The results of Sects. 5.3 and 5.4 were obtained by the
author [Sch15]. The Radon–Nikodym theorem in Sect. 5.5 is due to Gudder [Gu79],
see also [In83].

The extremal decomposition of ∗-representations and states was first studied by
Borchers and Yngvason [BY75a, BY75b] using different methods. The approach
via Choquet theory was proposed in [He85] and studied in [Ri84]. In Sect. 5.6 we
followed [Sch90, Sect. 12.4], which contains a number of further results.



Chapter 6
Representations of Tensor Algebras

Free ∗-algebras C〈xi ; i ∈ I |x+
i = xi 〉, or equivalently tensor algebras V⊗, form the

simplest class of ∗-algebras. This chapter gives a brief introduction into positive
functionals and ∗-representations of these ∗-algebras. In Sect. 6.1, we define ∗-
vector spaces and their tensor algebras and state elementary algebraic properties.
Sections6.2 and 6.3 deal with positive linear functionals on the ∗-algebra V⊗. We
approximate positive functionals by vector functionals of finite-dimensional repre-
sentations and develop some operations to construct new positive functionals from
old ones. An important class of ∗-representations is constructed in Sect. 6.4, see
Theorem 6.12. In particular, we show that each tensor algebra admits a faithful
∗-representation. Section 6.5 is about the tensor algebra of a topological ∗-vector
space (V, τ ). A topology τ⊗ on V⊗ is defined such that its completion V⊗[τ⊗] is a
topological ∗-algebra and representations of V⊗ are considered (Theorem 6.19).

Throughout this chapter, V denotes a ∗-vector space with involution v �→ v+.

6.1 Tensor Algebras

The first main notion in this chapter is the following.

Definition 6.1 A ∗-vector space is a complex vector space V equipped with a map-
ping v �→ v+ of V , called involution, such that

(αu + βv)+ = α u+ + β v+ and (v+)+ = v for α,β ∈ C, u, v ∈ V .

Set V0 := C and V1 := V . For n ∈ N, n ≥ 2, let Vn denote the n-fold complex
tensor product V ⊗ · · · ⊗ V of vector spaces. The elements of Vn are finite sums
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v = ∑
i v

i
1 ⊗ · · · ⊗ vi

n with vi
1, . . . , v

i
n ∈ V . Clearly, Vn is also a ∗-vector space with

involution

( ∑

i
vi
1 ⊗ · · · ⊗ vi

n

)+ :=
∑

i
(vi

n)
+ ⊗ · · · ⊗ (vi

1)
+.

Throughout this chapter we adopt the following notational conventions:
Upper numbers such as i are always indices! They never refer to powers of elements.
Sums such as

∑
i are always over finitely many indices i .

Now we consider the direct sum V⊗ of vector spaces Vn, n ∈ N0, that is,

V⊗ :=
∞∑

n=0

⊕Vn.

The elements of V⊗ are written as sequences (vn), where vn ∈ Vn and only finitely
many terms are nonzero. It is easily verified that V⊗ becomes a unital complex
∗-algebra with multiplication and involution

(un)(vn) :=
( ∑

j+k=n

u j ⊗ vk

)
, (vn)

+ := (v+
n ), (6.1)

where λ ⊗ vk = vk ⊗ λ = λvk and λ+ = λ for λ ∈ C and vk ∈ Vk . Note that the
sequence (1, 0, 0, . . .) is the unit element of the ∗-algebra V⊗.

Definition 6.2 The ∗-algebra V⊗ is the tensor algebra of the ∗-vector space V .

Example 6.3 (V = C) Then the map (vn) �→ ∑
n vnxn is a ∗-isomorphism

of the tensor algebra V⊗ on the polynomial ∗-algebra C[x] in a single hermitian
variable. �
Example 6.4 (V = S(Rd)) We identify

∑
i v

i
1 ⊗ · · · ⊗ vi

n ∈ Vn with the
function

∑
i v

i
1(x1) · · · vi

n(xn) on R
dn . Then Vn becomes a dense linear subspace

of S(Rdn). �
The tensor algebra V⊗ is the free unital ∗-algebra over the ∗-vector space V . This

means that V⊗ has the following universal property.

Lemma 6.5 Each ∗-preserving linear map π of V into a unital ∗-algebra A has a
unique extension to a ∗-homomorphism, denoted π, of V⊗ into A such that π(1) = 1.

Proof We extend π to Vn by defining π(
∑

i v
i
1 ⊗ · · · ⊗ vi

n) = ∑
i π(vi

1) · · · π(vi
n)

and π(1) = 1, and then by linearity to V⊗. From the definitions of the multiplica-
tion and involution of V⊗ it follows that this gives a ∗-homomorphism in A. The
uniqueness assertion is obvious. �

Recall that C〈xi ; i ∈ I |(xi )+ = xi 〉 denotes the free unital ∗-algebra with hermi-
tian generators xi , i ∈ I . This notion is equivalent to the notion of a tensor alge-
bra. Indeed, let V be the complex span of xi , i ∈ I , in C〈xi ; i ∈ I |(xi )+ = xi 〉,
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equipped with the involution defined by (xi )+ = xi . Then V is a ∗-vector space
and C〈xi ; i ∈ I |(xi )+ = xi 〉 is ∗-isomorphic to V⊗. Conversely, if V is a ∗-vector
space, we choose a vector space basis {vi : i ∈ I } of V consisting of hermitian ele-
ments; then V⊗ is ∗-isomorphic to C〈vi ; i ∈ I |(vi )+ = vi 〉. In particular, the free
∗-algebra C〈x1, . . . , xn|(xi )+ = xi 〉 is ∗-isomorphic to V⊗ with V = C

n .

Next we develop some constructions with representations of tensor algebras.
Let (D1, 〈·, ·〉1) and (D2, 〈·, ·〉2) be complex inner product spaces. We denote by

D1 ⊗ D2 the tensor product vector space equipped with the inner product 〈·, ·〉which
is given by 〈ϕ1 ⊗ ϕ2,ψ1 ⊗ ψ2〉 = 〈ϕ1,ψ1〉1〈ϕ2,ψ2〉2, where ϕ1,ψ1 ∈ D1,ϕ2,ψ2 ∈
D2. Thus, (D1 ⊗ D2, 〈·, ·〉) is a complex inner product space.

(1) Let {vi : i ∈ I } be a vector space basis of hermitian elements for V . Then,
for every (!) family {Ti : i ∈ I } of symmetric operators of L+(D), there is a
unique ∗-representation π of V⊗ on D such that π(vi ) = Ti , i ∈ I, and π(1) = I .
(Indeed, we define a ∗-preserving linear map π of V in L+(D) by π(vi ) = Ti and
apply Lemma 6.5.) In particular, for each n-tuple of bounded self-adjoint operators
T1, . . . , Tn on a Hilbert space there is a unique ∗-representation π of the ∗-algebra
C〈x1, . . . , xn|(xi )+ = xi 〉 such that π(xi ) = Ti , i = 1, . . . , n, and π(1) = I .

(2) Suppose that π1 and π2 are ∗-representations of V⊗. Then it is clear that
π(v) := π1(v) ⊗ ID(π2) + ID(π1) ⊗ π2(v), v ∈ V , is a ∗-preserving linear map of V⊗
into L+(D(π1) ⊗ D(π2)). Hence, by Lemma 6.5, this map extends uniquely to a
∗-representation π of V⊗ on D(π) := D(π1) ⊗ D(π2) such that π(1) = I .

(3)Letπ1 be a∗-representationofV⊗ and letT be a symmetric operator ofL+(D0).
By a straightforward verification it follows that there is a unique ∗-representation
π of V⊗ on D(π) := D(π1) ⊗ D0 given by π(vn) = π1(vn) ⊗ T n for vn ∈ Vn and
n ∈ N0, where we set T 0 := I .

6.2 Positive Functionals on Tensor Algebras

For a ∗-vector space V , the space V ∗ of all C-linear functionals on V is also a
∗-vector space with involution given by F+(v) := F(v+), v ∈ V .

First we describe the characters of the algebra V⊗. Let F ∈ V ∗. Then there is a
linear functional F [n] on Vn, n ∈ N, defined by

F [n]
( ∑

i
vi
1 ⊗ · · · ⊗ vi

n

)
=

∑

i
F(vi

1) · · · F(vi
n), vi

1, . . . , v
i
n ∈ V,

and there is linear functionalχF on V⊗ given by χF (vn) = F [n](vn), vn ∈ Vn , n ∈ N,
and χF (1) = 1. It is easily verified that χF is a character of the algebra V⊗. If F is
hermitian, so is the character χF . Conversely, if χ is a character of V⊗, then χ is of
the form χ = χF with F := χ�V .

Next we prove some results concerning the approximation of positive functionals
by vector functionals in finite-dimensional representations.
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Proposition 6.6 Suppose π is a nondegenerate ∗-representation of V⊗ such that
dim π(V ) < ∞. For any n ∈ N and ξ ∈ D(π), there exists a nondegenerate
∗-representation ρξ,n of V⊗ on a finite-dimensional subspace Hξ,n of D(π) such
that

π(u)ξ = ρξ,n(u)ξ and 〈π(u)ξ, ξ〉 = 〈ρξ,n(u)ξ, ξ〉 for u ∈
n∑

j=0

⊕Vj . (6.2)

Proof Fix n ∈ N. Set k := dim π(V ). We choose v1, . . . , vk ∈ V such that π(V ) =
Lin {π(v j ) : j = 1, . . . , k}. Further, we abbreviate An:= ∑n

j=0 ⊕Vj and

Bn := Lin {1, vi1 · · · vir : i1, . . . , ir ∈ {1, . . . , k}, r ≤ n}.

First we note that π(An) = π(Bn). Indeed, for u ∈ V , π(u) is in the linear
span of operators π(v j ). Hence, for elements u1, . . . , ur ∈ V, r ≤ n, the oper-
ator π(u1) · · · π(ur ) = π(u1 · · · ur ) is in the span of products π(vi1) · · · π(vir ) =
π(vi1 · · · vir ). Therefore, since each u ∈ ∑n

j=1 ⊕Vn is a sum of products u1 · · · ur , it
follows that π(An) ⊆ π(Bn). The opposite inclusion is obvious, since Bn ⊆ An .

Let ξ ∈ D(π). Since dimBn < ∞ and π(An) = π(Bn), the linear subspace
Hξ,n := π(An)ξ of D(π) is finite-dimensional and hence closed in H(π). Let P
be the projection of H(π) on Hξ,n . Clearly, v �→ Pπ(v)�PH(π) is a ∗-preserving
linear map of V into B(Hξ,n). Let ρ ≡ ρξ,n denote its unique extension to a non-
degenerate ∗-representation of V⊗ on Hξ,n according to Lemma 6.5. Since π is
nondegenerate by assumption, π(1) = I , so ξ ∈ Hξ,n and ρ(1)ξ = π(1)ξ = ξ. Let
u1, . . . , ur ∈ V, r ≤ n. Using that ξ ∈ Hξ,n and π(u1) · · · π(u j )ξ ∈ π(An)ξ = PH
for 1 ≤ j ≤ r , we derive

ρ(u1 · · · ur )ξ = ρ(u1) · · · ρ(ur )ξ = Pπ(u1)P · · · Pπ(ur )Pξ

= Pπ(u1)P · · · Pπ(ur−1)π(ur )ξ = π(u1) · · · π(ur )ξ = π(u1 · · · ur )ξ.

It follows that ρ(u)ξ = π(u)ξ for u ∈ An , which implies (6.2). �
Note that the assumption dim π(V ) < ∞ is trivially satisfied if dim V < ∞.

Proposition 6.7 Let π be a nondegenerate ∗-representation of V⊗ and ξ ∈ D(π).
For any finite-dimensional subspace U of V⊗, there exists a nondegenerate ∗-
representation ρU of V⊗ on a finite-dimensional linear subspace of D(π) such that

〈π(u)ξ, ξ〉 = 〈ρU (u)ξ, ξ〉 for u ∈ U . (6.3)

Proof Since dim U < ∞, there exist an n ∈ N and a finite-dimensional ∗-invariant
subspace U of V such that U ⊆ ∑n

j=0 ⊕Un ⊆ U⊗. We choose a ∗-invariant
subspaceW of V such that V is the direct sum ofU andW and define a ∗-preserving
linear map ρ of V into D(π) by ρ(u + w) = π(u), u ∈ U, w ∈ W . This map
extends to a nondegenerate ∗-representation, denoted again ρ, of V⊗ on D(π) by
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Lemma 6.5. By the definition of this extension we have ρ(u) = π(u) for u ∈ U⊗ ⊆
V⊗ and dim ρ(V ) < ∞. Then Proposition 6.6 applies to ρ, so there exists a sub-
representation ρξ,n of ρ on a finite-dimensional subspace of D(ρ) ⊆ D(π) such that
〈ρ(v)ξ, ξ〉 = 〈ρξ,n(v)ξ, ξ〉 for v ∈ ∑n

j=0 ⊕Vn . Set ρU := ρξ,n . Since ρ(u) = π(u)

for u ∈ U⊗ and U ⊆ ∑n
j=0 ⊕Uj ⊆ ∑n

j=0 ⊕Vj , the latter yields (6.3). �
Corollary 6.8 The set of all vector functionals of finite-dimensional nondegenerate
∗-representations of V⊗ is dense, in the weak topology, in the cone of all positive
functionals on V⊗.

Proof By the GNS construction (Theorem 4.38), each positive functional on the
unital (!) ∗-algebra V⊗ is a vector functional of some algebraically cyclic, hence
nondegenerate, ∗-representation. Then the assertion follows from (6.3). �

6.3 Operations with Positive Functionals

First note that there is a one-to-one correspondence between linear functionals F on
the vector space V⊗ and sequences (Fn)n∈N0 of functionals Fn ∈ (Vn)

∗ given by

F(u) =
∞∑

n=0

Fn(un) for u = (un) ∈ V⊗. (6.4)

We shall write F = (Fn)n∈N0 if Eq. (6.4) holds.

1. Tensor product of positive linear functionals

Let k, l ∈ N. By an ordered decomposition of {1, 2, . . . , k + l}wemean a decompo-
sition of this set into two disjoint subsets i = {i1, . . . , ik}, j = { j1, . . . , jl} such that
i1 < i2 < · · · < ik and j1 < j2 < · · · < jl . The set of such ordered decompositions
(i, j) is denoted by P(k, l). For linear functionals Fk ∈ (Vk)

∗ and Gl ∈ (Vl)
∗, we

define a linear functional Fk ⊗s Gl ∈ (Vk+l)
∗ by

(Fk ⊗s Gl)(v1 ⊗ · · · ⊗ vk+l) =
∑

(i,j)∈P(k,l)

Fk(vi1 ⊗ · · · ⊗ vik )Gl(v j1 ⊗ · · · ⊗ v jl ).

For k, l ∈ N0 and F0,G0 ∈ (V0)
∗, Fk ∈ (Vk)

∗, Gl ∈ (Vl)
∗, let F0 ⊗ Gl ∈ (Vl)

∗ and
Fk ⊗ G0 ∈ (Vk)

∗ be the linear functionals defined by

(F0 ⊗s Gl)(λ ⊗ vl) = F0(λ)Gl(vl), (Fk ⊗s G0)(vk ⊗ λ) = Fk(vk)G0(λ).

Now suppose F = (Fn)n∈N0 and G = (Gn)n∈N0 are linear functionals on V⊗.
We define a linear functional F ⊗s G = ((F ⊗s G)n)n∈N0 on V⊗, called the tensor
product of F and G, by
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(F ⊗s G)n :=
n∑

k=0

Fk ⊗s Gn−k . (6.5)

Proposition 6.9 Suppose F and G are positive linear functionals on V⊗. Let ρF,G

denote the nondegenerate ∗-representation of V⊗ on D(ρF,G) := D(πF ) ⊗ D(πG)

which is associated (by Lemma 6.5) with the ∗-preserving linear map

ρ(v) := πF (v) ⊗ ID(πG ) + ID(πF ) ⊗ πG(v), v ∈ V,

of V into L+(D(πF ) ⊗ D(πG)). Then the linear functional F ⊗s G on V⊗ is the
vector functional of the ∗-representation ρF,G for the vector ϕF ⊗ ϕG, that is,

(F ⊗s G)(u) = 〈ρF,G(u)(ϕF ⊗ ϕG),ϕF ⊗ ϕG〉, u ∈ V⊗. (6.6)

(Recall that ϕF and ϕG denote the algebraically cyclic vectors for the GNS repre-
sentations πF and πG.)

Proof We abbreviate I1 = ID(πF ), I2 = ID(πG ). Let v1, . . . , vn ∈ V , n ≥ 2, and set
u = v1 · · · vn . Inserting the definition of ρ(u) from Lemma 6.5 we compute

〈ρF,G(u)(ϕF ⊗ ϕG),ϕF ⊗ ϕG〉
= 〈(πF (v1) ⊗ I2 + I1 ⊗ πG(v1))(πF (v2) ⊗ I2 + I1 ⊗ πG(v2))

· · · (πF (vn) ⊗ I2 + I1 ⊗ πG(vn))(ϕF ⊗ ϕG),ϕF ⊗ ϕG〉

=
n−1∑

k=1

∑

(i,j)∈Pk,n−k

〈(πF (vi1 · · · vik ) ⊗ πG(v j1 · · · v jn−k )(ϕF ⊗ ϕG),ϕF ⊗ ϕG〉

+ 〈(πF (v1 · · · vn) ⊗ I2)(ϕF ⊗ ϕG),ϕF ⊗ ϕG〉
+ 〈(I1 ⊗ πG(v1 · · · vn))(ϕF ⊗ ϕG),ϕF ⊗ ϕG〉

=
n−1∑

k=1

∑

(i,j)∈Pk,n−k

〈πF (vi1 · · · vik )ϕF ,ϕF 〉 〈πG(v j1 · · · v jn−k )ϕG,ϕG〉

+ 〈πF (v1 · · · vn)ϕF ,ϕF 〉〈ϕG,ϕG〉 + 〈ϕF ,ϕF 〉〈πG(v1 · · · vn)ϕG,ϕG〉

=
n−1∑

k=1

∑

(i,j)∈Pk,n−k

Fk(vi1 · · · vik )Gn−k(v j1 · · · v jn−k )

+ Fn(v1 · · · vn)G0(1) + F0(1)Gn(v1 · · · vn)

=
n∑

k=0

(Fk ⊗s Gn−k)(v1 · · · vn) = (F ⊗s G)n(v1 · · · vn) = (F ⊗s G)(u).

This proves (6.6) for u = v1 · · · vn, n ≥ 2. One easily verifies (6.6) for u ∈ V0 and
u ∈ V1. Since both sides of (6.6) are linear in u, it holds for all u ∈ V⊗. �
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2. Multiplication of a positive functional by a positive semi-definite sequence

A real sequence c = (cn)n∈N0 is called positive semi-definite if

n∑

j,k=0

c j+kζ j ζk ≥ 0 for all (ζ0, ζ1, . . . , ζn)
T ∈ R

n+1, n ∈ N0.

Proposition 6.10 Suppose F is a positive linear functional on V⊗ and c = (cn)n∈N0

is a positive semi-definite sequence. Then c · F := (cn Fn)n∈N0 is also a positive linear
functional on V⊗.

Further, there exist a vectorψ of a complex inner product spaceD and a symmetric
operator T ∈ L+(D) such that c · F is the vector functional of the vectorϕF ⊗ ψ for
the nondegenerate ∗-representation ρc,F of V⊗ on D(ρc,F ) := D(πF ) ⊗ D defined
by ρc,F (un) = πF (un) ⊗ T n, un ∈ Vn, n ∈ N0, that is,

(c · F)(u) = 〈ρc,F (u)(ϕF ⊗ ψ),ϕF ⊗ ψ〉 for u ∈ V⊗. (6.7)

Proof Since c is positive semi-definite, it is a Hamburger moment sequence (see e.g.
[Sch17, Theorem 3.8]). This means that there exists a Radon measure μ on R such
that cn = ∫

xndμ(x) for n ∈ N0. Let T be the multiplication operator by the variable
x on D = C[x] in the Hilbert space L2(R;μ) and ψ = 1 ∈ D. Then cn = 〈T nψ,ψ〉
for n ∈ N0 and T ∈ L+(D) is symmetric. It is easily verified that ρc,F , as defined
above, is a nondegenerate ∗-representation of V⊗.

For n ∈ N and un ∈ Vn we compute

〈ρc,F (un)(ϕF ⊗ ψ),ϕF ⊗ ψ〉 = 〈πF (un)ϕF ⊗ T nψ,ϕF ⊗ ψ〉
= 〈πF (un)ϕF ,ϕF 〉 〈T nψ,ψ〉 = F(un)cn = (cn Fn)(un) = (c · F)(un).

Let u0 ∈ V0 = C. Using that ‖ψ‖2 = 〈T 0ψ,ψ〉 = c0 we obtain

〈ρc,F (u0)(ϕF ⊗ ψ),ϕF ⊗ ψ〉 = u0‖ϕF‖2 ‖ψ‖2 = u0F(1)c0 = (c · F)(u0).

NowEq. (6.7) follows by linearity andwe have shown that c · F is a vector functional
of the ∗-representation ρc,F . Hence c · F is a positive functional. �

6.4 Representations of Free Field Type

In this section, V is a ∗-vector space and 〈·, ·〉1 is an inner product on V satisfying

〈u+, v+〉1 = 〈u, v〉1 for u, v ∈ V . (6.8)

Let 〈·, ·〉n denote the corresponding inner product on Vn, n ∈ N, defined by
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〈 ∑

i
ui1 ⊗ · · · ⊗ uin,

∑

j
v
j
1 ⊗ · · · ⊗ v j

n

〉

n
:=

∑

i, j
〈ui1, v j

1 〉1 · · · 〈uin, v j
n 〉1.

LetHn be the Hilbert space obtained by completing the complex inner product space
(Vn, 〈·, ·〉n) and let D denote the algebraic direct sum of Hilbert spacesHn, n ∈ N0,
whereH0 := C. Then the elements ofD are finite sequences (un), (vn)with un, vn ∈
Hn and D is a complex inner product space with inner product

〈(un), (vn)〉 :=
∑

n
〈un, vn〉n.

Clearly, V⊗ is a dense linear subspace of the complex inner product space (D, 〈·, ·〉).
Fix u ∈ V and define A+(u)(vn) = (u ⊗ vn) for (vn) ∈ D. Then, since

‖A+(u)(vn)‖2 =
∑

n
‖u ⊗ vn‖2n+1 =

∑

n
‖u‖21 ‖vn‖2n = ‖u‖21 ‖(vn)‖2,

A+(u) is a bounded linear operator on (D, 〈·, ·〉) with norm ‖A+(u)‖ = ‖u‖1.
Now, for v0 ∈ V0 and vn = ∑

i v
i
1 ⊗ · · · ⊗ vi

n ∈ Vn , we define A−(u)v0 = 0,

A−(u)vn =
∑

i
〈u, (vi

1)
+〉1 vi

2 ⊗ · · · ⊗ vi
n, n ∈ N. (6.9)

Clearly, this definition is independent of the particular representation of vn.Note that
A−(u) is a linear operator of Vn into Vn−1 for n ∈ N and it is also linear in u.

Let vn ∈ Vn andwn+1 ∈ Vn+1.Wewritewn+1 as wn+1 = ∑
i y

i
1 ⊗ zin ∈ Vn+1 with

yi1 ∈ V, zin ∈ Vn . Inserting the corresponding definitions and (6.8) we derive

〈A+(u+)vn, wn+1〉n+1 = 〈u+ ⊗ vn, wn+1〉n+1

=
∑

i
〈u+, yi1〉1

〈
vn, z

i
n

〉
n =

∑

i
〈u, (yi1)

+〉1 〈vn, zin〉n
= 〈

vn,
∑

i
〈u, (yi1)

+〉1 zin
〉
n

= 〈vn, A−(u)wn+1〉n. (6.10)

Now we define A−(u)(vn) = (A−(u)vn) for (vn) ∈ V⊗. Equation (6.10) implies
that 〈A+(u+)v,w〉 = 〈v, A−(u)w〉 for v,w ∈ V⊗. Therefore, the operator A−(u) on
V⊗ is the restriction of the adjoint of the bounded operator A+(u+) on D. Hence
A−(u) is bounded on V⊗ and its continuous extension A−(u) is a bounded operator
on D such that ‖A−(u)‖ = ‖A+(u+)‖ ≤ ‖u+‖1 = ‖u‖1. Since A−(u)Vn ⊆ Vn−1,
this extension mapsHn intoHn−1 and soD intoD. From its definition it follows that
A+(u+) leavesD invariant. Therefore, A+(u+) and A−(u) belong to L+(D) and are
adjoints of each other in this ∗-algebra.

We summarize the preceding in the next lemma.

Lemma 6.11 For any u ∈ V , the operators A+(u) and A−(u) defined above are
bounded linear operators of L+(D) and we have A+(u+)+ = A−(u),

‖A+(u)‖ ≤ ‖u‖1 , ‖A−(u)‖ ≤ ‖u‖1. (6.11)
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Now we are ready for the main result of this section.

Theorem 6.12 Let (cn)n∈N0 be a real sequence. There is a unique nondegenerate
∗-representation π of the tensor algebra V⊗ on D(π) := D such that

π(u)vn = cn+1A
+(u)vn + cn A

−(u+)vn, u ∈ V, vn ∈ Hn, n ∈ N0. (6.12)

If cn �= 0 for n ∈ N, then π is faithful and π(V⊗)1 = V⊗ is dense in the Hilbert
space H(π).

Proof Let u ∈ V . We extend π(u) by linearity to D = Lin {Hn : n ∈ N0}. From
Lemma 6.11 it follows that π is a ∗-preserving linear map of V in the ∗-algebra
L+(D). By Lemma 6.5, it extends to a nondegenerate ∗-representation π of V⊗ on
D. The uniqueness assertion is clear. This completes the proof of the first assertion.

Now suppose that cn �= 0 for n ∈ N. Let v = (vn) ∈ V⊗. From (6.12) it follows
that (π(vk)1)k = c1 · · · ckvk and (π(vk)1)n = 0 for n > k.

Therefore, if v �= 0 and k is the largest index n such that vn �= 0, the k-th compo-
nent of π(v)1 is nonzero, so π(v) �= 0. This shows that π is faithful.

Further, it follows by induction that each subspace Vk is contained in π(V⊗)1.
Hence V⊗ ⊆ π(V⊗)1, so that π(V⊗)1 = V⊗. Obviously, V⊗ is dense inH(π). �

The construction of the ∗-representations π in Theorem 6.12 resembles the defi-
nition of the free field in quantum field theory (see e.g. [SW00]). Therefore, we call
them representations of free field type. Note that the representation π depends not
only on the sequence (cn), but also on the inner product 〈·, ·〉1 satisfying (6.8).

There are plenty of such inner products on each ∗-vector space V . For instance,
take a vector space basis {vi : i ∈ I } of hermitian elements of V and define

〈 ∑

i
αivi ,

∑

j
β jv j

〉

1
:=

∑

i
αi βi .

Then 〈·, ·〉1 is an inner product on V and condition (6.8) holds.

Corollary 6.13 Each ∗-algebra V⊗, so each ∗-algebra C〈xi ; i ∈ I |(xi )+ = xi 〉,
admits a faithful nondegenerate ∗-representation and is ∗-isomorphic to a unital
O∗-algebra.

Proof Choose an inner product 〈·, ·〉1 as above and set cn = 1 in Theorem 6.12. �

6.5 Topological Tensor Algebras

In the preceding sections only the algebraic structure of tensor algebras V⊗ was used.
In this section we assume that V is a topological ∗-vector space according to the
following definition.
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Definition 6.14 A topological ∗-vector space (V, τ ) is a ∗-vector space V together
with a locally convex topology τ on V such that the involution is τ -continuous.

Let � be a family of seminorms which defines the locally convex topology τ ,
see Appendix C. Without loss of generality we can assume that the seminorms of �

are ∗-invariant and � is directed (that is, given p1, p2 ∈ �, there exists a seminorm
p ∈ � such that p1(v) ≤ p(v) and p2(v) ≤ p(v) for v ∈ V ).

There is no unique way to define a “reasonable” topology on the tensor
product E ⊗ F of two locally convex spaces E, F ; see [Tr67, Sect. 43] or [Sh71,
Chap. IV, 9.]. We use the projective topology. It is the strongest locally convex
topology on E ⊗ F for which the map (e, f ) �→ e ⊗ f of E × F into E ⊗ F is
continuous.

The projective topology on Vn = V ⊗ · · · ⊗ V will be denoted by τn . It is defined
by the directed family of ∗-invariant seminorms {pn : p ∈ �}, where for un ∈ Vn ,

pn(un) := inf
{ r∑

i=1

p(vi
1) · · · p(vi

n) : un =
r∑

i=1

vi
1 ⊗ · · · ⊗ vi

n, vi
j ∈ V

}
. (6.13)

These seminorms have the cross-properties

pk+m(uk ⊗ um) ≤ pk(uk)p
m(um) for uk ∈ Vk, um ∈ Vm, (6.14)

pn(v1 ⊗ · · · ⊗ vn) = p(v1) · · · p(vn) for v1, . . . , vn ∈ V . (6.15)

Let V n[τn] denote the completion of the locally convex space Vn[τn] and let

V⊗[τ⊗] :=
∞∑

n=0

⊕ V n[τn]

be the direct sum of locally convex spaces V n[τn], where V 0 := C, equipped with
the direct sum topology τ⊗. This is the locally convex topology on V⊗ given by the
family of seminorms ‖ · ‖(γn),(pn):

‖v‖(γn),(pn) :=
∞∑

n=0

γn(pn)
n(vn), v = (v0, v1, . . . , vk, 0, . . .) ∈ V⊗.

Here (γn) and (pn) are arbitrary sequences of numbers γn ≥ 0 and of seminorms
pn ∈ �, respectively. We abbreviate V n := ∑n

j=0 ⊕Vj and V n := ∑n
j=0 ⊕V j .

Lemma 6.15 (i) The involution of V⊗ is continuous in the topology τ⊗.
(ii) The product of V⊗ is separately continuous, that is, the maps v �→ v w and

v �→ w v of V⊗ are continuous for any w ∈ V⊗.
(iii) For any k,m ∈ N, the product of V⊗ is a continuous map of V k × Vm into

V k+m with respect to the induced topologies of τ⊗.
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Proof (i) is clear, since all seminorms pn are ∗-invariant for p ∈ � and n ∈ N.
In the proofs of (ii) and (iii) we assumewithout loss of generality that pn ≤ pn+1,
n ∈ N0. Let v = (v0, . . . , vk, 0, . . .) ∈ V⊗ and w = (w0, . . . , wm, 0, . . .) ∈ V⊗.

(ii): We fix w and prove the continuity of the map v �→ v w. Let ‖ · ‖(γn),(pn) be a
seminorm for the topology τ⊗. Set δi := ∑m

j=0 γi+ j (pi+ j )
j (w j ) and qi = pi+m

for i ∈ N0. Using the definition (6.1) of the multiplication, the relations (6.14),
and the inequalities pi+ j ≤ pi+m = qi for j ≤ m we derive

‖v w‖(γn),(pn) =
k+m∑

n=0

γn(pn)
n
( ∑

i+ j=n

vi ⊗ w j

)

≤
k+m∑

n=0

∑

i+ j=n

γn(pn)
i (vi )(pn)

j (w j ) =
k∑

i=0

m∑

j=0

γi+ j (pi+ j )
i (vi )(pi+ j )

j (w j )

≤
k∑

i=0

δi (qi )
i (vi ) = ‖v‖(δn),(qn).

The proof for the map v �→ w v is the same. It follows also from (i) by the chain
of continuous maps v �→ v+ �→ w+v+ �→ (w+v+)+ = v w.

(iii): Now both numbers k and m are fixed. We define constant (!) sequences (qn)
and (δn) by qn := pk+m and δn := (max(γ0, . . . , γk+m))1/2 for n ∈ N0. Then,
similarly as in the proof of (ii),

‖v w‖(γn),(pn) ≤
k∑

i=0

m∑

j=0

γi+ j (pi+ j )
i (vi )(pi+ j )

j (w j )

≤
k∑

i=0

m∑

j=0

δiδ j (qi )
i (vi )(q j )

j (w j ) = ‖v‖(δn),(qn) ‖w‖(δn),(qn). ��

Recall that, according to Definition 2.67, a topological ∗-algebra is a ∗-algebra
A, equipped with a locally convex topology, such that the involution and the maps
a �→ a b and a �→ b a of A into A are continuous for each b ∈ B.

By Lemma 6.15, (i) and (ii), V⊗[τ⊗] is a topological ∗-algebra. It is not difficult
to verify that V⊗[τ⊗] is the completion of the locally convex space V⊗[τ⊗]. As
noted in Exercise 2.22, the completion of a topological ∗-algebra is not necessarily
an algebra. That is, the separate continuity of the multiplication is not sufficient for
extending the multiplication to the completion. In order to remedy this failure we use
Lemma 6.15(iii).

Clearly, the involution extends by continuity to V⊗. By Lemma 6.15(iii), the
multiplication is a continuous map of V k × Vm into V k+m , so it can be extended to a
continuousmap of V k × Vm into V k+m . From the definition of the topology it is clear
that this extension is consistent with restrictions to V r × V s , r ≤ k, s ≤ m. Therefore
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it follows easily that this extension defines a multiplication on V⊗ = ∑∞
n=0 ⊕ V n

such that V⊗[τ⊗] is a topological ∗-algebra. Thus we have
Proposition 6.16 V⊗[τ⊗] and V⊗[τ⊗] are topological ∗-algebras.
Definition 6.17 The topological ∗-algebra V⊗[τ⊗] is called the topological tensor
algebra of the topological ∗-vector space (V, τ ).

One of the most interesting and important examples of topological tensor algebras
is the field algebra S, which appears in algebraic quantum field theory.

Example 6.18 (Field algebra and tensor algebra over the Schwartz space S(Rd))
The locally convex space S(Rk) was defined in Example 3.11. First we introduce
the field algebra S and then we relate it to the tensor algebra V⊗ with V = S(Rd).

Fix d ∈ N. Set S0 := C and Sn := S(Rdn) for n ∈ N. Then the direct sum

S =
∞∑

n=0

⊕ Sn, (6.16)

equipped with the direct sum topology of locally convex spaces Sn , is a complete
locally convex space. The elements of S are finite sequences

f = ( f0, f1, . . . , fk, 0, . . .), g = (g0, g1, . . . , gm, 0, . . .), f j , g j ∈ S j .

By lengthy but straightforward computations one verifies that the vector space S
becomes a complex unital ∗-algebra, with multiplication f · g and involution f +
defined by

( f · g)n(x1, . . . , xn) :=
n∑

k=0

fk(x1, . . . , xk)gn−k(xk+1, . . . , xn), x j ∈ R
d ,

( f +)n(x1, . . . , xn), := fn(xn, . . . , x1), x j ∈ R
d ,

(with obvious interpretations for n = 0, k = 0, n = k), and a topological ∗-algebra
under the direct sum topology. The unit element of S is 1 = (1, 0, 0, . . .). This
topological ∗-algebra S is called the field algebra.

Suppose now that V is the topological ∗-vector space S(Rd) with involution

f +(x1, . . . , xd) := f (x1, . . . , xd).

Similarly as in Example 6.4, we identify
∑

i v
i
1 ⊗ · · · ⊗ vi

n ∈ Vn with the function

∑

i
vi
1(x1, . . . , xd) · · · vi

n(xd(n−1)+1, . . . , xdn) ∈ S(Rdn), x j ∈ R.

Then the vector space Vn becomes a subspace of S(Rdn) and V⊗ a ∗-subalgebra of
the field algebra S . It is known [Tr67, Theorem 51.6] that Vn is dense in S(Rdn) and
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that the “natural” topology of the Schwartz space S(Rdn), as described in Example
3.11, coincides with the topology τn on Vn . Taking these two facts for granted we
conclude that the topological tensor algebra V⊗[τ⊗] with V = S(Rd) coincides
with the field algebra S.

Each Schwartz space S(Rk), k ∈ N, is a nuclear Frechet space [Tr67, p. 530].
This implies that the standard locally convex topologies on any tensor product with
S(Rk) coincide [Tr67, Theorem 50.1]. The locally convex space V⊗[τ⊗] ∼= S with
V = S(Rd) is also a nuclear space. �

Finally, we turn to ∗-representations of the ∗-algebra V⊗. By Lemma 6.5, each ∗-
preserving linear map of V into L+(D) has an extension to a ∗-representation of V⊗.
Any counterpart of this simple fact for V⊗ would require additional considerations
concerning topologies on L+(D) that are beyond the scope of this book. Here we
will treat only representations of free field type, see also Exercise 9c.

Theorem 6.19 Let (V, τ ) be a topological ∗-vector space. Suppose 〈·, ·〉1 is an
inner product on V such that (6.8) holds and its norm is continuous on V [τ ]. Then,
for any real sequence (cn)n∈N0 , the ∗-representation π from Theorem 6.12 extends
by continuity to a ∗-representation, denoted again by π, of V⊗.

If the sequence (cn) is bounded and cn �= 0 for n ∈ N, then π is a bounded faith-
ful ∗-representation of V⊗ with cyclic vector 1 and the operator norm ‖π(·)‖ is
continuous on V⊗[τ⊗].

Since ‖ · ‖1 is continuous on V [τ ] and τ is defined by the directed family of
seminorms �, there are M > 0 and p0 ∈ � such that ‖v‖1 ≤ Mp0(v), v ∈ V . Then
‖v‖1 ≤ p(v), v ∈ V, for the τ -continuous seminorm p := Mp0. Further, in the nota-
tion of Sect. 6.4, we set Hm := ∑m

j=0 ⊕H j and bn := max{|c0|, . . . , |cn|}.
The main technical step of the proof is contained in the next lemma.

Lemma 6.20 ‖π(un)ϕ‖ ≤ (bm+n)
n‖ϕ‖ pn(un) for ϕ ∈ Hm and un ∈ Vn.

Proof Let n = 1 and v ∈ V . By (6.11), we have ‖A±(v)‖ ≤ ‖v‖1 ≤ p(v). Using
this inequality it follows from (6.12) that

‖π(v)ϕ‖ ≤ bm+1‖ϕ‖ p(v), ϕ ∈ Hm . (6.17)

Now suppose un ∈ Vn, n ≥ 2. Let un = ∑
i v

i
1 ⊗ · · · ⊗ vi

n with vi
1, . . . , v

i
n ∈ V .

Using (6.17) and the inequality b j ≤ bk for j ≤ k we derive for ϕ ∈ Hm ,

‖π(un)ϕ‖ =
∥
∥
∥π

(∑

i
vi
1 ⊗ · · · ⊗ vi

n

)
ϕ
∥
∥
∥ ≤

∑

i
‖π(vi

1) · · · π(vi
n)ϕ‖

≤
∑

i
bm+n p(vi

1) ‖π(vi
2) · · · π(vi

n)ϕ‖
≤ · · · ≤

∑

i
bm+nbm+n−1 · · · bm+1 p(v

i
1)p(v

i
2) · · · p(vi

n) ‖ϕ‖
≤ (bm+n)

n‖ϕ‖
∑

i
p(vi

1) · · · p(vi
n).
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Taking the infimum over all representations of un and inserting the definition (6.13)
of pn(un) the latter yields ‖π(un)ϕ‖ ≤ (bm+n)

n‖ϕ‖ pn(un). �
Proof of Theorem 6.19 By Lemma 6.20, the map un �→ π(un) of Vn[τn] into
(B(Hn,H(π)), ‖ · ‖) is continuous, so it has a unique extension to a continuous
map of V n into (B(Hn,H(π)), ‖ · ‖). We extend this map by linearity first to V⊗
and then to D = Lin {Hm : m ∈ N}. This extension to V⊗ is also denoted by π.

We show that π is a ∗-representation of V⊗ on D. We fix k, n,m ∈ N0 and let
uk ∈ Vk, wn ∈ Vn . Since π is a ∗-representation of V⊗ (by Theorem 6.12), we have

π(ukwn)ϕ = π(uk)π(wn)ϕ for ϕ ∈ Hm . (6.18)

Lemma 6.20 shows that each π(yi ), yi ∈ Vi , is a bounded operator of the Hilbert
spaceH j intoHi+ j and the operator norm is continuous on Vi [τi ]. Therefore, passing
to the limit and using Lemma 6.15(iii), Eq. (6.18) remains valid for uk ∈ V k, wn ∈
V n and the corresponding operator π(ukwn) = π(uk)π(wn) mapsHm intoHk+n+m .
Hence, by linearity, π is an algebra homomorphism of V⊗ into L+(D). Since π is
∗-preserving for V⊗ by Theorem 6.12, it is so for V⊗. Thus, π is a ∗-representation
of V⊗.

Suppose now that (cn) is bounded, say |cn| ≤ c, and cn �= 0 for n ∈ N0. Then
bn ≤ c and from Lemma 6.20 we obtain for u = (un) ∈ V⊗ and ϕ ∈ Hm ,

‖π(u)ϕ‖ ≤
∑

n
‖π(un)ϕ‖ ≤

(∑

n
cn pn(vn)

)
‖ϕ‖ = ‖u‖(cn)(p) ‖ϕ‖. (6.19)

Since D = ∪mHm , (6.19) holds for all ϕ ∈ D and shows that the operator π(u) is
bounded and satisfies ‖π(u)‖ ≤ ‖u‖(cn)(p). By continuity, the latter is valid for all
u ∈ V⊗ and the operator norm ‖π(·)‖ is continuous on V⊗[τ⊗].

Since π(V⊗)1 = V⊗ is dense, 1 is a cyclic vector. The proof of the assertion about
the faithfulness of π is verbatim the same as for V⊗, see Theorem 6.12. �

6.6 Exercises

1. Let V and W be ∗-vector spaces. Show that any ∗-preserving linear bijection of
V on W extends uniquely to a ∗-isomorphism of the ∗-algebras V⊗ and W⊗.

2. Write the free ∗-algebra C〈x1, . . . , xd , y1, . . . , yd |(xi )+ = yi , i = 1, . . . , d〉 as
a tensor algebra V⊗ of some ∗-vector space V .

3. Show that the ∗-algebras C〈x1, . . . , xd , y1, . . . , yd |(xi )+ = yi , i = 1, . . . , d〉
and C〈y1, . . . , y2d |(yi )+ = yi , i = 1, . . . , 2d〉 are ∗-isomorphic.

4. Show that each tensor algebra V⊗ or V⊗ has no divisor of zero.
5. When is a tensor algebra V⊗ commutative?
6. Show that the center of a tensor algebra V⊗ is C · 1 if and only if dim V ≥ 2.
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7. Let V⊗ be a tensor algebra and f = ( fn) ∈ ∑
(V⊗)2, f �= 0. We denote by l f

the smallest n for which fn �= 0 and bym f the largest n such that fn �= 0. Show
that both numbers l f and m f are even.

8. Show each ∗-representation π in Theorem 6.12 is self-adjoint.
9. Let (V, τ ) be a topological ∗-vector space.

a. Show themultiplication of V⊗[τ⊗] is jointly continuous (that is, the product
is a continuous map of V⊗[τ⊗] × V⊗[τ⊗] into V⊗[τ⊗]) if and only if the
locally convex topology τ on V can be given by a single norm.

b. Show that if dim V < ∞, then the topology τ⊗ is the finest locally convex
topology on the vector space V⊗.

c. LetH be a Hilbert space and let π be a continuous ∗-preserving linear map
of V [τ ] into (B(H), ‖ · ‖). Prove that π extends to a nondegenerate bounded
∗-representation of V⊗ on H.
Hint for c.: Mimic the proof of Lemma 6.20.

10. Show that the multiplication of the field algebra S is not jointly continuous.

6.7 Notes

The field algebra S was first treated in algebraic quantum field theory by Borchers
[B62] andUhlmann [U62]. Since then the field algebra and general topological tensor
algebras were studied in many papers of mathematical physics, see e.g. [B72, Yn73,
Lr74, Sch84, Ac82, DH89, Ho90] and the references therein.



Chapter 7
Integrable Representations
of Commutative ∗-Algebras

In Sect. 4.7, we listed a number of technical pecularities of unbounded represen-
tation theory. As a consequence, additional regularity conditions such as the self-
adjointness were invented to circumvent these difficulties. However, in contrast to
single operators, the self-adjointness of a representation is not enough to rule out
all pathologies. As shown in Sect. 7.2, for the (commutative!) ∗-algebra C[x1, x2],
there exist a self-adjoint irreducible representation acting on an infinite-dimensional
Hilbert space and a state which is not an integral of characters. In this chapter, we
develop a class of “well-behaved” representations, called integrable representations,
of commutative ∗-algebras which excludes such pathological phenomena.

In Sect. 7.3, we define integrable representations of commutative ∗-algebras and
prove our main results concerning these representations (Theorems 7.11, 7.14, and
7.20). In Sect. 7.4, we represent integrable representations of finitely generated com-
mutative ∗-algebras by spectral measures (Theorem 7.23) and apply this to moment
functionals. Section7.1 contains some technical operator-theoretic facts.

Throughout this chapter,A denotes a commutative unital complex ∗-algebra, all
∗-representations of A are nondegenerate, andD is a complex inner product space.

7.1 Some Auxiliary Operator-Theoretic Results

The following technical lemmas will be used in Sects. 7.3 and 9.4.

Lemma 7.1 Let x ∈ L+(D). If xx+ is essentially self-adjoint, then x+ = x∗.

Proof Since x+ ⊆ x∗, we have x+ ⊆ x∗. To prove that both closed operators are
equal it suffices to show that (0, 0) is the only element of the graph of x∗ that is
orthogonal to the graph of x+. Suppose (ζ, x∗ζ ) is orthogonal to the graph of x+ in
H ⊕ H. This means that 〈ζ, η〉 + 〈x∗ζ, x+η〉 = 0 for all η ∈ D. Since x ∈ L+(D)
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and x+η ∈ D, we have 〈x∗ζ, x+η〉 = 〈ζ, xx+η〉, so that 〈ζ, (I + xx+)η〉 = 0 for
η ∈ D. Since xx+ ≥ 0 on D and xx+ is essentially self-adjoint, it follows from
Proposition A.1 that (I + xx+)D is dense inH. Hence ζ = 0. �

Recall that a densely defined linear operator x on a Hilbert space H is called
formally normal if D(x) ⊆ D(x∗) and ‖xϕ‖ = ‖x∗ϕ‖ for all ϕ ∈ D(x).

A formally normal operator x is normal if D(x) = D(x∗).

Lemma 7.2 Let x1 and x2 be commuting symmetric operators of L+(D) and set
x := x1 + ix2. Then:

(i) The operator x is formally normal.
(ii) The operator x is normal if and only if x+ = x∗. In this case, x1 and x2 are

strongly commuting self-adjoint operators.
(iii) If the operator xx+ is essentially self-adjoint, then x is normal and xx+ =

x x+ = (x)∗ x.

Proof (i): Using that x1 and x2 are commuting symmetric operators we compute

〈(x1 ± ix2)ϕ, (x1 ± ix2)ϕ〉 = ‖x1ϕ‖2 + ‖x2ϕ‖2 ± i〈x2ϕ, x1ϕ〉 ∓ i〈x1ϕ, x2ϕ〉
= ‖x1ϕ‖2 + ‖x2ϕ‖2 ± i〈(x1x2 − x2x1)ϕ, ϕ〉 = ‖x1ϕ‖2 + ‖x2ϕ‖2 (7.1)

for ϕ ∈ D. Since x+ = x1 − ix2 ⊆ x∗, (7.1) yields ‖xϕ‖ = ‖x+ϕ‖ = ‖x∗ϕ‖.
From this it follows that D(x) = D( x+ ) ⊆ D(x∗) and ‖x ψ‖ = ‖x∗ψ‖ for
all ψ ∈ D(x). Therefore, since (x)∗ = x∗, the operator x is formally normal.

(ii): First suppose that x is normal. Then D(x) = D(x∗). Since x+ ⊆ x∗ and
D(x) = D( x+ ) by the proof of (i), we haveD( x+ ) = D(x∗) and hence
x+ = x∗.
Further, since x is normal, it is known that

a1 := ( x + x∗ )/2 and a2 := ( x − x∗ )/2i

are strongly commuting self-adjoint operators (see [Sch12, Proposition 5.30]).
From x = x1 + ix2 and x+ = x1 − ix2 ⊆ x∗ we obtain x j ⊆ a j and hence
x j ⊆ a j for j = 1, 2. The inequality ‖x jϕ‖ ≤ ‖xϕ‖ by (7.1) implies D(x) ⊆
D(x j ). By definition, D(x) = D((x)∗) is a core for a j , that is, a j�D(x) = a j .
Therefore, since D(x) ⊆ D(x j ) and x j ⊆ a j , it follows that x j = a j�D(x j ) =
a j . Thus, x1 = a1 and x2 = a2 are strongly commuting self-adjoint operators.
Conversely, assume that x+ = x∗. As noted in the proof of (i),D(x) = D( x+ ).
Hence, since x+ = x∗, we have D(x) = D(x∗) = D((x)∗). Therefore, since
x is formally normal by (i), the latter implies that x is normal.

(iii): Suppose xx+ is essentially self-adjoint. Then, by Lemma 7.1 and (i), x is
normal. Hence x (x)∗ = (x)∗ x [Sch12, Proposition 3.25]. The closed sym-
metric operator x (x)∗ is an extension of xx+ and hence of xx+. Therefore,
since xx+ is self-adjoint by assumption, xx+ = x (x)∗. These relations give
the assertion. �
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Lemma 7.3 Let x and y be commuting symmetric operators of L+(D) such that
〈xϕ, ϕ〉 ≥ 0 for ϕ ∈ D. Suppose there exists a constant c > 0 such that

‖ϕ‖ + ‖yϕ‖ ≤ c‖xϕ‖ for ϕ ∈ D. (7.2)

Then, if x is self-adjoint, so is y.

Proof By Proposition A.1, it suffices to show that ker (y∗ − λ iI ) = {0} for nonzero
λ ∈ R. Let ξ ∈ ker (y∗ − λ iI ).

Clearly, (7.2) implies that ‖xψ‖ ≥ c−1‖ψ‖, ψ ∈ D(x). Hence, since x ≥ 0 and
x is self-adjoint by assumption, we have x ≥ c−1 I . Therefore, xD is dense in H
by Proposition A.1(iv), applied to the positive operator T = x − c−1 I and z = c−1.
In particular, there exists a sequence (ηn) of vectors ηn ∈ D such that limn xηn = ξ .
From (7.2) it follows that the sequences (ηn) and (yηn) converge, say η = limn ηn .
Then x η = limn xηn = ξ and y η = limn yηn . Since (y)∗ξ = y∗ξ = λ i ξ , we get

lim
n

〈(y + λ i)ηn, xηn〉 = 〈y η + λ i η, ξ 〉 = 〈η, (y)∗ξ − λ iξ 〉 = 0. (7.3)

Using the assumption that x and y commute we obtain

0 = 〈(xy−yx)ηn, ηn〉 = 〈(y + λ i)ηn, xηn〉 − 〈xηn, (y + λ i)ηn〉 − 2λ i〈xηn, ηn〉.

The first two terms converge to zero (by (7.3)) and the last to −2λ i〈x η, η〉. Thus,
〈x η, η〉 = 0, because λ �= 0. Since the self-adjoint operator x satisfies x ≥ c−1 I , we
obtain η = 0 and ξ = x η = 0. This proves that y is self-adjoint. �
Lemma 7.4 Suppose that A is a self-adjoint operator on a Hilbert space H and
D ⊆ D(A) is a dense linear subspace of H. If D is invariant under the unitary group
U (t) = ei t A, t ∈ R, then A�D is essentially self-adjoint, that is, A�D = A.

Proof [Sch12, Proposition 6.3]. �

7.2 “Bad” Representations of the Polynomial Algebra
C[x1, x2]

In this section, A denotes the polynomial ∗-algebra C[x1, x2]. Our aim is to develop
two examples, which show pathological behavior of representations of A.

Example 7.5 (“Bad” representations: failure of positivity)
Let p0 ∈ C[x1, x2] be a polynomial which is nonnegative on R

2, but not in
∑

A2.
(For instance, we may take the Motzkin polynomial from Example 2.30.)

Statement 1: There exists a state f on A such that f (p0) < 0.
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Proof The cone
∑

A2 is closed in the finest locally convex topology on A. This
follows from Theorem 10.36 below. (We prove this result only in Sect. 10.7 after
Chap.9 in order to cover enveloping algebras as well.) By the separation of convex
sets (Proposition C.2), applied to the closed (!) cone

∑
A2 and the singleton {p0},

there exists an R-linear functional g : Aher → R such that g(p0) < 0 and g(p) ≥ 0
for all p ∈ ∑

A2. We extend g to a C-linear functional, denoted also by g, on A by
setting g(p1 + ip2) := g(p1) + ig(p2), p1, p2 ∈ Aher. Then g(1) �= 0, since g(1) =
0 implies g = 0 by the Cauchy–Schwarz inequality, which contradicts g(p0) < 0.
Setting f := g(1)−1g, f is a state on A and f (p0) < 0. �
Statement 2: The state f from Statement 1 is not an integral over hermitian
characters of the ∗-algebra A.

Proof Each hermitian character χ of A is a point evaluation at some point t ∈ R
2,

that is, χ(p) = p(t), p ∈ A. If f were an integral over hermitian characters, then
we would have f (p0) ≥ 0, since p0(t) ≥ 0. This contradicts the choice of f . �
Statement 3: There exists a pure state on A which is not a hermitian character.

Proof By Corollary 5.37, f is an integral over pure states. From Statement 2 it
follows that not all of them can be hermitian characters of A. �

Let π f be the GNS representation of f . Since 〈π f (p0)ϕ f , ϕ f 〉 = f (p0) < 0, the
operator π f (p0) is not nonnegative, though the polynomial p0 is nonnegative onR2.
That is, π f is a “bad” representation in the sense that it does not respect the natural
positivity of polynomials on R

2. One may express the assertion of Statement 2 by
saying that f is a “bad” state on A. �
Example 7.6 (“Bad” representations: failure of strong commutativity)
Let D(π) be the set of functions ϕ ∈ C∞

0 (X ), where X := R
2\{(0, x2) : x2 ≥ 0},

such that ∂k

∂xk
1

∂ lϕ

∂xl
2

∈ H := L2(R2) for k, l ∈ N0 and the limits ∂kϕ

∂xk
1
(±0, x2) exist and

satisfy

∂kϕ

∂xk
1

(+0, x2) = −∂kϕ

∂xk
1

(−0, x2) for x2 > 0, k ∈ N0.

We define a ∗-representation π of A = C[x1, x2] on the domain D(π) by π(1) = I ,

π(x1) = −i
∂

∂x1
, π(x2) = −i

∂

∂x2
.

Sinceπ(x1) andπ(x2) are commuting symmetric operators leaving the domainD(π)

invariant, this gives indeed a ∗-representation of C[x1, x2].
Define one-parameter unitary groups onH by (U2(t)ϕ)(x1, x2) = ϕ(x1, x2+t),

(U1(t)ϕ)(x1, x2) =
{− ϕ(x1 + t, x2) if x2 > 0 and x1 < 0, x1 + t > 0 or x1 > 0, x1 + t < 0

ϕ(x1 + t, x2) otherwise

}

.
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That is, U1 is the left translation parallel to the x1-axis such that the function is mul-
tiplied by −1 when the positive x2-axis is crossed. By Stone’s theorem (Proposition
A.5), there are self-adjoint operators A1 and A2 on H such that U1(t) = eit A1 and
U2(t) = eit A2 , t ∈ R.

Statement 1: π∗ is a self-adjoint ∗-representation of C[x1, x2]. Moreover, we have
A j = π(x j ) = π∗(x j ) for j = 1, 2.

Proof From the definitions of the unitary groups it follows that A jϕ = −i ∂ϕ

∂x j
=

π(x j )ϕ for j = 1, 2 and ϕ ∈ D(π).
Let j ∈ {1, 2}. We denote by D j the set of functions of D(π) which vanish in

some neighborhood of the x j -axis. ThenD j is a dense linear subspace ofH which is
invariant under the unitary group U j (t). Therefore, by Lemma 7.4,D j , henceD(π),
is a core for A j . Since A j�D(π) = π(x j ), this implies A j = π(x j ). Hence π∗ is
self-adjoint by Theorem 4.18(iii) and π∗(x j ) = π(x j ) by Theorem 4.18(ii). (If we
use [Sch12, Exercise 6.3] or Proposition 9.32 below instead of Lemma 7.4 we even
obtain An

j = π(xn
j ), j = 1, 2, for all n ∈ N.) �

Statement 2: (I − U1(−t)U2(−s)U1(t)U2(s))ϕ = 2χts ·ϕ for ϕ ∈ H, t > 0, s > 0,
where χts is the characteristic function of the rectangle [0, t] × (0, s].
Proof The formula follows by a simple computation; we omit the details. �
Statement 3: π∗ is irreducible.

Proof Let T ∈ π∗(A)′s. Then T ∈ {π∗(x j )}′s for j = 1, 2. From Lemma 3.16(i)
it follows that T commutes with the self-adjoint operator π∗(x j ) = A j

(by Statement 1) and hence with the unitary groupU j . Then, by Statement 2, T com-
mutes with all multiplication operators by characteristic functions χts for t > 0,
s > 0 and similarly for the other cases of real values of s, t . This implies that T
commutes with the von Neumann algebra L∞(R2) on L2(R2). Since L∞(R2) =
L∞(R2)′, T is a multiplication operator by some function ψ ∈ L∞(R2). Using once
again that T commutes with U1 and U2 we conclude that ψ is constant a.e. on R

2.
Thus T = λ · I for some λ ∈ C, so π∗ is irreducible by Proposition 4.26. �

By Statements 1 and 2, π∗ is a self-adjoint ∗-representation of C[x1, x2] for
which the operators π∗(x1) and π∗(x2) are self-adjoint, but the corresponding uni-
tary groups U1 and U2 do not commute. Hence the self-adjoint operators π∗(x1)
and π∗(x2) do not strongly commute. Further, π∗ is an irreducible self-adjoint
∗-representation of the commutative ∗-algebra C[x1, x2] acting on an infinite-
dimensional Hilbert space. In order to exclude such pathological behavior, a stronger
notion than self-adjointness is needed. �

In the preceding example, we constructed a self-adjoint ∗-representation π∗ of
C[x1, x2] such that the bicommutant π∗(C[x1, x2])′′ := (π∗(C[x1, x2])′s)′ is the von
Neumann algebra B(L2(R2)). Here B(L2(R2)) can be replaced by an arbitrary prop-
erly infinite von Neumann algebra on a separable Hilbert space. More precisely, the
following result was proved in [Sch86] (see also [Sch90, Theorem 9.4.1]):
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Suppose N is a properly infinite von Neumann algebra on a separable Hilbert
space H. There exists a self-adjoint ∗-representation ρ of C[x1, x2] on H such that
ρ(C[x1, x2])′′ = N and the operators ρ(xn

j ), j = 1, 2, n ∈ N, are self-adjoint.

7.3 Integrable Representations of Commutative ∗-Algebras

The following definition introduces the two fundamental notions of this chapter.

Definition 7.7 Let π be a ∗-representation of the commutative unital complex ∗-
algebra A. We shall say that
• integrable if π is closed and

π(a+) = π(a)∗ for all a ∈ A, (7.4)

• subintegrable if there exists an integrable representation ρ of A such that π ⊆ ρ.

An explanation of the name “integrable” in case of the polynomial algebra
C[x1, . . . , xd ] will be given in Corollary 9.28.

To find reasonable sufficient conditions for subintegrability is an important and
difficult problem. For instance, the GNS representation of a positive functional on the
polynomial algebra Cd [x] is subintegrable if and only if the corresponding moment
problem is solvable, as shown by Corollary 7.27 below.

Remark 7.8 1. Since π(a+) ⊆ π(a)∗ and hence π(a+) ⊆ π(a)∗ holds for any
∗-representation π , condition (7.4) in Definition 7.7 can be replaced by

π(a)∗ ⊆ π(a+) for a ∈ A. (7.5)

2. Clearly, a ∗-representation of A is integrable if and only if the O∗-algebra
π(A) is closed and x+ = x∗ for all operators x ∈ π(A). Hence the integrability of
a ∗-representation depends only on the O∗-algebra π(A). That is, if π1 and π2 are
∗-representations of commutative unital ∗-algebras A1 and A2 such that π1(A1) =
π2(A2), then π1 is integrable if and only if π2 is integrable. �
Proposition 7.9 Each integrable ∗-representation of A is self-adjoint.

Proof Using condition (7.4) and the assumption that π is closed we obtain

D(π) = D(π) = ∩a∈A D(π(a)) = ∩a∈A D(π(a+)∗) = D(π∗). �
Example 7.10 (Algebras of measurable functions: Example 4.21 continued)
Let π be the ∗-representation of the ∗-algebra A from Example 4.21.

Statement: π is integrable.
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Proof Suppose f ∈ A. As noted in Example 4.21, we have π( f )∗ψ = f · ψ for
ψ ∈ D(π( f )∗) = {ψ ∈ L2(Rd;μ) : f · ψ ∈ L2(Rd;μ)}.

Fix ψ ∈ D(π( f )∗). Let (χKn )n∈N be a sequence of characteristic functions of
compact subsets Kn of Rd such that ∪n Kn = R

d . Set ψn := χKn ψ . Clearly, we
have ψn ∈ D(π). Since | f ψn − f ψ | ≤ 2| f ψ | on R

d and f ψ ∈ L2(Rd;μ),
we conclude from Lebesgue’s dominated convergence theorem that ψn → ψ and
π( f +)ψn = f · ψn → f · ψ in L2(Rd;μ). Hence we have ψ ∈ D( π( f +) ) and
π( f +) ψ = f · ψ = π( f )∗ψ , so that π( f )∗ ⊆ π( f +). Since π is self-adjoint
(Example 4.21), π is integrable by Remark 7.8.1. � �
Theorem 7.11 For each ∗-representation π of A the following are equivalent:

(i) The closure π of π is integrable.
(ii) The operator π(a) is normal for any a ∈ A.
(iii) The operator π(a) is self-adjoint for any a ∈ Aher.
(iv) π(a1) and π(a2) are strongly commuting self-adjoint operators for any

a1, a2 ∈ Aher.

Proof Since π(a) = π(a) for a ∈ A, we can assume without loss of generality
that π is closed. Let a ∈ A. We write a = a1 + ia2, a1, a2 ∈ Aher, and apply Lemma
7.2 with x1 := π(a1), x2 := π(a2). Then Lemma 7.2(ii) yields (i)↔(ii)→(iv), while
Lemma 7.2(iii) gives (iii)→ (ii). The implication (iv)→(iii) is trivial. �
Corollary 7.12 Every closed ∗-representation of a hermitian ∗-algebra (see
Definition 2.69) is integrable.

Proof By Corollary 4.12, condition (iii) of Theorem 7.11 is satisfied. �
Recall that for the self-adjoint ∗-representation π∗ in Example 7.6 the self-adjoint

operators π∗(x) and π∗(y) do not commute strongly. Hence π∗ is not integrable
by Theorem 7.11(iv), so the converse of Proposition 7.9 is not true.

Next we characterize integrable representations in terms of affiliated operators
(Appendix B) with abelian von Neumann algebras. First we prove a simple lemma.

Lemma 7.13 Let B be a subset of Aher such that B ∪ {1} generates A as a ∗-algebra
and let π be a ∗-representation ofA. Suppose π(b1) and π(b2) are strongly commut-
ing self-adjoint operators for all b1, b2 ∈ B. Then π(A)′w is a von Neumann algebra
with abelian commutant. Moreover, π(A)′w = ∩b∈B

{
π(b)

}′
s.

Proof Let E(λ; b), λ ∈ R, denote the spectral projections of the self-adjoint operator
π(b). Since B ⊆ Aher, A is also generated as an algebra by B ∪ {1}. Hence π(A)′w =
∩b∈B { π(b) }′w by Corollary 4.17. Since π(b) is self-adjoint, we have {π(b)}′w =
{π(b)}′s = {E(λ; b) : λ ∈ R}′ by Lemma 3.16(iv). Therefore, we obtain π(A)′w =
{E(λ; b) : λ ∈ R, b ∈ B}′. The latter set is a von Neumann algebra. Its commutant
is the von Neumann algebra generated by E(λ; b), λ ∈ R, b ∈ B. Since the spectral
projections E(λ1; b1) and E(λ2; b2) commute by the strong commutativity of π(b1)
and π(b2), this von Neumann algebra is abelian. �
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Theorem 7.14 For any ∗-representation π of A the following are equivalent:

(i) The closure π of π is integrable.
(ii) π is self-adjoint and the von Neumann algebra (π(A)′w)′ is abelian.
(iii) The von Neumann algebra (π(A)′sym)′ is abelian.

(iv) There exists an abelian von Neumann algebra N such that π(a) is affiliated
with N for all a ∈ A.

(v) There exists an abelian von Neumann algebra N such that π(a) is affiliated
with N for all a ∈ Aher.

In particular, we can take N := (π(A)′w)′ in (iv) and (v).

Proof All conditions are preserved if π is replaced by its closure, so we can assume
without loss of generality that π is closed.

(i)→(ii): From Theorem 7.11,(i)→(iv), it follows that π satisfies the assumptions
of Lemma 7.13 withB = Aher. Therefore, (π(A)′w)′ is an abelian von Neumann alge-
bra. By Proposition 7.9, π is self-adjoint.

(ii)→(iii): Since π is self-adjoint, π(A)′sym = π(A)′w by Proposition 3.17(iii).
(iii)→(iv): By Proposition 3.17(ii), we can take N := (π(A)′sym)′.
(iv)→(v) is trivial.
(v)→(i): Any closed symmetric operator affiliated with an abelian von Neumann

algebra is self-adjoint [KR83, Theorem 5.6.15, (vii)]. Hence, for a ∈ Aher, the oper-
ator π(a) is self-adjoint and the assertion follows from Theorem 7.11,(iii)→(i). �
Corollary 7.15 Suppose π is an integrable ∗-representation ofA. If π is irreducible,
then the Hilbert space H(π) is one-dimensional.

Proof Since π is irreducible and self-adjoint, π(A)′ = C · I by Proposition 4.26
and hence π(A)′′ = B(H(π)). On the other hand, because π is integrable, π(A)′′ is
abelian by Theorem 7.14(ii). This implies that H(π) has dimension one. �

The preceding results are mainly of theoretical importance. To verify that a ∗-
representation is integrable it is useful to have criteria involving algebra generators.

Theorem 7.16 Let B be a subset of Aher such that the ∗-algebra A is generated
by the set B ∪ {1} and let π be a ∗-representation of A. Suppose π(b1) and π(b1)
are strongly commuting self-adjoint operators for all b1, b2 ∈ B. Then π∗ is an
integrable ∗-representation of A. Moreover, π∗(A)′w = ∩b∈B

{
π(b)

}′
.

Proof Since B ⊆ Aher, the set B ∪ {1} generates A as an algebra. Thus, by Theorem
4.18, π∗ is self-adjoint. The relations π(b) ⊆ π∗(b) ⊆ π(b)∗ = π(b) imply that
π∗(b) = π(b) for b ∈ B. Hence Lemma 7.13 applies to π∗. It gives the description
of the weak commutant π∗(A)′w and implies that π∗(A)′w is a von Neumann algebra
with abelian commutant. Therefore, π∗ is integrable by Theorem 7.14(ii). �
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Corollary 7.17 Let B and A be as in Theorem 7.16. Suppose in addition that π is
a self-adjoint ∗-representation of A. Then π is integrable if and only if π(b1) and
π(b1) are strongly commuting self-adjoint operators for all b1, b2 ∈ B.

Proof Since π = π∗ by assumption, Theorem 7.16 yields the if part, while the only
if part follows from Theorem 7.11(iv). �
Proposition 7.18 Any self-adjoint subrepresentation of an integrable representation
is integrable.

Proof Letπ be a self-adjoint subrepresentation of the integrable representationρ. By
Corollary 4.31, ρ decomposes as a direct sum ρ = π ⊕ π0. Clearly, ρ(a+) = ρ(a)∗
implies that π(a+) = π(a)∗. Sinceπ is self-adjoint and hence closed,π is integrable
by Definition 7.7. �

The following example shows that the main sufficient condition for integrability
in Theorem 7.16 is not necessary.

Example 7.19 Let π1 be a ∗-representation of C[x] such that π1(x) is self-adjoint,
but π1(x2) and π1(x2 + x) are not self-adjoint; the representation π1 in Example
4.20 has this property. We define a ∗-representation π of the ∗-algebra C[x1, x2]
on D(π) = D(π1) by π(x1) = π1(x2), π(x2) = π1(x2 + x). Since π1(x) is self-
adjoint, π∗

1 is an integrable representation of C[x] by Theorem 7.16. Therefore,
since π(C[x1, x2]) = π1(C[x]), we have π∗(C[x1, x2]) = π∗

1 (C[x]), so π∗ is an
integrable ∗-representation of C[x1, x2] by Remark 7.8.1.

But π(x1) = π1(x2) and π(x2) = π1(x2 + x) are not self-adjoint. Thus, forB =
{x1, x2} the assumption in Theorem 7.16 does not hold. �

The next theorem shows that GNS representations of A+-positive functionals are
subintegrable. From (2.56) we recall that

A+ := {
a ∈ Aher : χ(a) ≥ 0 for χ ∈ Â

}
.

Clearly, A+ is a quadratic module of A.

Theorem 7.20 Suppose f is an A+-positive linear functional on A. Then the GNS
representation π f has an extension to an integrable A+-positive ∗-representation of
A on a possibly larger Hilbert space.

If f is a state and an extreme point of the A+-positive states, then f is a hermitian
character and hence a pure state of A.

Proof We fix a set {y j : j ∈ J } of hermitian generators of the ∗-algebra A. Let
P be the free commutative unital ∗-algebra generated by hermitian indeterminants
x j , j ∈ J . Further, let R denote the free commutative unital ∗-algebra generated
by the indeterminants x j and the inverses (p ± i)−1 for p = p+ ∈ P. The elements
of P are complex polynomials in x j . There is a surjective unital ∗-homomorphism
θ : P → A given by θ(x j ) = y j , j ∈ J , and P is a ∗-subalgebra of R. Clearly, any
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characterχ ofP is determined by its values λ j = χ(x j ) ∈ R, j ∈ J , and for arbitrary
real numbers λ j , j ∈ J, there is a characterχ ofP such thatχ(x j ) = λ j , j ∈ J . Each
character of P extends uniquely to a character of R. Let QR denote the quadratic
module of elements b ∈ Rher such that χ(b) ≥ 0 for all characters χ ∈ R̂ for which
there is a character χ ′ ∈ Â satisfying χ(x j ) = χ ′(y j ), j ∈ J . Set QP = QR ∩ Pher.

We define a linear functional fP on P by fP(·) = f (θ(·)). Since f isA+-positive,
it follows from the definition of the quadratic module QP ofP that fP is QP-positive.
It is easy to verify that P is cofinal inRwith respect to the cone

∑
R2 and hence also

with respect to the larger cone QR. Therefore, by Proposition C.4, fP extends to a
QR-positive linear functional fR on the larger ∗-algebra R. The GNS representation
π fR of this positive functional fR on R will be crucial in what follows.

Let p ∈ P be such that θ(p) = 0. Using that A is commutative, we derive for
q ∈ R,

‖π fR(p)π fR(q)ϕ fR‖4 = fR((pq)+ pq)2 = fR(p+ pq+q)2

≤ fR((p+ p)2) fR((q+q)2) = fP((p+ p)2) fR((q+q)2)

= f (θ((p+ p)2)) fR((q+q)2) = f (θ(p+)2θ(p)2) fR((q+q)2) = 0.

Therefore, ρ(θ(p)) := π fR(p), p ∈ P, gives a well-defined (!) ∗-representation ρ of
A on the domain D(π fR). Let p = p+ ∈ P. Since (p ± i)−1 ∈ R, it follows from
Lemma 4.11 that π fR(p) is self-adjoint. Thus, since Aher = θ(Pher), ρ(a) is self-
adjoint for all a ∈ Aher. Hence π := ρ is integrable by Theorem 7.11.

Let a ∈ A. We choose an element p ∈ P such that a = θ(p). Then

f (a) = fP(p) = 〈π fR(p)ϕ fR , ϕ fR〉 = 〈ρ(a)ϕ fR , ϕ fR〉 = 〈π(a)ϕ fR , ϕ fR〉.

Hence theGNS representationπ f ofA is unitarily equivalent to the subrepresentation
π�π(A)ϕ fR . For notational simplicity, we identifyπ f with this subrepresentation and
ϕ fR with ϕ f . Then π is an integrable extension of π f .

Next we prove that π is A+-positive. Let a ∈ A+. Then, by the definition of QP,
a = θ(p) for some p ∈ QP. For q ∈ P we derive

〈ρ(a)π fR(q)ϕ fR , π fR(q)ϕ fR〉 = 〈π fR(p)π fR(q)ϕ fR , π fR(q)ϕ fR〉 = fR(q+ pq) ≥ 0,

since q+ pq ∈ QR and fR is QR-positive. Thus, ρ(a) ≥ 0. Hence π(a) = ρ(a) ≥ 0.
This completes the proof of the first assertion. The second assertion is only a

restatement of Corollary 2.64. In the following we give another proof of this result.
Assume now that f is a state and an extreme point of the set of A+-positive states.

Since π is self-adjoint, π(A)′ ≡ π(A)′s = π(A)′w = π(A)′sym is a von Neumann
algebra by Proposition 3.17. Let e be a projection of π(A)′ and set T := Pe�H(π f ),
where P is the projection ofH(π) on H(π f ). For a ∈ A and ψ ∈ D(π f ) ⊆ D(π),

T π f (a)ψ = Peπ(a)ψ = Pπ(a)eψ = (π f )
∗(a)Peψ = (π f )

∗(a)T ψ.
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Here, since π f ⊆ π ⊆ π∗, the third equality follows fromLemma 4.4(i). This proves
T ∈ π f (A)′w. Clearly, 0 ≤ T ≤ I on H(π f ). For a ∈ A, we derive

fT (a) = 〈T π f (a)ϕ f , ϕ f 〉 = 〈Peπ f (a)ϕ f , ϕ f 〉 = 〈eπ f (a)ϕ f , Pϕ f 〉
= 〈e2π(a)ϕ fR , ϕ fR〉 = 〈π(a)eϕ fR , eϕ fR〉. (7.6)

Since eϕ fR ∈ D(π) and π is A+-positive as shown above, (7.6) implies that fT

is A+-positive and fT (1) = ‖eϕ fR‖2. Replacing e by I − e it follows that f I−T is
also A+-positive and f I−T (1) = ‖(I − e)ϕ fR‖2 = 1 − ‖eϕ fR‖2. If eϕ fR = 0, then
fT = 0 by (7.6) and hence T = 0. Similarly, (I − e)ϕ fR = 0 implies I − T = 0.
Nowsuppose both vectors eϕ fR and (I − e)ϕ fR are nonzero and set T1 := ‖eϕ fR‖−2T
and T2 := ‖(I − e)ϕ fR‖−2(I − T ). Then

‖eϕ fR‖2 fT1 + ‖(I − e)ϕ fR‖2 fT2 = fT + f I−T = f

represents f as a convex combination of two A+-positive states fT1 and fT2 . Since
f is an extreme point of the A+-positive states, there exists a λ ∈ [0, 1] such that
fT = λ f and hence T = λ · I . Thus, in any case, T = λ · I with λ ∈ [0, 1].
Next, since π is integrable,N := (π(A)′sym)′ is an abelian von Neumann algebra

by Theorem 7.14, so N ⊆ N ′ = π(A)′sym. Thus, if e ∈ N is a projection, then we
have e ∈ π(A)′sym and hence T = Pe�H(π f ) = λ · I , as shown in the preceding
paragraph. Therefore, sinceN is generated by its projections, PN �H(π f ) = C · I .

Fix a = a+ ∈ A. Recall from Proposition 3.17(iv) that the operator π(a) is
affiliated with the von Neumann algebra N . Let en denote the spectral projec-
tion of the self-adjoint operator π(a) for the interval [−n, n]. Then π(a) en is a
bounded operator. It belongs to N , because π(a) is affiliated with N , so there is
a real number λn such that P(π(a)en)ϕ = λnϕ, ϕ ∈ H(π f ). For any ϕ ∈ D(π f ),
we have ϕ ∈ D(π) ∩ H(π f ) and limn(π(a)en)ϕ = π(a) ϕ = π(a)ϕ. Therefore, it
follows that Pπ(a)ϕ = λϕ, ϕ ∈ D(π f ), for some λ ∈ R.

The result of the preceding paragraph implies that Pπ(A)�D(π f ) = C · ID(π f ).
On the other hand, Pπ∗(a) ⊆ (π f )

∗(a)P for a ∈ A by Lemma 4.4(i). Hence,
Pπ(a)ϕ = (π f )

∗(a)ϕ = π f (a)ϕ for ϕ ∈ D(π f ). Combining both facts, we con-
clude that π f (A) = C · ID(π f ). Thus, for each a ∈ A there is a unique λ(a) ∈ C

such that π f (a) = λ(a) · ID(π f ). Then λ(a) = 〈π f (a)ϕ f , ϕ f 〉 = f (a), because f is
a state. Since π f is an algebra homomorphism, so is λ(·) = f (·). That is, the state
f is a hermitian character and hence a pure state by Corollary 2.61. �
Corollary 7.21 Suppose the quadratic module A+ has a countable A+-dominating
subset Q0 (that is, given a ∈ Aher, there exist an element c ∈ Q0 and a number λ > 0
such that λc − a ∈ A+). Then each A+-positive functional f on A is an integral over
hermitian characters.

Proof Theorem 5.35 applies to Q := A+ and implies that f is an integral over
Q∧-extremal states. These are extreme points of the A+-positive states and hence
hermitian characters by the second assertion of Theorem 7.20. �
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Corollary 7.22 Each A+-positive linear functional on a countably generated ∗-
algebra A is an integral over hermitian characters.

Proof Since
∑

A2 admits a countable dominating subset, as shown in the proof of
Corollary 5.37, so does A+. Hence the assertion follows from Corollary 7.21. �

Note that if the set Â is empty (see, for instance, Example 2.68), we obviously
have A+ = Aher and there is no nonzero A+-positive functional on A.

At the end of the next section, we will use the spectral theorem to study decom-
positions of positive functionals as integrals over hermitian characters.

7.4 Spectral Measures of Integrable Representations

In this section, A is a finitely generated commutative complex unital ∗-algebra.
The main result of this section associates a spectral measure with each integrable

representation of A. The proof is based on the multi-dimensional spectral theorem
(Proposition A.4).

From Sect. 2.7 we recall some simple facts on the set Â of hermitian characters
of A. Let us fix a set {a1, . . . , ad} of hermitian generators of A. Then each χ ∈ Â
is uniquely determined by the point λχ := (χ(a1), . . . , χ(ad)) ∈ R

d . We identify χ

with λχ , so Â becomes a real algebraic subset ofRd , see formula (2.58).We equipp Â
with the induced topology from R

d . It is not difficult to show that this is the weakest
topology for which all functions fa(χ) := χ(a), a ∈ A, on Â are continuous. In
particular, Â is closed in Rd and hence locally compact.

Theorem 7.23 Suppose π is an integrable representation of the finitely generated
commutative unital ∗-algebra A.

(i) There exists a unique spectral measure Eπ on Â, called the spectral measure
associated with π , such that for all a ∈ A and ϕ ∈ D(π) we have:

π(a) =
∫

Â
χ(a) d Eπ (χ), (7.7)

〈π(a)ϕ, ϕ〉 =
∫

Â
χ(a) d〈Eπ (χ)ϕ, ϕ〉. (7.8)

(ii) The spectral projections Eπ (·) leave the domain D(π) invariant. Further, if
{a1, . . . , ad} are hermitian generators of the ∗-algebra A, then

D(π) =
d⋂

j=1

D∞( π(a j ) ). (7.9)
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(iii) Let Q be a quadratic module of A. If π(c) ≥ 0 for c ∈ Q, then Eπ is supported
on the closed subset Â(Q)+ of Â ⊆ R

d , where

Â(Q)+ :=
{
χ ∈ Â : χ(c) ≥ 0 for c ∈ Q

}
. (7.10)

Proof (i): Since π is integrable, A j := π(a j ), j = 1, . . . , d, are pairwise strongly
commuting self-adjoint operators by Theorem 7.11. Hence, by Proposition A.4,
there exists a spectral measure Eπ on the Borel σ -algebra of Rd such that

A j = π(a j ) =
∫

Rd

λ j d Eπ (λ1, . . . , λd), j = 1, . . . , d. (7.11)

Leta ∈ A. There exists a polynomial p ∈ Cd [x] such thata = p(a1, . . . , ad). Let
I(p) := ∫

Rd p(λ) d Eπ (λ) denote the corresponding spectral integral (Appendix
A). It follows from (7.11) that

π(a) = π(p(a1, . . . , ad)) = p(π(a1), . . . , π(ad)) ⊆ I(p).

Hence π(a) ⊆ I(p). The operator π(a) is normal byTheorem7.11. The spectral
integral I(p) is also normal [Sch12, Theorem 4.16(iv)]. Since normal operators
are maximal normal, both operators coincide:

π(a) = π(p(a1, . . . , ad)) = I(p) =
∫

Rd

p(λ) d Eπ (λ). (7.12)

Now we prove that the spectral measure Eπ is supported on Â ⊆ R
d . Let

λ0 ∈ supp Eπ and assume to the contrary that λ0 /∈ Â. The finitely generated
commutative complex unital ∗-algebra A is ∗-isomorphic to a quotient algebra
Cd [x]/J and Â is the zero set of the ideal J , see (2.58). Since λ0 /∈ Â, there
exists a polynomial p ∈ Cd [x] such that p(λ0) �= 0 and p(a1, . . . , ad) = 0. We
choose an open ball U around λ0 such that p(λ) �= 0 on U . From λ0 ∈ supp Eπ

it follows that Eπ (U ) �= 0. Hence there exists a vector ϕ ∈ Eπ (U )H(π) such
that

∫
U p(λ) d Eπ (λ)ϕ �= 0. From (7.12) we obtain

0 = π(p(a1, . . . , ad)) ϕ =
∫

U
p(λ) d Eπ (λ)ϕ �= 0,

a contradiction. Thus, supp Eπ ⊆ Â. We insert this fact into (7.12) and obtain
(7.7). Obviously, (7.7) implies (7.8). The uniqueness of the spectral measure Eπ

follows at once from the corresponding assertion in Proposition A.4.

(ii): Since π is integrable, it is closed, so D(π) = ∩a∈AD(π(a)). Therefore, by
(7.12), D(π) is the intersection of domains D(I(p)), p ∈ Cd [x]. The spectral
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measure Eπ leaves each domain D(I(p)) invariant and hence D(π). By defi-
nition,

D(I(p)) =
{
ϕ ∈ H(π) :

∫

Rd

|p(λ)|2d〈Eπ (λ)ϕ, ϕ〉 < ∞
}
. (7.13)

The operator
(
π(a j )

)n = ∫
λn

j d Eπ (λ) has the domain

D((
π(a j )

)n) =
{
ϕ ∈ H(π) :

∫

Rd

λ2
j d〈Eπ (λ)ϕ, ϕ〉 < ∞

}
. (7.14)

From (7.13) and (7.14) it follows that the intersection of D(I(p)), p ∈ Cd [x],
is equal to the intersection ofD((

π(a j )
)n)

, j = 1, . . . , d, n ∈ N. This implies
(7.9).

(iii): Clearly, Â(Q)+ is closed in Â. We prove that Eπ is supported on Â(Q)+.
Supposeλ0 ∈ Â andλ0 /∈ Â(Q)+.Hence there exists an element c ∈ Q such that
λ0(c) < 0. Then there is a polynomial p ∈ Cd [x] such that c = p(a1, . . . , ad)

and λ0(c) = p(λ0(a1), . . . , λ0(ad)) = p(λ0) < 0. We can find an ε > 0 and a
ball U around λ0 such that p(λ) ≤ −ε on U . Since c ∈ Q, we have π(c) ≥ 0
by assumption and hence π(c) ≥ 0. For ϕ ∈ Eπ (U )H, using (7.8) we derive

0 ≤ 〈π(c) ϕ, ϕ〉 =
∫

U
p(λ) d〈Eπ (λ)ϕ, ϕ〉 ≤ −ε ‖Eπ (U )ϕ‖2.

This implies Eπ (U )ϕ = 0. Thus Eπ (U ) = 0. Therefore, λ0 /∈ supp Eπ . Since
supp Eπ ⊆ Â as proved in (i), we have shown that supp Eπ ⊆ Â(Q)+. �

Corollary 7.24 If the finitely generated commutative complex unital ∗-algebra A
admits a faithful integrable ∗-representation, then Â separates the point of A.

Proof Let π be a faithful integrable ∗-representation of A and a ∈ A, a �= 0. Since
π is faithful, 〈π(a)ϕ, ϕ〉 �= 0 for some vector ϕ ∈ D(π). Then, by (7.8), there exists
a χ ∈ Â such that χ(a) �= 0. �

Formula (7.8) represents vector states of integrable ∗-representations as inte-
grals over hermitian characters. In particular, if A has a nontrivial integrable ∗-
representation, it follows thatA admits a hermitian character. The following example
shows that this is not true in general if the ∗-algebra is not finitely generated.

Example 7.25 Let B = Lω(0, 1) be the Arens algebra (see Example 2.68) and let π
be its representation by multiplication operators on L2(0, 1), that is, π( f )ϕ = f · ϕ

for f ∈ B with domain

D(π) = {
ϕ ∈ L2(0, 1) : f · ϕ ∈ L2(0, 1) for f ∈ B

}
.
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If we set the functions of Lω(0, 1) zero on R\[0, 1], this is a special case of
Example 4.21. Hence π is integrable, as shown in Example 7.10. Clearly, we have
( f + λ)−1 ∈ B for f ∈ Bher and λ ∈ C\R. Thus, B is even a hermitian ∗-algebra.
SinceB has no character, as proved in Example 2.68, the assertion of Theorem 7.23(i)
does not hold for π and B. No vector state of π can be written as an integral over
hermitian characters. �

At the end of this section, we briefly mention the relation to the moment problem.

Definition 7.26 A linear functional f on A is called a moment functional if there
exists a Radon measure μ on Â such that

f (a) =
∫

Â
χ(a) dμ(χ) for a ∈ A. (7.15)

Corollary 7.27 Let f be a positive linear functional on a finitely generated com-
mutative complex unital ∗-algebra A. Then f is a moment functional if and only if
the GNS representation π f is subintegrable.

Proof Suppose π f is subintegrable. Let ρ be an integrable extension of π f . Then
(7.8), applied to the vector functional f (·) = 〈π f (·)ϕ f , ϕ f 〉 = 〈ρ(·)ϕ f , ϕ f 〉 of ρ,
yields (7.15), with μ(·) = 〈Eπ (·)ϕ f , ϕ f 〉.

Conversely, let f be a moment functional. Then the representation from
Example 7.10 is integrable and an extension of π f . Thus, π f is subintegrable. �
Example 7.28 (Classical moment problem on R

d )
Let A := Cd [x]. Then the hermitean characters of A are given by point evaluations
onRd , that is, Â ∼= R

d . Hence Definition 7.26 gives the classical notion of a moment
functional (see e.g. [Sch17]).

Let Q be a quadratic module of A generated by polynomials p1, . . . , pk ∈ Rd [x].
Then a characterχ ∈ Â is in Â(Q)+ if and only if χ(p j ) ≥ 0 for j = 1, . . . , k. There-

fore, under the identification Â ∼= R
d , the set Â(Q)+ becomes the semi-algebraic set

K (p1, . . . , pk) := {x ∈ R
d : p j (x) ≥ 0, j = 1, . . . , k}. �

The proof of Theorem 7.23 was based on Proposition A.4. If we use instead
the spectral theorem for countably many self-adjoint operators [S91, Theorem 1],
Theorem 7.23 and its subsequent applications remain valid for countably generated
commutative unital ∗-algebras (see [SS13, Theorem 7]).

7.5 Exercises

1. Let π∗ be the self-adjoint ∗-representation from Example 7.6. Is π∗ integrable?
Is π∗ subintegrable?
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2. Define a ∗-representationπ ofC[x1, x2] byπ(x1) = −i ∂
∂x1

,π(x2) = −i ∂
∂x2

acting
on the following domains.

a. Let D(π) = {ϕ ∈ C∞(R2) : ∂n1

∂x
n1
1

∂n2

∂x
n2
2

ϕ ∈ L2(R2) for n1, n2 ∈ N0} and

H(π) = L2(R2). Show that π is integrable.
b. Let D(π) = C∞

0 (R2) and H(π) = L2(R2). Prove that π is not integrable,
but π∗ is integrable.

c. Suppose O is a domain in R
2. Let D(π) = C∞

0 (O) and H(π) = L2(O).
Show that π is subintegrable.

d. Set R = [0, 1] × R. Let H(π) = L2(R) and

D(π) =
{
ϕ ∈ C∞(R2) : ∂n1

∂xn1
1

∂n2

∂xn2
2

ϕ ∈ L2(R) for n1, n2 ∈ N0;
∂nϕ

∂xn
1

(0, x2) = ∂nϕ

∂xn
1

(1, x2) for x2 ∈ R, n ∈ N0

}
. (7.16)

Show that π in integrable.
e. Discuss other boundary conditions in (7.16) for which π is not integrable.

3. Show that each ∗-representation of the ∗-algebra C[x] is subintegrable.
4. Show that the polynomial ∗-algebra C[x1, . . . , xd ] for d ≥ 2 admits a

∗-representation which is not subintegrable.
5. Let ρ be a ∗-representation ofC[x]. Define a ∗-representation π ofA = C[x1, x2]

by π(x1) = ρ(x), π(x2) = ρ(x2) on D(π) = D(ρ).

a. Formulate conditions on ρ for π being integrable.
b. Formulate conditions on ρ for π∗ being integrable.
c. Is π subintegrable?

6. Let A be the group algebra of the d-torus Td . Describe Â and show that each
positive linear functional on A is a moment functional.

7. Let A = C[x1, . . . , xd ] and p ∈ R[x1, . . . , xd ]. Show that π(p) ≥ 0 for all inte-
grable ∗-representations of A if and only if p(x) ≥ 0 for all x ∈ R

d .
Hint: Using Theorem 7.23 or Proposition A.4.

8. Formulate and prove the counterpart of Exercise 7 for an arbitrary finitely gener-
ated commutative complex unital ∗-algebra A.

7.6 Notes

Integrable representations of commutative ∗-algebras were invented and studied
by Powers [Pw71] under the name “standard representations”; additional results
can be found in [Sch90, Chap. 9]. An important theorem of Powers [Pw71] (see
[Sch90, Theorem 9.2.3]) states that any integrable representation with metrizable
graph topology is a direct sum of cyclic integrable representations.

The main part of Example 7.6 is taken from [Pw71]. The corresponding operator-
theoretic phenomenon was discovered by Nelson [N59]. Theorem 7.23 was proved
in [SS13].



Chapter 8
The Weyl Algebra and the Canonical
Commutation Relation

In this chapter, we investigate well-behaved ∗-representations of the Weyl algebra

W = C〈p, q | p=p+, q=q+, pq − qp = −i〉

and the canonical commutation relation

P Q − Q P = −iI,

where P and Q are self-adjoint operators. We also study the isomorphic ∗-algebra
C〈a, a+ | aa+ − a+a = 1〉 and the commutation relation AA∗ = A∗ A + I .

Section8.1 deals with algebraic properties of the Weyl algebra. In Sect. 8.2,
we describe solutions of the operator relation AA∗ = A∗ A + I (Theorem 8.4). In
Sects. 8.3 and8.4,wedevelop theBargmann–Fock representation and theSchrödinger
representation and show that the Segal–Bargmann transform provides a unitary
equivalence of both representations.

Under additional regularity conditions, the Schrödinger representation, or the
Bargmann–Fock representation, is up to unitary equivalence the only irreducible
representation of the Weyl algebra. Our main aim in this chapter is to prove such
uniqueness theorems. In Sects. 8.3 and 8.4, we derive two results (Theorems 8.8 and
8.9) for the Bargmann–Fock representation and the Rellich–Dixmier theorem (The-
orem 8.17) for the Schrödinger representation. Sections8.5 and 8.6 are devoted to
two other uniqueness results for Schrödinger pairs, the famous Stone–von Neumann
uniqueness theorem (Theorem 8.18) and Kato’s theorem (Theorem 8.22).

In the final sections we touch two related topics. In Sect. 8.7, we treat the Heisen-
berg uncertainty relation. Section8.8 is about the Groenewold–van Hove “no-go”
theorem and van Hove’s prequantization map (Theorems 8.28 and 8.30).
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8.1 The Weyl Algebra

Let x denote the multipication operator by the variable x and y the derivation d
dx

acting on the polynomial algebra C[x]. Then

yx( f ) = d

dx
(x f ) = f + x

d

dx
f = f + xy( f ) for f ∈ C[x];

that is, the operators x and y satisfy the commutation rule

yx − xy = 1. (8.1)

Obviously, the complex algebra generated by x and y is the algebra of differential
operators

∑k
j=0 p j (x)( d

dx ) j , k ∈ N, with polynomial coefficients p j ∈ C[x].
Definition 8.1 The Weyl algebra, or the Heisenberg–Weyl algebra, is the unital
complex algebra W with generators x, y and defining relation (8.1).

From (8.1) it follows easily that each element f ∈ W is of the form

f =
n∑

j,k=0

α jk x j yk, (8.2)

where n ∈ N and α jk ∈ C. Further, by (8.1), for each polynomial p we have

yp(x) = p(x)y + p′(x), xp(y) = p(y)x − p′(y). (8.3)

Proposition 8.2 (i) The sets {x j yk : j, k ∈ N0} and {y j xk : j, k ∈ N0} are vec-
tor space bases of W.

(ii) The algebra W is simple; that is, W has no nontrivial two-sided ideal.
(iii) The algebra W has trivial center C · 1.
(iv) If π is a homomorphism of W into another algebra B, then either π(W) = {0}

or ker π = {0}.
Proof Let f be of the form (8.2). From (8.3) we obtain

y f − f y =
n∑

j=1,k=0

α jk j x j−1yk and x f − f x = −
n∑

j=0,k=1

α jkkx j yk−1. (8.4)

(i): We carry out the proof for the first set. It suffices to show the linear independence
of elements x j yk .Assume to the contrary that there areα jk ∈ C,not all zero, such
that the element f in (8.2) is zero inW. Choose r, s such thatαrs �= 0 andα jk = 0
if j > r or k > s. Since y f − f y = x f − x f = 0 inW by f = 0, it follows by
a repeated application of (8.4) that αrsr !s! · 1 = 0 inW, a contradiction.



8.1 The Weyl Algebra 155

(ii): Let J �= {0} be a two-sided ideal ofW. Then there exists an f ∈ J , f �= 0. We
write f as in (8.2) and choose r, s as in the proof of of (i). Then y f − f y ∈ J
and x f − x f ∈ J . As in the proof of (i), a repeated application of (8.4) implies
that αrsr !s! · 1 ∈ J . Therefore, 1 ∈ J , since αrs �= 0. Hence J = W.

(iii): Let f be in the center of W. Then y f − f y = x f − x f = 0. Therefore, since
the set {x j yk : j, k ∈ N0} is linearly independent by (i), it follows from (8.4)
that α jk = 0 for all indices j, k such that j + k > 0. Thus, f = α00 · 1.

(iv): Since ker π is a two-sided ideal of W, (iv) follows at once from (ii). �
The multiplication rule for the vector space basis {x j yk} of W is given by a

classical formula of Littlewood [Lt33], which can be proved by induction:

x j yk xn ym =
min(k,n)∑

l=0

1

l!
(

k

l

)(
n

l

)

x j+n−l ym+n−l , j, k, n, m ∈ N0. (8.5)

For instance, y2x3 = x3y2 + 6x2y + 6x .
Next we consider automorphisms of the algebraW. For n ∈ N0 and λ ∈ C, there

exist automorphisms Φn,λ, Φ
′
n,λ ofW such that

Φn,λ(x) = x, Φn,λ(y) = y + λxn, Φ ′
n,λ(y) = y, Φ ′

n,λ(x) = x + λyn. (8.6)

(Indeed, the images of x, y satisfy again the relation (8.1), soΦn,λ, Φ
′
n,λ define algebra

homomorphisms of W into W. Since x, y are in the ranges of these mappings, the
homomorphisms are surjective. By Proposition 8.2(iv), they are injective.)

By a theorem of Dixmier [Di68, Theorem 8.10], the set of automorphisms
Φn,λ, Φ

′
n,λ generates the group of all algebra automorphisms of W. Further, the

algebra W has also linear automorphisms

Φ(x) = ax + by, Φ(y) = cx + dy, where a, b, c, d ∈ C, ad − bc = 1. (8.7)

(Indeed, the assumption ad − bc = 1 implies that the images x ′, y′ of x, y satisfy
(8.1) and x = dx ′ − by′, y = −cx ′ + ay′. Hence Φ defines an automorphism of
W.) From Dixmier’s theorem it follows easily that the automorphism group ofW is
generated by the automorphisms (8.7) and Φn,λ, where n ∈ N0, λ ∈ C.

Remark 8.3 1. There is a similar result for the polynomial algebra C[x1, x2]. A
classical theorem of Jung [J42] states that the automorphism group of the algebra
C[x1, x2] is generated by linear automorphisms

Φ(x1) = ax1 + bx2, Φ(x2) = cx1 + dx2, where a, b, c, d ∈ C, ad − bc �= 0,

and triangular automorphisms Φ(x1) = x1 + f (x2),Φ(x2) = x2, where f ∈ C[x2].
2. We briefly mention two famous conjectures. The first is Dixmier’s conjecture; see
[Di68, Probleme 11.1]. He conjectured that each endomorphism of the Weyl algebra
W is an automorphism of W, or equivalently, if x ′, y′ are elements of W such that
x ′y′ − x ′y′ = 1, then x ′, y′ generate the algebra W.
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The second is the Jacobi conjecture. It was first stated by Keller [Ke39] and says
the following: If f = ( f1, f2) : C

2 �→ C
2, where f1, f2 ∈ C[x1, x2], is a polynomial

map such that the Jacobian det( ∂ fi

∂x j
) is equal 1 onC

2, then f has a polynomial inverse

on C
2, or equivalently, C[ f1, f2] = C[x1, x2].

Both conjectures are equivalent as shown by Tsuchimoto [Ts05]. They are still
open, and they have natural d-dimensional versions; see, e.g., [VE00]. �

The algebraW carries two algebra involutions, one defined by x+ := y, y+ := x
and the other by x+ := x , y+ := −y. Renaming a := y, a+ := x in the first case and
q := x , p := −iy in the second case, we obtain the following two ∗-algebras:

Wca = C〈a, a+ | aa+ − a+a = 1〉, (8.8)

Wpq = C〈p, q | p = p+, q = q+, pq − qp = −i〉. (8.9)

The ∗-algebras Wca and Wpq are ∗-isomorphic. A ∗-isomorphism θ of Wca on
Wpq is given by θ(a) = 1√

2
(q + ip) and θ(a+) = 1√

2
(q − ip). (To see that θ is a

∗-isomorphism it suffices to check that the relations for a, a+ and p, q are equiva-
lent.) The generators a, a+ reflect the annihilation and creation operators and p, q
correspond to the momentum and position operators in quantum mechanics.

Let Aut (Wpq) denote the group of ∗-automorphisms of the ∗-algebra Wpq . It is
convenient to replace Φn,λ, Φ

′
n,λ by the automorphism Ψn,λ, Ψ

′
n,λ of W defined by

Ψn,λ(q) = q, Ψn,λ(p) = p + λqn, Ψ ′
n,λ(p) = p, Ψ ′

n,λ(q) = q + λpn. (8.10)

Then Ψn,λ, Ψ
′
n,λ are ∗-automorphisms of Wpq if and only if λ is real. Each algebra

automorphism Ψ of W is a composition of Ψn,λ, Ψ
′
n,λ. By induction on the number

of factors it follows thatΨ preserves the involution if and only if all factors do. Thus,
Aut (Wpq) is generated by the ∗-automorphisms Ψn,λ, Ψ

′
n,λ with n ∈ N0, λ ∈ R.

An interesting ∗-automorphism Θ of Wp,q is given by Θ(p) = q,Θ(q) = −p.
Its importance stems from the fact that it exchanges the two generators p and q.

In what follows we identify the ∗-algebrasWca andWpq by identifying f ∈ Wca

with θ( f ) ∈ Wpq . Then, by a slight abuse of notation, we denote the corresponding
∗-algebra byW and call it the Weyl algebra. In the ∗-algebra W we have

a = 1√
2
(q + ip), a+ = 1√

2
(q − ip), (8.11)

q = 1√
2

(a+ + a), p = i√
2

(a+ − a).

An important element of the Weyl algebra W is N := a+a. From aa+ − a+a = 1
we easily derive the identities
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a f (N ) = f (N + 1)a, a+ f (N ) = f (N − 1)a+, (8.12)

(a+)n+1an+1 =N (N − 1) · · · (N − n), (8.13)

an(a+)n =(N + 1) · · · (N + n) (8.14)

for each polynomial f ∈ C[x] and n ∈ N. Clearly, (8.9) and (8.11) imply that

N = 1

2
(q − ip)(q + ip) = 1

2
(p2 + q2 − 1). (8.15)

8.2 The Operator Equation AA∗ = A∗A + I

First we develop a model for operators satisfying the operator relation

AA∗ = A∗ A + I. (8.16)

We say that a densely defined closed operator A on a Hilbert space satisfies the
relation (8.16) if D(A∗ A) = D(AA∗) and AA∗ϕ = AA∗ϕ + ϕ for ϕ ∈ D(A∗ A).

Let G be an auxiliary Hilbert space with inner product (·, ·) and norm | · |. We
consider the Hilbert space l2(N0;G) of sequences (ϕn)n∈N0 of elements ϕn ∈ G such
that

∑∞
n=0 |ϕn|2 < ∞ with inner product given by

〈(ϕn), (ψn)〉 =
∞∑

n=0

(ϕn,ψn) for (ϕn), (ψn) ∈ l2(N0;G).

Now we define two operators AG and A+
G on l2(N0;G) by

AG(ϕ0,ϕ1,ϕ2, . . .) = (ϕ1,
√
2ϕ2,

√
3ϕ3, . . .), (8.17)

A+
G (ϕ0,ϕ1,ϕ2, . . .) = (0,ϕ0,

√
2ϕ1,

√
3ϕ2, . . .) (8.18)

with domains

D(AG) = D(A+
G ) = {

(ϕn) ∈ l2(N0;G) : (
√

n ϕn) ∈ l2(N0;G)
}
.

It is straightforward to verify that the operators AG and A+
G are adjoints of each other,

hence closed, and that A+
G AG and AG A+

G act on the same domain

D(A+
G AG) = D(AG A+

G ) = {
(ϕn) ∈ l2(N0;G) : (nϕn) ∈ l2(N0;G)

}

as diagonal operators A+
G AG(ϕn) = (nϕn) and AG A+

G (ϕn) = ((n + 1)ϕn). Thus,
AG A+

G (ϕn) = A+
G AG(ϕn) + (ϕn) for (ϕn) ∈ D(A+

G AG) = D(AG A+
G ). That is, the

densely defined closed operator AG satisfies the relation (8.16).
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The following result is essentially Tillmann’s theorem. It says that, up to unitary
equivalence, the operator model AG exhausts all solutions of equation (8.16).

Theorem 8.4 Suppose A is a densely defined closed operator on a Hilbert space
H which satisfies the relation (8.16). Then there exist a Hilbert space G and a
unitary operator U of H on l2(N0;G) such that U AU−1 = AG and U A∗U−1 = A+

G .
Further, A is irreducible if and only if dim G = 1, or equivalently, dim ker A = 1.

Proof In this proof we use some facts from spectral theory of self-adjoint operators;
see, e.g., [Sch12]. Let C := A∗ A = ∫

λ d E(λ) be the spectral resolution of the self-
adjoint operator A∗ A.

Our first aim is to show that γ ∈ σ(C) and γ > 0 imply that γ − 1 ∈ σ(C). Set
Jn = (γ − 1

n , γ + 1
n ) for n ∈ N. Since γ ∈ σ(C), there exists a sequence ( fn) of unit

vectors fn = E(Jn) fn such that gn := (C − γ) fn → 0 inH. Then

‖A fn‖2 = 〈C fn, fn〉 = 〈(C − γ) fn, fn〉 + γ → γ.

Clearly, gn = (C − γ)E(Jn) fn = E(Jn)(C − γ) fn = E(Jn)gn ∈ D(C) and

‖Agn‖2 = 〈Cgn, gn〉 =
∫

Jn

λ d〈E(λ)gn, gn〉 → 0.

Using relation (8.16) we derive

(C − (γ − 1))A fn = (A∗ A + 1 − γ)A fn

= (AA∗ − γ)A fn = A(C − γ) fn = Agn → 0.

Therefore, since ‖A fn‖2 → γ > 0, we conclude that γ − 1 ∈ σ(C).
Since C ≥ 0, we have σ(C) ⊆ [0,∞). Hence, the preceding result implies that

σ(C) ⊆ N0 and 0 ∈ σ(C). Since all points of σ(C) are isolated, they are eigenvalues.
Set Gn := ker (C − nI ) for n ∈ N0 and G := G0.

Let f ∈ Gn . Then f ∈ D(C2) ⊆ D(C A) ∩ D(C A∗)by (8.16), so that A f ∈ D(C)

and A∗ f ∈ D(C). Therefore, using Eq. (8.16) we compute

C A∗ f = A∗ AA∗ f = A∗(A∗ A + 1) f = A∗(C + 1) f = (n + 1)A∗ f, (8.19)

C A f = A∗ AA f = (AA∗ − 1)A f = AC f − A f = (n − 1)A f, n ≥ 1. (8.20)

Clearly, (8.19) implies A∗Gn ⊆ Gn+1. If g ∈ Gn+1, then h := (n + 1)−1Ag belongs
to Gn by (8.20) and A∗h = (n + 1)−1Cg = g, so g = A∗h ∈ A∗Gn . Thus, A∗Gn =
Gn+1. Hence (A∗)nG = Gn . Similarly, AGn+1 = Gn and AG0 = {0}.

For f ∈ Gn , we obtain

‖(n + 1)−1/2 A∗ f ‖2 = (n + 1)−1〈A∗ f, A∗ f 〉 = (n + 1)−1〈(C + 1) f, f 〉 = ‖ f ‖2.

Therefore, the map f �→ (n + 1)−1/2 A∗ f is an isometric bijection of Gn on Gn+1.
By a repeated application of this fact it follows that f �→ (n!)−1/2(A∗)n f is an
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isometric map of G = G0 on Gn = (A∗)nG. Since σ(C) = N0, H is the orthogonal
sum of subspaces E({n})H = Gn , n ∈ N0. Hence each f ∈ H is of the form

f =
∞∑

n=0

(n!)−1/2(A∗)n fn, where fn ∈ G, (8.21)

and U f = ( fn)n∈N0 defines a unitary map of the Hilbert spaces H and l2(N0;G).
From operator theory it is known that D(A) = D((A∗ A)1/2) = D(C1/2). Hence

D(A) is the set of vectors f ∈ H such that the sequence (‖√n E({n}) f ‖) is in
l2(N0), or equivalently, (

√
n fn) ∈ l2(N0;G), where U f = ( fn). The latter implies

that UD(A) = D(AG). Let f ∈ D(A) be of the form (8.21). Then we compute

A f =
∞∑

n=0

(n!)−1/2 A(A∗)n fn =
∞∑

n=1

(n!)−1/2(C + 1)(A∗)n−1 fn

=
∞∑

n=1

(n!)−1/2n(A∗)n−1 fn =
∞∑

n=1

((n − 1)!)−1/2√n (A∗)n−1 fn

=
∞∑

n=0

(n!)−1/2(A∗)n
√

n + 1 fn+1,

so that U A f = (
√

n + 1 fn+1) = AGU f. Since UD(A) = D(AG), this yields
U AU−1 = AG . Applying the adjoint to both sides, we get U A∗U−1 = A+

G .
The last assertion is derived from the equality dim G = dim ker AG = dim ker A.

Indeed, if G = G1 ⊕ G2, then AG = AG1 ⊕ AG2 . Hence AG , so A, is not irreducible if
dim G > 1. Conversely, suppose dim G = 1 and assume to the contrary that AG is a
nontrivial direct sum A1 ⊕ A2. Then each A j satisfies (8.16). Hence, by the preced-
ing, A j is unitarily equivalent to some operator AG j . Since dim G j = dim ker AG j ,
we obtain dim G = dim G1 + dim G2 ≥ 2, a contradiction. �

Clearly, if G is an orthogonal sum of one-dimensional Hilbert spaces Gi , i ∈ J,

then AG = ⊕i∈J AGi on l2(N0;G) = ⊕i∈J l2(N0;Gi ) and the cardinality of J is
dim ker AG . Combined with Theorem 8.4 this fact has the following corollary.

Corollary 8.5 Suppose A is a densely defined closed operator such that the operator
relation (8.16) holds. Then A is an orthogonal direct sum of dim ker A irreducible
densely defined closed operators satisfying (8.16).

Let us specialize to the case G = C. Then the operators AC and A+
C
act on the

standard orthonormal basis {en : n ∈ N0} of the Hilbert space l2(N0) by

ACen = √
n en−1 and A+

C
en = √

n + 1 en+1, n ∈ N0, e−1 := 0. (8.22)

By Theorem 8.4, the operator AC is, up to unitary equivalence, the only densely
defined closed irreducible operator satisfying the operator relation (8.16).
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In quantum mechanics, the operators AC and A+
C
are called annihilation operator

and creation operator, respectively, A+
C

AC is the number operator and the vector e0
which is annihilated by the operator AC is the vacuum vector. Annihilation and cre-
ation operators are basic constructions in quantum physics and also in representation
theory of Lie algebras (see, for instance, Sect. 9.7).

Nextwedevelop theBargmann–Fock representationof the operator relation (8.16)
acting on the Fock space F(C). Let μ denote the planar Lebesgue measure on C.
The Fock space

F(C) :=
{

f (z) : holomorphic on C and
∫

C

| f (z)|2e−|z|2 dμ(z) < ∞
}

is a Hilbert space with inner product given by

〈 f, g〉 = 1

π

∫

C

f (z)g(z) e−|z|2 dμ(z), f, g ∈ F(C). (8.23)

Proposition 8.6
{
ηk(z) := 1√

k! zk : k ∈ N0
}

is an orthonormal basis of F(C).

Proof For k, n ∈ N0 we compute

〈zk, zn〉 = 1

π

∫

C

zk zne−|z|2 dμ(z) = 1

π

∫ ∞

0

∫ 2π

0
eiθ(k−n)rk+ne−r2r dθdr

= δk,n2
∫ ∞

0
r2ke−r2 rdr = δk,n2

∫ ∞

0
ske−s 1

2
ds = δk,nk! .

Hence {ηk(z) : k ∈ N0} is orthonormal.
To prove that this set is complete, take f ∈ F(C) and let f (z) = ∑∞

n=0 anzn be
its Taylor expansion at zero. This series converges uniformly on each ball and by the
preceding computation we have

∫
|z|≤R ηnηk dμ = 0 for k �= n and R > 0. Therefore,

1

π

∫

|z|≤R
f (z) ηk(z) dμ(z) = 1

π

∫

|z|≤R

( ∞∑

n=0

anzn
)
ηk(z) dμ(z)

=
∞∑

n=0

an

π

√
n!

∫

|z|≤R
ηn(z)ηk(z) dμ(z) = ak

π

√
k!

∫

|z|≤R
|ηk(z)|2dμ(z).

Letting R → ∞, we get 〈 f, ηk〉 = π−1ak

√
k! . Thus, f ⊥ηk for all k implies ak = 0

for all k and f = 0. Hence {ηk} is complete and an orthonormal basis of the Hilbert
space F(C). Moreover, we have proved the expansion f = ∑∞

k=0 π−1ak

√
k! ηk of

f ∈ F(C) with respect to the orthonormal basis {ηk}. �
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The next proposition says that the function K (z, w) := ez w is a reproducing kernel
of the Fock space F(C). The functions

ϕw(z) := K (z, w) = ez w, w ∈ C, (8.24)

of the Fock space F(C) are called coherent states; see, e.g., [Ha13, p. 299].

Proposition 8.7 For f ∈ F(C) and w ∈ C we have 〈 f,ϕw〉 = f (w). In particular,

〈ϕz,ϕw〉 = K (w, z) = ew z for z, w ∈ C (8.25)

and the set of functions ϕw,w ∈ C, is total in F(C).

Proof By Proposition 8.6, {ηk : k ∈ N0} is an orthonormal basis of the Hilbert space
F(C). The corresponding expansion of ϕw ∈ F(C) is

ϕw(z) =
∞∑

k=0

1

k! (z w)k =
∞∑

k=0

ηk(w) ηk(z).

Let f (z) = ∑∞
k=0 ckηk(z) be the expansion of f ∈ F(C). The Parseval identity for

the expansions of f and ϕw gives

〈 f,ϕw〉 =
∞∑

k=0

ck ηk(w) =
∞∑

k=0

ck ηk(w) = f (w).

In particular, setting f = ϕz , we obtain 〈ϕz,ϕw〉 = ϕz(w) = K (w, z).
Now let f ∈ F(C) and suppose f ⊥ϕw for allw ∈ C. Then 0 = 〈 f,ϕw〉 = f (w)

for w ∈ C, so f = 0. Hence the span of functions ϕw,w ∈ C, is dense in F(C). �
Next we consider the operator ∂

∂z and the multiplication operator z on the Fock

space F(C). They act on the orthonormal basis {ηn = (
√

n!)−1zn} of F(C) by

∂

∂z
ηn(z) = √

n ηn−1(z) and zηn(z) = √
n + 1 ηn+1(z), n ∈ N0, (8.26)

where we set η−1 := 0. Comparing (8.22) and (8.26) it follows that the operator
pair { ∂

∂z , z} on F(C) is unitarily equivalent to the operator pair {AC, A+
C
} on l2(N0).

Therefore, we have the (at first glance surprising) results that the operators ∂
∂z and z

on the Fock space F(C) are adjoints of each other and that the operator A = ∂
∂z on

F(C) is, up to unitary equivalence, the unique closed irreducible operator satisfying
the operator relation (8.16)!
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8.3 The Bargmann–Fock Representation of the Weyl
Algebra

In this section we use formWca , defined by (8.8), of the Weyl algebra W.
Let us return to the operators AG and A+

G given by (8.17) and (8.18) and define

D(πG) := {
(ϕn) ∈ l2(N0;G) : (nkϕn) ∈ l2(N0;G) for k ∈ N

}
. (8.27)

Obviously, AG and A+
G leave D(πG) invariant. Therefore, since AG satisfies (8.16),

there is a ∗-representation πG of the ∗-algebra W on D(πG) defined by πG(1) = I ,

πG(a) = AG�D(πG) , πG(a+) = A+
G�D(πG).

Clearly,

πG(a+a)(ϕn) = πG(N )(ϕn) = (nϕn) for (ϕn) ∈ D(πG). (8.28)

Hence the operator πG(N k) for k ∈ N is self-adjoint and the diagonal operator
with diagonal sequence (nk)n∈N0 . This implies that D(πG) = D((πG)∗), so the ∗-
representation πG is self-adjoint. The closures of πG(a) and πG(a+) are AG and
(AG)∗ = A+

G , respectively. Therefore, since πG(1) = I , it is easily verified that for
the ∗-representation π := πG of W we have

π(a) π(a)∗ = π(a)∗ π(a) + I. (8.29)

Theorem 8.8 Suppose π is a ∗-representation of the∗-algebraW such that π(1) = I
and the operator π(a+a) is essentially self-adjoint. Then (8.29) holds and there exists
a Hilbert space G such that π is unitarily equivalent to a subrepresentation of πG
acting on a dense domain of H(π) ∼= l2(N0;G).

Proof From π(a+a) = π(a+)π(a) ⊆ π(a)∗π(a) we get π(a+a) ⊆ π(a)∗π(a). By
assumption, the operator π(a+a) is self-adjoint. Since π(a)∗π(a) is also self-adjoint,
it follows that π(a+a) = π(a)∗π(a). Hence

π(aa+) = π(a+a + 1) = π(a+a) + I = π(a+a) + I = π(a)∗π(a) + I

is self-adjoint as well. On the other hand, π(aa+) is a restriction of the self-adjoint
operator π(a) π(a)∗. Therefore, π(aa+) = π(a)π(a)∗. By comparing both expres-
sions for π(aa+) we conclude that (8.29) holds.
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Equation (8.29) means that the densely defined closed operator A := π(a) satis-
fies the relation (8.16). Therefore, by Theorem 8.4, A is, up to unitary equivalence,
of the form AG on H(π) ∼= l2(N0;G). This implies that π is a subrepresentation of
the corresponding ∗-representation πG . �

The next theorem contains several characterizations of representations πG .

Theorem 8.9 Suppose that π is a self-adjoint representation of the ∗-algebra W
such that π(1) = I . The following are equivalent:

(i) There exists a Hilbert space G such that π is unitarily equivalent to πG .
(ii) The operator relation (8.29) holds.
(iii) The symmetric operator π(N ) = π(a+a) is essentially self-adjoint.

Suppose that these conditions are satisfied. Then π is unitarily equivalent to a direct
sum of ∗-representations πC. In particular, π is irreducible if and only if it is unitarily
equivalent to πC.

Proof Since πG(N ) is essentially self-adjoint, (i)→(iii). By the proof of
Theorem 8.8, we have (iii)→(ii) and (ii) implies that π is a subrepresentation of
πG on H(π) ∼= l2(N0;G). Since π is self-adjoint, it has no proper extension to a
∗-representation on the same Hilbert space (Corollary 4.31). Hence π = πG , so we
have (ii)→(i). This proves that conditions (i)–(iii) are equivalent. Corollary 8.5 and
Theorem 8.4 imply that πG is unitarily equivalent to a direct sum of representations
πC and πC is irreducible. This gives the last assertion. �

Thus, πC is the unique (up to unitary equivalence) irreducible self-adjoint
∗-representation π of W for which the operator π(N ) is self-adjoint.

Let e := (1, 0, 0, . . .) ∈ l2(N0). It is easily seen that πC(W)e is the space of finite
vectors ϕ = (ϕ0, . . . ,ϕn, 0, . . .) and a core for πC(N k), k ∈ N0, and that the norms
‖πC(N k) · ‖, k ∈ N0, generate the graph topology of πC. Therefore, πC(W)e is dense
inD(πG) in the graph topology tπC

>πC
.Hence e is a cyclic vector for πC. It is called

the vacuum vector.
As noted above, the pair {AC, A+

C
} on l2(N0) is unitarily equivalent to the pair

{ ∂
∂z , z} on F(C) and the equivalence is given by the unitary V of l2(N0) on F(C)

defined by V en = ηn, n ∈ N0. Hence πF (·) := V πC(·)V −1 defines a unitarily equiv-
alent ∗-representation πF on the Fock space F(C) such that π(1) = I ,

πF (a)ξ = ∂ξ

∂z
and πF (a+)ξ = zξ for ξ ∈ D(πF ) := VD(πC).

Definition 8.10 The ∗-representation πC on l2(N0), and its unitarily equivalent
∗-representation πF on F(C), are called the Bargmann–Fock representation of the
Weyl algebra W. The state 〈πC(·)e, e〉 onW is the Fock state or the vacuum state.
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8.4 The Schrödinger Representation of the Weyl Algebra

In this section, we mainly use the version Wpq (see (8.9)) of the Weyl algebra W.
Clearly, the self-adjoint operators P := −i d

dx and Q := x , themultiplication oper-
ator by the variable x , on the Hilbert space L2(R) satisfy the relation

P Qϕ − Q Pϕ = −iϕ (8.30)

for ϕ ∈ D(P Q) ∩ D(Q P). In quantum physics, Q is the position operator and P is
the moment operator. This operator pair {P, Q} is called the Schrödinger pair. Note
that the Schrödinger pair is irreducible, as proved in Example 4.32.

The operators P, Q give rise to the Schrödinger representation ofW. This is the
∗-representation πS of W on the Hilbert space L2(R) defined by πS(1) = I ,

πS(p) = P�D(πS), πS(q) = Q�D(πS), with D(πS) := S(R). (8.31)

The Schrödinger representation πS is faithful (by Proposition 8.2(iv)), and it has the
important property that ∗-automorphisms of the Weyl algebra W are implemented
by unitary operators on L2(R).

Example 8.11 Recall that there is a ∗-isomorphismΘ of W such thatΘ(p) = q and
Θ(q) = −p. The Fourier transformF onR satisfiesF PF−1 = Q,FQF−1 = −P ,
and FS(R) = S(R). Hence it follows that

πS(Θ( f )) = FπS( f )F−1 for f ∈ W. �
Proposition 8.12 For each ∗-automorphism Ψ of the ∗-algebra W there exists a
unitary operator U on L2(R) such that US(R) = S(R) and

πS(Ψ ( f )) = UπS( f )U−1 for f ∈ W. (8.32)

Proof As noted in Sect. 8.1, Ψ is a composition of ∗-automorphisms Ψn,λ, Ψ ′
n,λ,

where n ∈ N0, λ ∈ R. Hence it suffices to prove the assertion for Ψn,λ and Ψ ′
n,λ.

We carry out the proof forΨn,λ. Recall thatΨn,λ(q) = q, Ψn,λ(p) = p + λqn . Let
U be the multiplication operator by the function exp(−iλ(n + 1)−1xn+1). Clearly,
U is a unitary operator on L2(R) such that U and U−1 leave S(R) invariant. Hence
US(R) = S(R). Let ϕ ∈ S(R). From

P exp(iλ(n + 1)−1xn+1)ϕ

= −i · i exp(iλ(n + 1)−1xn+1)λxnϕ + exp(iλ(n + 1)−1xn+1)Pϕ

we obtain PU−1ϕ = U−1(λQn + P)ϕ, so that U PU−1ϕ = λQnϕ + Pϕ. This
gives UπS(p)U−1ϕ = πS(p + λqn)ϕ = πS(Ψn,λ(p))ϕ. Obviously, we have
UπS(q)U−1ϕ = πS(q)ϕ = πS(Ψn,λ(q))ϕ. Thus (8.32) holds for f = p, q. Since
both sides of (8.32) are algebra homomorphism, (8.32) is valid for all f ∈ W.
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Using the identity Ψ ′
n,λ = Θ ◦ Ψn,λ(−1)n ◦ Θ−1 the proof for Ψ ′

n,λ follows from
the preceding combined with Example 8.11. �

Next we show that the ∗-representations πC and πS are unitarily equivalent. For
this we need the Hermite functions. First we recall the Hermite polynomials

hn(x) := (−1)nex2 dn

dxn
e−x2

, n ∈ N0, where h0(x) := 1.

It is easily verified that hn is a polynomial of degree n,

hn(x) = 2xhn−1(x) − h′
n−1(x) and h′

n(x) = 2nhn−1(x), n ∈ N. (8.33)

Then the Hermite functions Hn are given by

H̃n(x) := hn(x)e−x2/2 , Hn(x) := ( 4
√

π
√
2nn! )−1 H̃n(x), n ∈ N0.

It is well known that the functions Hn, n ∈ N0, form an orthonormal basis of the
Hilbert space L2(R). The constant cn := ( 4

√
π

√
2nn! )−1 ensures that ‖Hn‖ = 1. In

fact, the functions Hn are obtained by applying the Gram–Schmidt orthogonalization
procedure to the functions xne−x2/2 in L2(R). Then, for n ∈ N0,

1√
2

(
x + d

dx

)
Hn(x) = √

n Hn−1(x), H−1 := 0, (8.34)

1√
2

(
x − d

dx

)
Hn(x) = √

n + 1 Hn+1(x), (8.35)

(
x2 − d2

dx2

)
Hn(x) = (2n + 1)Hn(x). (8.36)

Indeed, using (8.33) and the definition of H̃n we compute (x + d
dx )H̃n = 2nH̃n−1.

Multiplying by the constant cn = (
√
2n )−1cn−1 this yields (8.34). Using the rela-

tion x − d
dx ⊆ (x + d

dx )∗ formula (8.34) implies (8.35). Equation (8.36) follows by

combining (8.34), (8.35) and the identity x2 − d2

dx2 = (x − d
dx )(x + d

dx ) + 1.

Proposition 8.13 The unitary operator U of L2(R) on l2(N0) given by U Hn = en,
n ∈ N0, provides a unitary equivalence of the ∗-representations πS and πC, that is,

UπS( f )U−1 = πC( f ) for f ∈ W. (8.37)

Each representation πG is unitarily equivalent to a direct sum of Schrödinger repre-
sentations πS.
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Proof Equations (8.34) and (8.35) give

U
1√
2
(Q + iP)U−1en = ACen and U

1√
2
(Q − iP)U−1en = A+

C
en. (8.38)

Clearly, Hn(x) ∈ S(R) for n ∈ N0. It is well known [RS72, V. 3] that the Schwartz
space S(R) is precisely the set of functions ϕ ∈ L2(R) whose Fourier coeffi-
cients with respect to the orthonormal basis {Hn} are in D(πC). Hence UD(πS) =
D(πC) and it follows from (8.11) and (8.38) that UπS(a)U−1η = πC(a)η and
UπS(a+)U−1η = πC(a+)η for η ∈ D(πC). Since UπS(·)U−1 and πC(·) are algebra
homomorphisms, this implies (8.37).

The last assertion follows from (8.37) combined with the fact that πG is unitarily
equivalent to a direct sum of representations πC by Theorem 8.9. �

Let V : l2(N0) �→ F(C) and U : L2(R) �→ l2(N0) be the unitaries given by
V en = ηn and U Hn = en , n ∈ N0. Then, as noted above, V πCV −1 = πF and
UπSU−1 = πC. Hence the unitary V U : L2(R) �→ F(C) satisfies V U Hn = ηn ,
n ∈ N0, and it provides the unitary equivalence of the ∗-representations πS and
πF of W, that is, V UπS(V U )−1 = πF .

We will show that this unitary V U is the Segal–Bargmann transform B:

(B f )(z) := 1
4
√

π

∫

R

exp
(

− x2 + z2

2
+ √

2 z x
)

f (x) dx, f ∈ L2(R). (8.39)

That is, by this definition, (B f )(z) = 〈 f (x),ψz(x)〉L2(R), where we abbreviate

ψz(x) := π−1/4e
(
− x2+z2

2 +√
2 z x

)

, z ∈ C. (8.40)

Proposition 8.14 The set of functions ψz, z ∈ C, is total in L2(R), and we have

〈ψz,ψw〉L2(R) = ew z for z, w ∈ C. (8.41)

Proof Let f ∈ L2(R). Suppose f ⊥ψz for all z ∈ C. Setting z= − it, t ∈ R, it fol-
lows that the Fourier transform of the function e−x2/2 f is zero. Hence e−x2/2 f = 0
and so f = 0. This proves that the functions ψz, z ∈ C, are total in L2(R).

From complex analysis we recall that
∫

R
e−(x−v)2dx = ∫

R
e−x2

dx = √
π for each

number v ∈ C. Using this fact we compute for z, w ∈ C,

〈ψz,ψw〉L2(R) = π−1/2
∫

R

e− x2+z2

2 +√
2 z x e− x2+w2

2 +√
2w x dx

= π−1/2ew z
∫

R

e−
(

x+ w+z√
2

)2

dx = ew z . �
Combining (8.25) and (8.41) yields 〈ϕz,ϕw〉F(C) = 〈ψz,ψw〉L2(R), z, w ∈ C.

Therefore, since the sets {ϕz : z ∈ C} and {ψz : z ∈ C} are total in F(C) and L2(R)



8.4 The Schrödinger Representation of the Weyl Algebra 167

by Propositions 8.7 and 8.14, there exists a unique unitary operator W of L2(R) on
F(C) such that Wψz = ϕz , z ∈ C. For f ∈ L2(R), by Proposition 8.7,

(W f )(z) = 〈W f,ϕz〉F(C) = 〈 f, W −1ϕz〉L2(R) = 〈 f,ψz〉L2(R) = (B f )(z), z ∈ C.

That is, this unitary operator W is just the Segal–Bargmann transform B.
Theorem 8.15 The Segal–Bargmann transform B is a unitary operator of L2(R) on
the Fock space F(C) such that Bψz = ϕz for z ∈ C and BHn = ηn for n ∈ N0.

Proof By the preceding, it only remains to show that BHn = ηn .
Clearly, dn

dtn e−(x−t)2 |t=0 = (−1)n dn

dxn e−x2
. Therefore, using the Taylor expansion

of the function t �→ e−(x−t)2 at t = 0 we derive

e−(x2/2+2t x+t2) = ex2/2e−(x−t)2 =
∞∑

n=0

tn

n! (−1)nex2/2 dn

dxn
e−x2 =

∞∑

n=0

tn

n! H̃n(x).

Setting t = z√
2
and using the equality Hn(x) = ( 4

√
π

√
2nn! )−1 H̃n(x) we obtain

π−1/4e
(
− x2+z2

2 +√
2 zx

)

= π−1/4
∞∑

n=0

zn

√
2n n! H̃n(x) =

∞∑

n=0

zn

√
n! Hn(x). (8.42)

Fix z ∈ C. The function of x on the left-hand side is ψz(x), see (8.40), and Eq. (8.42)
shows that it has the Fourier coefficients ηn(z) = zn√

n! , n ∈ N0, in the expansion with

respect to the orthonormal basis {Hn} of L2(R). Therefore, since Hn(x) is real on R,
we have ηn(z) = 〈ψz, Hn〉 = 〈Hn,ψz〉 = (BHn)(z). �

Thus, B is the unitary V U of L2(R) onF(C)which gives the unitary equivalence
of the ∗-representations πS and πF and of the corresponding operators. That is,

B−1πFB = πS, B−1zB = 1√
2

(
x − d

dx

)
, B−1 d

dz
B = 1√

2

(
x + d

dx

)
.

Since B is unitary, its inverse is equal to its adjoint. Therefore, since B is an integral
operator with kernel ψz(x), see (8.39) and (8.40), B−1 is an integral operator with
adjoint kernel ψz(x). Thus, (B−1g)(x) = 〈g(z),ψz(x)〉F(C), so that

(B−1g)(x) := π−1π−1/4
∫

C

e
(
− x2+z2

2 +√
2 z x

)

e−|z|2g(z) dμ(z), g ∈ F(C).

For our next result we need the following preliminary lemma.

Lemma 8.16 Let P and Q be symmetric operators on a Hilbert space H. Suppose
there exists a linear subspace D ⊆ D(P2) ∩ D(Q2) ∩ D(P Q) ∩ D(Q P) such that
(8.30) holds on D, that is, P Qϕ − Q Pϕ = −iϕ for ϕ ∈ D. Then, if the operator
(P2 + Q2)�D is essentially self-adjoint, so are the operators P�D and Q�D.
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Proof Fix c ∈ R, |c| > 1, and set T := P2 + Q2 + I . Let ξ ∈ H be such that
ξ⊥(P + c i)D. Our aim is to prove that ξ = 0.

Since (P2 + Q2)�D is positive and essentially self-adjoint, TD is dense by
Proposition A.1(iv). Thus there exists a sequence (ϕn) of vectors ϕn ∈ D such that
limn T ϕn = ξ. Clearly, ‖T ϕ‖2 ≥ ‖Pϕ‖2 + ‖ϕ‖2 for ϕ ∈ D. Hence both sequences
(ϕn) and (Pϕn) are Cauchy sequences. Since the operators P and T are closable,
there is a vector ψ ∈ D( P ) ∩ D( T ) such that limn ϕn = ψ, limn Pϕn = P ψ, and
limn T ϕn = ξ = T ψ. Then, limn(P + c i)ϕn = (P + c i)ψ, hence ξ⊥(P + c i)ψ.

Let ϕ ∈ D. Using the symmetry of P , Q and the relation (8.30) we compute

〈Pϕ, T ϕ〉 − 〈T ϕ, Pϕ〉 = 〈Pϕ, (P2 + Q2 + I )ϕ〉 − 〈(P2 + Q2 + I )ϕ, Pϕ〉
= 〈Pϕ, P2ϕ〉 + 〈Pϕ, Q2ϕ〉 + 〈Pϕ,ϕ〉 − 〈P2ϕ, Pϕ〉 − 〈Q2ϕ, Pϕ〉 − 〈ϕ, Pϕ〉
= 〈Q Pϕ, Qϕ〉 − 〈Qϕ, Q Pϕ〉 = 〈(P Q + i)ϕ, Qϕ〉 − 〈Qϕ, Q Pϕ〉
= i〈ϕ, Qϕ〉 + 〈Qϕ, P Qϕ〉 − 〈Qϕ, Q Pϕ〉 = 2 i〈ϕ, Qϕ〉.

Hence, since |〈ϕ, Qϕ〉| ≤ ‖ϕ‖2 + ‖Qϕ‖2 ≤ 〈ϕ, T ϕ〉 for ϕ ∈ D, it follows that

|〈(P + c i)ϕn, T ϕn〉 − 〈T ϕn, (P + c i)ϕn〉 − 2c i〈ϕn, T ϕn〉|
= |〈Pϕn, T ϕn〉 − 〈T ϕn, Pϕn〉| = |2 i〈ϕn, Qϕn〉| ≤ 2 〈ϕn, T ϕn〉.

Passing to the limit n → ∞ and using the preceding facts, we get

|〈(P + c i)ψ, ξ〉 − 〈ξ, (P + c i)ψ〉 − 2c i〈ψ, T ψ〉| = | − 2c i〈ψ, T ψ〉| ≤ 2 〈ψ, T ψ〉.

Therefore, 〈ψ, T ψ〉 = 0 by |c| > 1. Since 〈ϕ, T ϕ〉 ≥ ‖ϕ‖2 for ϕ ∈ D, we have
0 = 〈ψ, T ψ〉 ≥ ‖ψ‖2. Thus, ψ = 0 and ξ = T ψ = 0. This shows that (P + c i)D
is dense for any c ∈ R, |c| > 1. By Proposition A.1, P�D is essentially self-adjoint.
(A closely related argument has been also used in the proof of Lemma 7.3.)

The proof for Q�D is similar. �
The following is essentially the classical Rellich–Dixmier theorem.

Theorem 8.17 Suppose π is a ∗-representation of the Weyl algebra W such that
π(1) = I and the operator π(p2 + q2) is essentially self-adjoint. Then the operators
π(p) and π(q) are self-adjoint and the pair {π(p) , π(q)} is unitarily equivalent to
a direct sum of Schrödinger pairs.

Further, π is a subrepresentation of a representation on H(π) which is unitarily
equivalent to a direct sum of Schrödinger representations. If in addition π is self-
adjoint, then π is unitarily equivalent to a direct sum of Schrödinger representations.

Proof From Lemma 8.16, applied with P := π(p), Q := π(q),D := D(π), it fol-
lows that the operators π(p) and π(q) are self-adjoint.

Since π(p2 + q2) is essentially self-adjoint, so is π(a+a) = 1
2π(p2 + q2) − 1

2 I
by (8.15). Therefore, byTheorem8.8 and Proposition 8.13, there is a ∗-representation
ρ acting onH(π) = H(ρ) such that π ⊆ ρ and ρ is unitarily equivalent to a direct sum
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of Schrödinger representations. Then π(p) ⊆ ρ(p). Hence, since π(p) ⊆ ρ(p) and
π(p) is self-adjoint, π(p) = ρ(p). Similarly, π(q) = ρ(q). Because { ρ(p) , ρ(q) }
is unitarily equivalent to a direct sum of Schrödinger pairs, so is { π(p) , π(q) }.

We have π ⊆ ρ on H(π) = H(ρ). Therefore, if π is self-adjoint, it follows from
Corollary 4.31 that π = ρ. �

8.5 The Stone–von Neumann Theorem

Themain results in this section and the next (Theorems 8.18 and 8.22) are uniqueness
theorems for the canonical commutation relation. They contain criteria on a pair
{P, Q} of self-adjoint operators on a Hilbert spaceH for being unitarily equivalent to
a direct sumof Schrödinger pairs {P0, Q0}. The lattermeans that there exists a unitary
operatorU ofH on a direct sum⊕iHi of Hilbert spaces such that P = U−1(⊕i Pi )U ,
Q = U−1(⊕i Qi )U , where Pi = −i d

dx , Qi = x on Hi = L2(R) for each i . In this
case, there is a (self-adjoint) ∗-representation π ofW defined by π = U−1(⊕iπi )U
on D(π) := U−1(⊕iD(πi )),where each πi is the Schrödinger representation πS and
π(p) = P�D(π), π(q) = Q�D(π). That is, π is unitarily equivalent to a direct sum
of Schrödinger representations.

First we consider the one-parameter unitary groups for the Schrödinger pair
{P0, Q0}. Clearly, the unitary groups V0(s) := eis P0 and W0(t) := eit Q0 of the self-
adjoint operators P0 := −i d

dx and Q0 := x act on ϕ ∈ L2(R) by

(V0(s)ϕ)(x) = ϕ(x + s), (W0(t)ϕ)(x) = eit xϕ(x), s, t ∈ R. (8.43)

It is easily verified that these groups V = V0, W = W0 satisfy the Weyl relation

V (s)W (t) = eist W (t)V (s), t, s ∈ R. (8.44)

The following Stone–von Neumann theorem is the main result of this section.

Theorem 8.18 Suppose P and Q are self-adjoint operators on a Hilbert space H
such that the unitary groups V (s) := eis P , s ∈ R, and W (t) := eit Q, t ∈ R, satisfy
the Weyl relation (8.44). Then the pair {P, Q} is unitarily equivalent to an orthogonal
direct sum of Schrödinger pairs. Further, the pair {P, Q} is irreducible if and only
if it is unitarily equivalent to the Schrödinger pair {P0, Q0}.

There is an elegant proof of this result based on Mackey’s imprimitivity theorem
(see [Ty86, p. 146–147]), but we prefer to present von Neumann’s original proof.

First let us explain the main ideas behind the following proof. The Heisenberg
group H is the set R

3 with the group law

(s, t, z)(s ′, t ′, z′) := (s + s ′, t + t ′, z + z′ + (st ′ − ts ′)/2). (8.45)

Then, H is a Lie group with unit (0, 0, 0) and (−s,−t,−z) is the inverse of (s, t, z).
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Now suppose that V and W are unitary groups as in Theorem 8.18. A simple com-
putation shows that ρ(s, t, z) := eize−ist/2V (s)W (t), s, t, z ∈ R, defines a unitary
representation of the Lie group H on H. (We will not use this fact; it is only stated
to mention the connection to the Heisenberg group and to explain where the factor
e−its/2 in formula (8.46) comes from.) Set

S(s, t) := ρ(s, t, 0) = e−its/2V (s)W (t), s, t ∈ R. (8.46)

From the Weyl relation (8.44) we obtain

S(s, t)S(s ′, t ′) = ei(st ′−s ′t)/2S(s + s ′, t + t ′). (8.47)

For f ∈ L1(R) the Bochner integral

T f ϕ =
∫

R2
f (s, t)S(s, t)ϕ dsdt, ϕ ∈ H, (8.48)

defines a bounded operator T f onH. We call f the symbol of the operator T f . From
(8.47) we derive by straightforward computations:

S(a, b)T f = Tg with g(s, t) := f (s − a, t − b)ei(at−bs)/2,

T f Tg = Th with h(s, t) :=
∫

R2
ei(st ′−ts ′)/2 f (s−s ′, t−t ′)g(s ′, t ′) ds ′dt ′.

In what follows let T denote the operator T f0 with f0(s, t) := (2π)−1e−(s2+t2)/4.

Fix a, b ∈ R
2. By combining the two preceding formulas it follows that the symbol

f (s, t) of the operator T S(a, b)T ≡ T f0(S(a, b)T f0) is

(2π)−2
∫

R2
ei(st ′−ts ′)/2e−((s−s ′)2+(t−t ′)2)/4e−((s ′−a)2+(t ′−b)2)/4ei(at ′−bs ′)/2ds ′dt ′.

Recall the formula for the Fourier transform of Gaussians [RW91, p. 309]:

(2π)−1/2
∫

R

e−ixye−c(y−d)2dy = (2c)−1/2e−ixd e− x2

4c , c > 0. (8.49)

Using this formula a simple computation gives

f (s, t) = (2π)−1e−(a2+b2+s2+t2)/4 = e−(a2+b2)/4 f0(s, t).

Therefore,

T S(a, b)T = e−(a2+b2)/4T for a, b ∈ R. (8.50)



8.5 The Stone–von Neumann Theorem 171

From (8.46) it follows that (T f )
∗ = Tg with g(s, t) := f (−s,−t). Hence T = T f0

is self-adjoint. Setting a = b = 0 in (8.50) yields T 2 = T . Thus, T is an orthogonal
projection! Let K denote the range of this projection. To understand the role of this
space it is instructive to determine T and K for the Schrödinger pair.

Example 8.19 Let V, W be the unitary groups V0, W0 defined by (8.43). Then

S0(s, t) := e−its/2V0(s)W0(t) = e−its/2eis P0eit Q0 = ei(s P0+t Q0), s, t ∈ R.

Note that in this case the operator T f̂ in (8.48), with f replaced by its Fourier

transform f̂ , is just the Weyl quantization of the function f ; see, e.g., [F89, p. 79].
Now we determine T and K. Inserting (8.43) in the definition of T f0 we obtain

(T ϕ)(x) = (2π)−1
∫

R2
e−(s2+t2)/2e−ist/2eisx eistϕ(x + t) dsdt, ϕ ∈ L2(R).

Nextwe compute theFourier transformwith respect to s byusing (8.49) and substitute
y = x + t . Then

(T ϕ)(x) = π−1/2e−x2/2
∫

R

e−y2/2ϕ(y) dy.

Thus, T is the rank one projection H0 ⊗ H0 and K = C · H0(x) for the Hermite
function H0(x) = π−1/4e−x2/2. Note that H0 is a unit vector in L2(R). �

In the proof of Theorem 8.4 the cyclic subspace ker A∗ A = ker A was important.
For the Schrödinger representation this space is spanned by H0(x) = π−1/4e−x2/2,
see (8.34). Since K = C · H0 for the Schrödinger pair, as shown by the preceding
example, it is natural that the space K plays a crucial role in the following proof.

Proof of Theorem 8.18Letϕ,ψ ∈ K and s, t, x, y ∈ R.Since S(s, t)∗ = S(−s,−t),
it follows from (8.47) and (8.50) that

〈S(a, b)ϕ, S(s, t)ψ〉 = 〈S(−s,−t)S(a, b)T ϕ, T ψ〉
= ei(ta−sb)/2〈T S(a − s, b − t)T ϕ,ψ〉
= e−(a−s)2/4−(b−t)2/4+i(ta−sb)/2〈ϕ,ψ〉. (8.51)

Now we choose an orthonormal basis {ϕi : i ∈ J } of the Hilbert space K. For
i ∈ J , letHi denote the closed linear span of S(s, t)ϕi , where s, t ∈ R. If i �= j, then
Hi⊥H j by (8.51). Since Hi is invariant under all operators S(s, t) and S(s, t)∗ =
S(−s,−t),Hi is reducing for all operators S(x, y). Therefore, the subspace⊕i∈JHi

and hence its orthogonal complement G in H are reducing for the unitary operators
S(s, t). By construction, K ∩ G = {0}, that is, T �G = 0.
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We show that T �G = 0 implies G = {0}. Let η ∈ G. Then S(a, b)η ∈ G, hence
T S(a, b)η = 0, and using (8.47) we compute

0 = 〈S(−a,−b)T S(a, b)η, η〉 =
∫

R2
f0(s, t)〈S(−a,−b)S(s, t)S(a, b)η, η〉 dsdt

=
∫

R2
ei(sb−ta) f0(s, t)〈S(s, t)η, η〉 dsdt

for all a, b ∈ R. This means that the Fourier transform of f0(s, t)〈S(s, t)η, η〉 is
zero. Hence the continuous function 〈S(s, t)η, η〉 is zero a.e.. Since S(0, 0) = I , we
conclude that η = 0. Thus G = {0} and therefore H = ⊕i∈JHi .

Since both pairs {V, W } and {V0, W0} of unitary groups satisfy the Weyl relation,
the preceding applies to S(s, t) and also to its counterpart S0(s, t) for {V0, W0}.
As noted in Example 8.19, the space K for S0(s, t) is spanned by the unit vector
ψ(x) = π−1/4e−x2/2. Fix i ∈ J . For a, b, s, t ∈ R, we have by (8.51),

〈S(a, b)ϕi , S(s, t)ϕi 〉 = 〈S0(a, b)ψ, S0(s, t)ψ〉 = e−(a−s)2/4−(b−t)2/4+i(ta−sb)/2.

Hence there exists a (well-defined!) isometric linear map Ui of the vector space
Lin {S(s, t)ψ : s, t ∈ R} on Lin {S0(s, t)ϕi : s, t ∈ R} given by

Ui S(s, t)ψ = S0(s, t)ϕi , s, t ∈ R.

Since these spans are dense inHi and L2(R), Ui extends to a unitary operator ofHi

on L2(R). Let x, y ∈ R. Then, for s, t ∈ R,

Ui S(a, b)U−1
i S0(s, t)ϕi = Ui S(a, b)S(s, t)ψ = ei(at−sb)/2Ui S(a + s, b + t)ψ

= ei(at−sb)/2S0(a + s, b + t)ϕi = S0(a, b)S0(s, t)ϕi .

Hence Ui S(a, b)U−1
i η = S0(a, b)η for η ∈ L2(R). This shows that S�Hi on Hi

and S0 on L2(R) are unitarily equivalent. Set Vi := V �Hi and Wi := W �Hi . Since
V (s) = S(s, 0), W (t) = S(0, t) and V0(s) = S0(s, 0), W0(t) = S0(0, t), the pairs of
unitary groups {Vi , Wi } onHi and {V0, W0} on L2(R) are unitarily equivalent. From
V = ⊕i Vi it follows that P = ⊕i Pi , where Pi is the self-adjoint operator onHi such
that Vi (s) = eis Pi , s ∈ R. Similarly, Q = ⊕i Qi and Wi (t) = eit Qi , t ∈ R. Since Ui

gives a unitary equivalence of {Vi , Wi } and {V0, W0}, it does for the pairs {Pi , Qi } and
{P0, Q0} as well. Hence the unitary operator ⊕iUi provides a unitary equivalence
of {P, Q} and a direct sum of Schrödinger pairs {P0, Q0}.

The last assertion follows at once from the irreducibility of the Schrödinger pair.
We develop another proof of the fact that each pair {Pi , Qi } is irreducible. Assume
to the contrary that {Pi , Qi } is a direct sum of two pairs acting on nontrivial Hilbert
spaces G1,G2. Then {Vi , Wi } is a direct sum of two pairs of unitary groups satisfy-
ing the Weyl relation. As shown above, Gi �= {0} implies ran T ∩ Gi �= {0}. Since
dim(ran T ∩ Hi ) = 1 by construction, this is impossible. �
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8.6 A Resolvent Approach to Schrödinger Pairs

In this section, we give another characterization of direct sums of Schrödinger pairs.
For a closed operator T , Rλ(T ) = (T − λ)−1 denotes its resolvent at λ ∈ ρ(T ).

Let {P, Q} be a pair of self-adjoint operators on a Hilbert space H and let D be
a linear subspace of D(P Q) ∩ D(Q P) such that

P Qϕ − Q Pϕ = −iϕ for ϕ ∈ D. (8.52)

Lemma 8.20 Suppose that α,β ∈ C\R. Then, for vectors ψ ∈ (Q − β)(P − α)D
and η ∈ (P − α)(Q − β)D, we have

Rα(P)Rβ(Q)ψ − Rβ(Q)Rα(P)ψ = −i Rβ(Q)Rα(P)2Rβ(Q)ψ, (8.53)

Rα(P)Rβ(Q)η − Rβ(Q)Rα(P)η = −i Rα(P)Rβ(Q)2Rα(P)η. (8.54)

Proof Let ψ = (Q − β)(P − α)ϕ with ϕ ∈ D. Then ψ = (P − α)(Q − β)ϕ + iϕ
by (8.52). Hence we obtain

Rα(P)Rβ(Q)ψ = ϕ = Rβ(Q)Rα(P)(ψ − iϕ)

= Rβ(Q)Rα(P)ψ − iRβ(Q)Rα(P)2Rβ(Q)ψ,

which gives (8.53). The proof of (8.54) is similar. �
In particular, since the resolvents are bounded operators, if (Q − β)(P − α)D

in Lemma 8.20 is dense inH, then (8.53) holds for all ψ ∈ H. Likewise, if the space
(P − α)(Q − β)D is dense, then (8.54) is valid for all η ∈ H.

Example 8.21 (Schrödinger pair {P = −i d
dx , Q = x} on L2(R))

Then the commutation relation (8.52) is satisfied for the invariant dense domain
D := S(R). Since P�C∞

0 (R) is essentially self-adjoint, by Proposition A.1 the space
(P − α)C∞

0 (R) is dense in L2(R) and so is the larger space (P − α)(Q − β)D.

Using this fact and applying the Fourier transform it follows that (Q − β)(P − α)D
is also dense in L2(R). Hence, by Lemma 8.20, both equations (8.53) and (8.54) are
valid for all α,β ∈ C\R and ψ, η ∈ L2(R).

Note that Eq. (8.52) and the corresponding density properties hold also for the
larger domain D := D(P Q) ∩ D(Q P). �

Suppose the pair {P, Q} is unitarily equivalent of a direct sum of Schrödinger
pairs. Then it follows fromExample 8.21 that forD := D(P Q) ∩ D(Q P) the spaces
(P − α)(Q − β)D and (Q − β)(P − α)D are dense. Hence equations (8.53) and
(8.54) hold on the whole Hilbert space. In particular, for α,β ∈ C\R,

Rα(P)Rβ(Q) − Rβ(Q)Rα(P) = −i Rα(P)Rβ(Q)2Rα(P). (8.55)
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The following result is Kato’s theorem. It says that each of the density conditions
(8.56) implies that a pair of self-adjoint operators satisfying the canonical commu-
tation relation (8.52) is a direct sum of Schrödinger pairs.

Theorem 8.22 Let P and Q be self-adjoint operators on a Hilbert space H and
α0,β0 ∈ C\R. Suppose there exists a linear subspace D of D(P Q) ∩ D(Q P) such
that (8.52) holds and

(P − α0)(Q − β0)D, or (Q − β0)(P − α0)D, is dense in H. (8.56)

Then the pair {P, Q} on H is unitarily equivalent to an orthogonal direct sum of
Schrödinger pairs.

In the proof we use the following lemma from operator semigroup theory.

Lemma 8.23 If T is a self-adjoint operator on a Hilbert space H, then

lim
n→∞(I − n−1(is)T )−nϕ = eisT ϕ for ϕ ∈ H, s ∈ R. (8.57)

Proof [Ka67, pp. 481–482]. �
Proof of Theorem 8.22 We assume that (Q − β0)(P − α0)D is dense in H. The
proof in the case, when (P − α0)(Q − β0)D is dense, is verbatim the same.

Our first aim is to prove that, for α = α0, β = β0 and n ∈ N, we have

Rα(P)n Rβ(Q) − Rβ(Q)Rα(P)n = −i n Rβ(Q)Rα(P)n+1Rβ(Q). (8.58)

We proceed by induction on n. Since (Q − β0)(P − α0)D is dense, Lemma 8.20
implies that (8.53) holds for all ψ ∈ H. This is relation (8.58) for n = 1.

Assume now that (8.58) is satisfied for n. To shorten the notationwewrite R(P) =
Rα0(P) and R(Q) = Rβ0(Q) throughout the following computation. Using relation
(8.58) for n and also for n = 1 we derive

R(P)n+1R(Q) − R(Q)R(P)n+1

= R(P)n[R(P)R(Q) − R(Q)R(P)] + [R(P)n R(Q) − R(Q)R(P)n]R(P)

= R(P)n[−iR(Q)R(P)2R(Q)] + [−i n R(Q)R(P)n+1R(Q)]R(P)

= − i [R(P)n R(Q)]R(P)2R(Q) − i n R(Q)R(P)n+1[R(Q)R(P)]
= − i [R(Q)R(P)n − i n R(Q)R(P)n+1R(Q)]R(P)2R(Q)

− i n R(Q)R(P)n+1[R(P)R(Q) + iR(Q)R(P)2R(Q)]
= − i (n + 1) R(Q)R(P)n+2R(Q),

which is relation (8.58) for n + 1. This completes the induction proof of (8.58).
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Now we fix β = β0, and let α vary. Consider the two Neumann series for the
resolvents

Rα(P) =
∞∑

n=1

(α − α0)
n−1Rα0(P)n, Rα(P)2 =

∞∑

n=1

n(α − α0)
n−1Rα0(P)n+1.

They converge strongly if |α − α0| < ε for small ε > 0. Let Hα0 and Hβ0 denote the
open half planes of C\R which contain α0 and β0, respectively. We show that (8.58)
holds for n ∈ N and α ∈ Hα0 . First let n = 1. We insert the Neumann series into
both sides of (8.58) for n = 1 (which is (8.55)) and use that (8.58) is valid for n ∈ N,
α = α0, as shown in the preceding paragraph. Then we conclude that (8.58) holds
for n = 1, |α − α0| < ε. Both sides of (8.58) for n = 1 are strongly analytic on Hα0 .
Hence (8.58) holds for n = 1 and α ∈ Hα0 . Differentiating this equation n − 1 times
it follows that relation (8.58) is valid for all n ∈ N and α ∈ Hα0 .

Fix s ∈ R such that α := n(is)−1 ∈ Hα0 . We multiply (8.58) by (−α)n and get

(I − n−1(is)P)−n Rβ(Q) (8.59)

= Rβ(Q)(I − n−1(is)P)−n − s Rβ(Q)(I − n−1(is)P)−n−1Rβ(Q). (8.60)

Note that limn(I − n−1(is)P)−1ϕ = ϕ, limn(I−n−1(is)P)−nϕ = eis Pϕ by
Lemma 8.23, and I − s Rβ(Q) = (Q − s − β)Rβ(Q). Therefore, passing to limit
n → ∞ in (8.59)–(8.60) yields

eis P Rβ(Q) = Rβ(Q)eis P − s Rβ(Q)eis P Rβ(Q) = Rβ(Q)eis P(Q−s−β)Rβ(Q).

Now we multiply this equation by Rs+β(Q) from the right. Then we obtain
eis P Rs+β(Q)Rβ(Q) = Rβ(Q)eis P Rβ(Q). Since Rβ(Q)H = D(Q) is dense,

eis P Rs+β(Q) = Rβ(Q)eis P . (8.61)

Repeated multiplication of (8.61) by Rs+β(Q) from the right gives

eis P Rs+β(Q)n = Rβ(Q)neis P for n ∈ N. (8.62)

In the preceding β = β0 was fixed. To extend (8.62) to all β ∈ Hβ0 we argue in
a similar manner as above, with P replaced by Q. Using the Neumann series for
(Q − β)−1 and (Q − s − β)−1 around β0 we conclude that (8.61) is valid for small
|β − β0| and then for all β ∈ Hβ0 by analytic continuation. By differentiating (8.61)
with respect to β it follows that (8.62) is fulfilled for β ∈ Hβ0 .

Let t ∈ R be such that β := n(it)−1 ∈ Hβ0 . Similarly as above, we multiply
(8.62) by (−β)n , pass to the limit n → ∞, and obtain eis P eit (Q−s) = eit Qeis P .Hence
eis P eit Q = eist eit Qeis P for s and t fromhalf-lines. This extends easily to arbitrary reals
s, t . Hence the unitary groups V (s) := eis P , W (t) := eit Q satisfy the Weyl relation
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(8.44). Therefore, by the Stone–von Neumann Theorem 8.18, the pair {P, Q} is
unitarily equivalent to a direct sum of Schrödinger pairs. �

A large class of ∗-representations π ofW for which the operators P := π(p) and
Q := π(q) are self-adjoint, but the Weyl relation fails, is constructed in [Sch83c].
Let π be such a representation. Then condition (8.56) cannot hold; otherwise {P, Q}
is unitarily equivalent to a direct sum of Schrödinger pairs by Theorem 8.22 and
hence the Weyl relation is fulfilled, a contradiction. But, since P and Q are self-
adjoint, (P − α)D(π) and (Q − β)D(π) are dense inH(π) for any α,β ∈ C\R by
Proposition A.1. This shows that the assumption (8.56) of Theorem 8.22 cannot be
weakened by requiring instead the density of (P − α)D and (Q − β)D.

8.7 The Uncertainty Principle

For a linear operator T on a Hilbert space and ϕ ∈ D(T ) we define

〈T 〉ϕ := 〈T ϕ,ϕ〉.

Clearly, if the operator T is symmetric, then the number 〈T 〉ϕ is real.

Definition 8.24 The standard deviation of a symmetric operator T in a unit vector
ϕ ∈ D(T 2) is defined by

�ϕ(T ) := (〈T 2〉ϕ − 〈T 〉2ϕ
)1/2 ≡ (〈T 2ϕ,ϕ〉 − 〈T ϕ,ϕ〉2)1/2. (8.63)

Its square �ϕ(T )2 = 〈T 2〉ϕ − 〈T 〉2ϕ is called the variance of T in ϕ.

Suppose that T is a symmetric operator and ϕ is a unit vector of D(T 2). Then
0 ≤ 〈T ϕ,ϕ〉2 ≤ ‖T ϕ‖2=〈T 2ϕ,ϕ〉 and we easily derive the formulas

�ϕ(T )2 = ‖T ϕ‖2 − 〈T ϕ,ϕ〉2 = 〈(T − 〈T 〉ϕ I )2〉ϕ
= ‖(T − 〈T 〉ϕ I )ϕ‖2. (8.64)

From (8.64) we conclude that �ϕ(T ) = 0 if and only if ϕ is an eigenvector of T ;
in this case, the corresponding eigenvalue is 〈T 〉ϕ.

In quantum mechanics, the number �ϕ(T ) describes the uncertainty of an
“observable” T in the “state” ϕ.

The following inequalities (8.65) and (8.70) are called uncertainty relations.

Proposition 8.25 Suppose a and b are symmetric operators on a Hilbert space and
ϕ is a unit vector in D{a, b} := D(a2) ∩ D(b2) ∩ D(ab) ∩ D(ba). Then

�ϕ(a)�ϕ(b) ≥ 1

2
|〈[a, b]〉ϕ|, (8.65)
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where [a, b] := ab − ba. Further, there is equality in (8.65) if and only if there are
real numbers γ, δ, not both zero, such that

γ(a − 〈a〉ϕ)ϕ + iδ(b − 〈b〉ϕ)ϕ = 0. (8.66)

Proof Let α,β ∈ R. Using that a and b are symmetric operators we derive

|〈[a, b]ϕ,ϕ〉| = |〈(ab − ba)ϕ,ϕ〉| = |〈bϕ, aϕ〉 − 〈aϕ, bϕ〉|
= |〈(b − β I )ϕ, (a − αI )ϕ〉 − 〈(a − αI )ϕ, (b − β I )ϕ〉|
= |2 i Im 〈(b − β I )ϕ, (a − αI )ϕ〉| ≤ 2 |〈(b − β I )ϕ, (a − αI )ϕ〉| (8.67)

≤ 2 ‖(b − β I )ϕ‖ ‖(a − αI )ϕ‖. (8.68)

Now set α = 〈a〉ϕ and β = 〈b〉ϕ. Then, by (8.64), we have ‖(a − αI )ϕ‖ = �ϕ(a)

and ‖(b − β I )ϕ‖ = �ϕ(b). Therefore, the preceding inequality gives (8.65).
Now let us look when the inequality (8.65) is an equality. By the preceding proof

this holds if and only if the two inequalities in (8.67) and (8.68) are equalities. It
is well known that there is equality in the Cauchy–Schwarz inequality (8.68) if and
only if the vectors (b − β I )ϕ and (a − αI )ϕ are linearly dependent, that is,

γ(a − αϕ)ϕ + δ′(b − β)ϕ = 0 (8.69)

for some numbers γ, δ′ ∈ C, not both zero. Upon multiplying by a constant we can
assume that γ ∈ R. It remains to consider (8.67). First note that if (a − α)ϕ = 0 or
(b − β)ϕ = 0, we obviously have equality in (8.67) and condition (8.66) holds. If
both vectors are nonzero, we insert (8.69) into (8.67) and check that there is equality
if and only δ′ = iδ with δ real. �

An obvious consequence of the inequality (8.65) is the following.

Corollary 8.26 Let P and Q be symmetric operators on a Hilbert space such that
(P Q − Q P)ϕ = −i�ϕ for ϕ ∈ D{P, Q}. Then, for each unit vector ϕ ∈ D{P, Q},

�ϕ(P)�ϕ(Q) ≥ �

2
. (8.70)

In particular, (8.70) holds for the operators P = −i� d
dx and Q = x on L2(R).

The inequality (8.70) is the famous Heisenberg uncertainty relation. It implies
that the uncertainties of the position operator and the moment operator in the same
state cannot be arbitrarily small. This means that the position and moment operators
cannot be measured with arbitrary accuracy simultaneously in the same state. Note
that Planck’s constant has the value � = 1.05457 · 10−34 Js.

A unit vector ϕ for which there is equality in the uncertainty relation (8.70) is
called a minimum uncertainty state. Nowwe determine these states in the case where
P = −i� d

dx and Q = x on L2(R).
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By Proposition 8.25, we have to solve equation (8.66) with a = Q, b = P . Since
Q and P have no eigenvectors, we have γ �= 0, so we can assume without loss of
generality that γ = 1, δ �= 0. Then (8.66) reads as

(Q − 〈Q〉ϕ)ϕ + iδ(P − 〈P〉ϕ)ϕ = 0. (8.71)

Let u, v, δ, where δ �= 0, be fixed real numbers and consider the first-order ordinary
differential equation (Q − u)ϕ + iδ(P − v)ϕ = 0. It has the solution

ϕδ,u,v(x) = cδ,u,v exp
(

− (x − u)2

2δ�
+ ivx

)
. (8.72)

Here cδ,u,v is a constant which will be chosen such that ϕδ,u,v has norm one. Clearly,
ϕδ,u,v ∈ L2(R) if and only if δ > 0. Suppose now that δ > 0. By some computation
it follows that for the function given by (8.72) we have

u = 〈Q〉ϕδ,u,v
, v = 〈P〉ϕδ,u,v

, �ϕδ,u,v
(Q) = δ�ϕδ,u,v

(P). (8.73)

Hence ϕδ,u,v satisfies equation (8.71). Therefore, for arbitrary numbers u, v, δ ∈ R,
δ > 0, the function ϕδ,u,v is a minimum uncertainty state.

All three numbers u, v, δ can be recovered from the state ϕδ,u,v by (8.73). For δ
this follows from the fact that �ϕδ,u,v

(P) �= 0, because P has no eigenvalue.
Now we set � = 1, δ = 1. As above, let u, v ∈ R. Then, by the preceding,

ϕu,v(x) := π−1/4 exp((x − u)2/2 + ivx − iuv/2) (8.74)

is a minimum uncertainty state for P = −i d
dx , Q = x on L2(R) and we have u =

〈Q〉ϕu,v
, v = 〈P〉ϕu,v

. The constant −iuv/2 in the exponential of (8.74) gives only a
factor of modulus one, so it does not change the corresponding physical state. It was
only added in order to formulate Exercise 13 below.

8.8 The Groenewold–van Hove Theorem

The Poisson bracket of functions f, g ∈ C∞(R2) is the function defined by

{ f, g} := ∂ f

∂q

∂g

∂ p
− ∂ f

∂ p

∂g

∂q
. (8.75)

Here, as usual in classical mechanics, we denote the variables of the phase space by
p, q. It is well known and easily verified that C∞(R2), equipped with the Poison
bracket, becomes a real Lie algebra and

[X f , Xg] = X{ f,g}. (8.76)
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Real functions on the phase space of classical mechanics correspond to symmetric
(or self-adjoint) operators on a Hilbert space in quantummechanics. The counterpart
of the Poisson bracket of functions is the commutator [a, b] := ab − ba of observ-
ables, multiplied by−i. Roughly speaking, a “quantization” is amapping f �→ A( f )

of real functions to symmetric operators satisfying A(1) = I and

A({ f, g}) = −i [A( f ), A(g)]. (8.77)

(Strictly speaking, there should be i
�
instead of i in (8.77), but we shall set � = 1.)

Let P denote the polynomial algebra R[p, q], equipped with the Poisson bracket
(8.75), and Pn the polynomials of degree at most n. A natural attempt for such a
mapping is to set A(1) = I, A(q) = Q, A(p) = P for P = −i d

dx , Q = x on L2(R).
(Then (8.77) holds for f = q, g = p, since {q, p} = 1 and [Q, P] = iI .) It was
discovered by Groenewold [Gr46] that this does not give a consistent quantization
of the algebraP . In fact, as shown by Theorem 8.28 below, (8.77) is already violated
for polynomials of P3.

For simplicity and by a slight abuse of notation, we shall write P := −i d
dx �S(R)

and Q := x�S(R) in what follows.

Lemma 8.27 Suppose T ∈ L+(S(R)). If T commutes with P and Q, then T = λ · I
for some λ ∈ C.

Proof The Hermite functions Hn, n ∈ N0, belong to S(R) and form an orthonormal
basis of L2(R). From (8.36) we recall that (x2 − d2

dx2 )Hn = (2n + 1)Hn . Therefore,
since T commutes with d

dx and x , we have T Hn = λn Hn for some λn ∈ C. By
(8.35), (x − d

dx )Hn = √
n + 1 Hn+1. Applying T to both sides, we conclude that

λn = λn+1 for all n ∈ N0. Thus T = λ · I on Lin {Hn : n ∈ N0} and hence on S(R),
since T ∈ L+(S(R)) is closable. �

The following result is the Groenewald–van Hove “no-go” theorem.

Theorem 8.28 There is no linear map f �→ A( f ) of P4 into L+(S(R)) such that
(8.77) holds for all f, g ∈ P3 and

A(1) = I, A(q) = Q, A(p) = P on S(R). (8.78)

Proof Assume to the contrary that such a map exists.
Suppose A(qn−1) = Qn−1 and A(pn−1) = Pn−1 for n = 2 or n = 3. Then, using

(8.78) and (8.77) we derive

[Q, A(qn)] = [A(q), A(qn)] = iA({q, qn}) = 0 = [Q, Qn],
[P, A(qn)] = [A(p), A(qn)] = iA({p, qn}) = iA(−nqn−1) = −inQn−1=[P, Qn].

Hence Tn := A(qn) − Qn ∈ L+(S(R)) commutes with Q and P . By Lemma 8.27,
Tn = λn · I , so A(qn) = Qn + λn · I , with λn ∈ C. Similarly, A(pn) = Pn + μn · I
for some μn ∈ C. By assumption (8.78), the preceding holds for n = 2. Hence
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A(pq) = 1

4
A({q2, p2}) = − i

4
[A(q2), A(p2)] = − i

4
[Q2 + λ2 · I, P2 + μ2 · I ]

= − i

4
[Q2, P2] = 1

2
(P Q + Q P).

Using this equality and again assumption (8.77) we conclude that

A(qn) = −1

n
A({pq, qn}) = i

n
[A(pq), A(qn)] = i

2n
[P Q + Q P, Qn + λn · I ]

= i

2n
[P Q + Q P, Qn] = Qn.

Since A(q) = Q by (8.78), we can set n = 2 in the preceding and obtain A(q2) =
Q2. Similarly, A(p2) = P2. Therefore, the preceding applies also with n = 3 and
yields A(q3) = Q3 and A(p3) = P3. Further,

A(qp2) = −1

6
A({p3, q2}) = i

6
[A(p3), A(q2)] = i

6
[P3, Q2] = 1

2
(P2Q + Q P2),

A(q2 p) = −1

6
A({p2, q3}) = i

6
[A(p2), A(q3)] = i

6
[P2, Q3] = 1

2
(Q2P + P Q2).

The polynomial p2q2 has two representations 1
9 {q3, p3} = 1

3 {q2 p, qp2} as a
Poisson bracket. The comparison of (8.77) for these representations will lead to
a contradiction. Using the formulas obtained in the preceding paragraphs we derive

A(p2q2) = 1

9
A({q3, p3}) = − i

9
[A(q3), A(p3)] = − i

9
[Q3, P3],

A(p2q2) = 1

3
A({q2 p, qp2}) = − i

3
[A(q2 p), A(qp2)]

= − i

12
[Q2P + P Q2, P2Q + Q P2],

so that

4 [Q3, P3] = 3 [Q2P + P Q2, P2Q + Q P2]. (8.79)

But (8.79) does not hold! For instance, take ϕ ∈ S(R) such that ϕ(x) = 1 on (0, 1).
Then 4[Q3, P3]ϕ = −4P3Q3ϕ = −4P3x3ϕ = −24(−i)3 on (0, 1). A similar
slightly longer computationgives 3[Q2P + P Q2, P2Q + Q P2, ]ϕ = −12(−i)3 on
(0, 1). This is the desired contradiction. �

We state a byproduct of the above proof separately as a corollary.

Corollary 8.29 Let f �→ A( f ) be a linear map of P3 into L+(S(R)). If (8.78) and
(8.77) hold for f, g ∈ P2, then we have

A(q2) = Q2, A(p2) = P2, A(pq) = (P Q + Q P)/2. (8.80)
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Theorem 8.28 says that there is no quantization map f �→ A( f ) ofP intoL+(D)

satisfying (8.77) and A(1) = I such that { A(p), A(q) } is the Schrödinger pair.
However, if infinite sums of Schrödinger pairs are allowed, Eq. (8.81) gives such a
map. It was discovered by van Hove, and it is called the prequantization map.

For f ∈ C∞(R2) we define operators acting on the Hilbert space L2(R2) (!) by

X f := ∂ f

∂q

∂

∂ p
− ∂ f

∂ p

∂

∂q
, θ f := f − p

∂ f

∂ p
,

A( f ) := iX f + θ( f ) = i{ f, ·} + f − p
∂ f

∂ p
. (8.81)

Note that θ( f ) acts as multiplication operator by the function f − p ∂ f
∂ p and we have

X f g = { f, g} by the definition of the Poisson bracket.

Theorem 8.30 Then f �→ A′( f ) := A( f )�S(R2) is a linear map of P into the
symmetric operators ofL+(S(R2)) such that A′(1) = I and the Eq. (8.77) is satisfied.

Proof Since i ∂
∂ p and i ∂

∂q are symmetric operators on L2(R2) and f ∈ P is real-

valued on R
2, A′( f ) is symmetric. Clearly, A( f ) leaves S(R2) invariant. Hence

A′( f ) ∈ L+(S(R2)). It is obvious that A′(1) = I . We prove (8.77). The following
three equations are obtained by straightforward computations based on the definition
of the Poisson bracket. We have

{θ( f ), g} = { f, g} −
{

p
∂ f

∂ p
, g

}
= { f, g} + ∂g

∂q

∂ f

∂ p
+ p

{
g,

∂ f

∂ p

}
,

{ f, θ(g)} = { f, g} −
{

f, p
∂g

∂ p

}
= { f, g} − ∂ f

∂q

∂g

∂ p
− p

{
f,

∂g

∂ p

}
,

and hence

{ f, θ(g)} + {θ( f ), g} = { f, g} − p
∂

∂ p
{ f, g} = θ({ f, g}). (8.82)

Using that X f1 f2 = { f1, f2} and the Eqs. (8.76) and (8.82) we derive

[A′( f ), A′(g)] = −[X f , Xg] + i [X f , θ(g)] + i [θ( f ), Xg] + [θ( f ), θ(g)]
= −X{ f,g} + i { f, θ(g)} + i {θ( f ), g} + 0

= −X{ f,g} + i θ({ f, g}) = i A′({ f, g}). �
In the special cases f (p, q) = p, q the operators A( f ) from (8.81) are

A(p) = −i
∂

∂q
, A(q) = q + i

∂

∂ p
. (8.83)
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Let us return to representation theory, which is the main subject of this book. The
operators (8.83) define a representation of the Weyl algebra. In order to discuss it we
return to our earlier notation and denote points of R

2 by (x, y) and the generators of
the 2-dimensional Weyl algebra W(2) by p1, q1, p2, q2. We define operators

P1 = −i
∂

∂x
, Q1 = x + i

∂

∂y
, P2 = −i

∂

∂y
, Q2 = i

∂

∂x
+ y

and one-parameter unitary groups

(V1(t)ϕ)(x, y) = ϕ(x + t, y), (W1(t)ϕ)(x, y) = eit xϕ(x, y − t),

(V2(t)ϕ)(x, y) = ϕ(x, y + t), (W2(t)ϕ)(x, y) = eit yϕ(x − t, y)

on the Hilbert space L2(R2). By differentiation of the groups at t = 0 it follows that

V1(t) = eit P1 , W1(t) = eit Q1 , V2(t) = eit P2 , W2(t) = eit Q2 , t ∈ R.

The operators P1, Q1, P2, Q2 are self-adjoint on the corresponding domains in
L2(R2). By a simple computation we verify that {V1(s), W1(t)} and {V2(s), W2(t)}
are commuting pairs of unitary groups both satisfying the Weyl relation (8.44). In
terms of the generators this means that for ϕ ∈ S(R2) we have

P1Q1ϕ − Q1P1ϕ = P2Q2ϕ − Q2P2ϕ = −iϕ,

P1P2ϕ = P2P1ϕ, P1Q2ϕ = Q2P1ϕ, Q1P2ϕ = Q1P2ϕ, Q1Q2ϕ = Q2Q1ϕ.

Clearly, the operators P1, Q1, P2, Q2 leave the Schwartz space S(R2) invariant.
Hence there is a ∗-representation π of the Weyl algebra W(2) defined by

π(p1)ϕ = P1ϕ, π(q1)ϕ = Q1ϕ, π(p2)ϕ = P2ϕ, π(q2)ϕ = Q2ϕ

for ϕ ∈ D(π) = S(R2). Recall that P1, Q1 are the operators A(p), A(q) from
(8.83). Since the unitary groups of P1, Q1 satisfy the Weyl relation, the pair
{A(p) = P1, A(q) = Q1} is a direct sum of Schrödinger pairs by the Stone–von
Neumann Theorem 8.18.

Now we consider the unitary operator U := Fe−ixyF−1 of L2(R2). Here e−ixy

denotes the corresponding multiplication operator and F is the Fourier transform:

(Fϕ)(x, y) = (2π)−1
∫

R2
e−i(xt+ys)ϕ(t, s) dtds, ϕ ∈ L2(R2).

Then the unitary U transforms the operators P1, Q1, P2, Q2 in its canonical form:

U−1P1U = −i
∂

∂x
, U−1Q1U = x, U−1P2U = −i

∂

∂y
, U−1Q2U = y. (8.84)
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Indeed, as a sample, we verify the second equality of (8.84) and compute

U−1Q1U = FeixyF−1
(

x + i
∂

∂y

)
Fe−ixyF−1

= Feixy
(

− i
∂

∂x
+ y

)
e−ixyF−1 = F

(
− i

∂

∂x

)
F−1 = x .

The proofs of the other three equalities are similar; we omit the details.

8.9 Exercises

1. Show that the Weyl algebra W has no zero divisor.
2. Leta, b, c, d ∈ R, ad − bc = 1.Represent the∗-automorphismΨ ofW, defined

by Ψ (p) = ap + bq, Ψ (q) = cp + dq, by a unitary operator U on L2(R), as
in formula (8.32).

3. (Wintner’s theorem [Wi47]) Let x and y be elements of a unital Banach algebra
such that xy − yx = α · 1 for some α ∈ C. Prove that α = 0.
Hint: Verify that xn y − yxn = αnxn−1 and estimate the norms on both sides.

4. Prove that there is no representation π of W on a Hilbert space H �= {0} such
that π(1) = I and both operators π(p) and π(q) are bounded.

5. Show that the Fock state f (·) := 〈πC(·)e, e〉 (see Definition 8.10) is a pure state
onW and π f (W)′w = π f (W)′w = πC(W)′s = C · I .

6. Show that the creation operator A+
C
is subnormal; that is, there exist a Hilbert

space K and a normal operator T on K such that l2(N0) ⊆ K and A+
C

⊆ T .
7. Let A be a densely defined closed operator such that AA∗ = A∗ A + I . Show

that (A − λI )(A − λI )∗ = (A − λI )∗(A − λI ) + I for any λ ∈ C.
8. Let λ ∈ C. Determine an orthonormal basis { fn : n ∈ N0} of l2(N0) such that

(AC − λI ) fn = √
n fn−1, (A+

C
− λ I ) fn = √

n + 1 fn+1, n ∈ N0, f−1 := 0.

Hint: Set f0 := e−|λ|2/2 ∑∞
n=0

λn√
n!en and fn := 1√

n! (A+
C

− λ I )n f0, n ∈ N.

9. Let D(π) = {ϕ ∈ C∞([0, 1]) : ϕ(k)(0) = ϕ(k)(1) = 0, k ∈ N0} in L2(0, 1).

a. Show that there is a ∗-representation π of W on D(π) such that π(1) = I ,
π(p) = −i d

dx , π(q) = x . (Note that the operator π(q) is bounded!)
b. Is there an extension of π to a larger Hilbert space such that theWeyl relation

holds?

10. Suppose P and Q are self-adjoint operators on a Hilbert space. Let V (s) = eis P

and W (t) = eit Q denote their one-parameter unitary groups, and let EP and EQ

be their spectral measures. Show that the following are equivalent:

(i) V and W satisfy the Weyl relation (8.44).
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(ii) V (s)QV (−s) = s · I + Q for t, s ∈ R.
(iii) W (−t)PW (t) = t · I + P for t, s ∈ R.
(iv) V (s)EQ(λ)V (−s) = EQ(λ − s) for s,λ ∈ R.
(v) W (−t)EP(λ)W (t) = EP(λ − t) for t,λ ∈ R.

11. Find a bounded self-adjoint operator Q and a densely defined symmetric oper-
ator P such that W (−t)PW (t)ϕ = (t · I + P)ϕ for ϕ ∈ D(P), t ∈ R, where
W (t) := eit Q . Is it possible that P is self-adjoint?

12. Suppose two unitary groups V (s) = eis P and W (t) = eit Q on a Hilbert space
satisfy the Weyl relation (8.44). Show without using the Stone-von Neumann
theorem that P Qϕ − Q Pϕ = −iϕ for ϕ ∈ D(P Q) ∩ D(Q P).

13. Relate the minimum uncertainty states (8.74) to the coherent states (8.24).
14. Show that the pair {A(p), A(q)} of self-adjoint operators in (8.83) is unitarily

equivalent to a direct sum of countably many Schrödinger pairs.
15. Show that there exists a linear map of P3 into L+(S(R)) satisfying (8.78) and

(8.77) for f, g ∈ P2 (!). Is this map unique?

8.10 Notes

As noted in the introduction, the one-dimensional canonical commutation relation
was first formulated by M. Born. It was first published by Born and Jordan [BJ26]
and Dirac [D25].

Pioneering work on the Weyl algebra was done by Littlewood [Lt33] (who called
it Dirac’s quantum algebra) and Dixmier [Di68]. The name “Weyl algebra" (after
Hermann Weyl) was appearently first used in [Di68]. Now there is an extensive
literature about algebraic properties of the d-dimensional Weyl algebra. This algebra
appears in the theory of enveloping algebras [Di77a], noncommutative rings [Lm99]
and D-modules [Co95].

Theorem 8.4 was proved by Tillmann [Ti63]. Theorem 8.17 is due to Rellich
[Re46] (under an additional assumption) and Dixmier [Di58]. The Stone–von Neu-
mann Theorem 8.18 was announced by Stone [St30] and proved by von Neumann
[vN31]. Theorem 8.22 is due to Kato [Ka63]. Further results are in [FGN60, FG63,
Pu67, Fu82, Sch83b, In98]. Interesting discussions around the Stone–von Neumann
theorem and the canonical commutation relations can be found in [S01, Rg03]. Exer-
cise 8 is taken from [SS02]; this paper contains also a characterization of the creation
operator among weighted shift operators.

The Fock space goes back to the Russian physicist Fock [F32]. It can be con-
structed over a general Hilbert space; our Fock space F(C) is the one-dimensional
version realized as holomorphic functions. The Segal–Bargmann transform was dis-
covered independently by Segal [Se62] in 1960 and Bargmann [Ba61] in 1961.A
very readable book on these and related matters is [F89].
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Theorem8.28was discovered byGroenewold [Gr46]. A gap in the proofwas filled
by van Hove [vH51]; see [Ch81, GGT96, Gt99] for modern and rigorous treatments.
Geometric quantization and prequantization are out of the scope of this book; see,
e.g., [GS84, Ha13, Wa07].

Most constructions and results of this chapter carry over to thed-dimensionalWeyl
algebraW(d) and to the canonical commutation relations for finitelymany degrees of
freedom. In particular, the Stone–von Neumann uniqueness theorem remains valid;
see, e.g., [F89, Theorem 6.49]. However, as first noted by Friedrichs [Fr53] and van
Hove [vH52], this uniqueness theorem fails for infinitely many degrees of freedom;
see, e.g., [BR97]. Haag [Hg55] showed that physical requirements imply that there
are other representations than the Fock representation.



Chapter 9
Integrable Representations of Enveloping
Algebras

Throughout this chapter, G is a finite-dimensional real Lie group, g is its (real) Lie
algebra, and E(g) is the complexified universal enveloping algebra of g. For each
unitary representationU of the Lie group G on a Hilbert space, there is an associated
infinitesimal ∗-representation dU of the ∗-algebra E(g) on the domain D∞(U ) of
C∞-vectors. This chapter is about this important class of ∗-representations.

In Sect. 9.2, we define and develop the infinitesimal representation dU . The graph
topology tdU is studied in Sect. 9.3. We prove (Theorem 9.12) that each U -invariant
dense subspace of D∞(U ) is a core for all operators dU (x), x ∈ E(g). In Sect. 9.4,
we use elliptic regularity theory as a powerful tool. We obtain results on descriptions
of the domainD∞(U ) (Theorems 9.22 and 9.30) and on the essential self-adjointness
of (certain) symmetric operators (Theorems 9.22 and 9.23). In Sect. 9.5, we illustrate
these general results for two examples. Section9.6 gives an introduction into the
theory of analytic vectors.

An important but difficult problem is the integrability problem.This is the question
of when a representation of E(g) is of the form dU for some unitary representationU .
In Sect. 9.6.3,we state two fundamental integrability theorems, one due toNelson and
the other due to Flato, Simon, Snellman, and Sternheimer. The second result is based
on analytic vectors, and it provides a useful criterion for proving the integrability of
∗-representations of enveloping algebras.

In Sect. 9.7, we treat K -finite vectors for a quasisimple unitary representation of
SL(2, R) and show that they are analytic vectors. As an application, we derive the
oscillator representation.

In this chapter, we assume that the reader is familiar with the basics of Lie theory
(see, e.g., [Va64, HN12, Kn96]) and invariant integration (see [F95]). In Sect. 9.1,
we collect the notation and a number of facts that are used later in the exposition.

Throughout this chapter,U denotes a unitary representation of the Lie group G
(according to Definition 4.54) on a Hilbert space H(U ).
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9.1 Preliminaries on Lie Groups and Enveloping Algebras

Let μl denote a left Haar measure of G. Then, for any integrable function f on G,

∫
G
f (hg) dμl(g) =

∫
G
f (g) dμl(g), h ∈ G.

Let g be the Lie algebra of G with Lie bracket [·, ·] and x �→ exp x the exponential
map of g into G. Each x ∈ g acts as a right-invariant vector field x̃ on G by

(x̃ f )(g) = d

dt
f (exp(−t x)g) |t=0, f ∈ C∞(G). (9.1)

The map x �→ x̃ is a Lie algebra homomorphism; that is, it is R-linear and satisfies

[̃x, y] = x̃ ỹ − ỹ x̃, x, y ∈ g. (9.2)

The group G acts on the Lie algebra g by the adjoint representation Ad. For
g ∈ G, Ad(g) is the differential of the inner automorphism h �→ ghg−1. Then

expAd(g)x = g(exp x)g−1 for g ∈ G, x ∈ g. (9.3)

The convolution of two functions f1, f2 ∈ L1(G;μl) is

( f1 ∗ f2)(g) :=
∫
G
f1(h) f2(h

−1g) dμl(h) =
∫
G
f1(gh) f2(h

−1) dμl(h). (9.4)

There exists a unique continuous homomorphismΔG ofG in themultiplicative group
(0,∞), themodular function of G, such that μl(Mg) = ΔG(g)μl(M) for g ∈ G and
Borel sets M . Then, for integrable functions ϕ, f1, f2, and g ∈ G,

∫
G

ϕ(hg) dμl(h) = ΔG(g)−1
∫
G

ϕ(h) dμl(h), (9.5)
∫
G

ϕ(h−1) dμl(h) =
∫
G

ϕ(h)ΔG(h)−1 dμl(h), (9.6)

( f1 ∗ f2)(g) =
∫
G
f1(gh

−1) f2(h)ΔG(h)−1 dμl(h).

Further, dμr (h) := ΔG(h)−1dμl(h) defines a right Haar measure μr on G.
The Banach space L1(G;μl) is a Banach ∗-algebra with the convolution product

(9.4) and the involution f �→ f +, where

f +(g) := ΔG(g)−1 f (g−1) , g ∈ G. (9.7)
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For the Lie group G, we have ΔG(g) = | det Ad(g−1)| and hence ΔG ∈ C∞(G).
Therefore, by (9.7), the map f �→ f + leaves C∞

0 (G) invariant and it follows that
C∞
0 (G) is a ∗-subalgebra of the ∗- algebra L1(G;μl).

In exponential coordinates, the Haar measure has aC∞-density with respect to the
Lebesgue measure dx on g ∼= R

d (see, e.g., [BGV04, Proposition 5.1]). Set H(x) :=
| det ζ(ad x)| for x ∈ g, where ζ is the holomorphic function ζ(z) = z−1(1 − e−z)

and ad(x)y = [x, y], x, y ∈ g. Then H(0) = 1, and there is a neighborhood O of 0
in g such that

H ∈ C∞(O) and H(x) > 0, dμl(exp x) = H(x)dx for x ∈ O. (9.8)

Let E(g) denote the complex universal enveloping algebra, briefly the enveloping
algebra, of g. By definition, E(g) is the quotient algebra of the tensor algebra over
the complexification gC of the real Lie algebra g by the two-sided ideal generated by
the elements x ⊗ y − y ⊗ x − [x, y], where x, y ∈ g. We consider g as a subspace
of E(g) by identifying g with its image under the quotient map. The algebra E(g) is
a unital ∗-algebra with involution determined by x+ := −x for x ∈ g.

Let A be a unital algebra. A homomorphism of the Lie algebra g into A is an
R-linearmap θ : g �→ A such that θ([x, y]) = θ(x)θ(y) − θ(y)θ(x) for x, y ∈ g.By
the universal property of the enveloping algebra, each Lie algebra homomorphism
of g into A has a unique extension to a unit preserving algebra homomorphism of
E(g) into A. In particular, by (9.2), the map x �→ x̃ defined by (9.1) extends to an
algebra homomorphism of E(g). Further, if A is a ∗-algebra and θ(x)+ = θ(x+) for
x ∈ g, then the extension of θ is a ∗-homomorphism.

Throughout this chapter, {x1, . . . , xd} denotes a fixed basis of the vector space g
and we set

xn := xn11 · · · xndd for n = (n1, . . . , nd) ∈ N
d
0 , where x0j := 1.

Then the Poincare–Birkhoff–Witt theorem says that the set {xn : n ∈ N
d
0} is a basis

of the complex vector space E(g).

9.2 Infinitesimal Representations of Unitary
Representations

Since the Lie groupG is a topological group, Definition 4.54 applies toG. According
to Definition 4.54, a unitary representation of the Lie group G on a Hilbert space
H(U ) is a homomorphismU of G into the group of unitary operators onH(U ) such
that for each vector ϕ ∈ H(U ) the map G 	 g �→ U (g)ϕ ∈ H(U ) is continuous.
Equivalent forms of the continuity condition have been given in Lemma 4.55.
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Definition 9.1 A vector ϕ ∈ H(U ) is called a C∞ -vector for U if the mapping

G 	 g �→ U (g)ϕ ∈ H(U )

is of the class C∞. The vector space of C∞-vectors for U is denoted by D∞(U ).

Let h ∈ G andϕ ∈ D∞(U ). Being the composition of the two C∞-maps g �→ gh
and g �→ U (g)ϕ, the map g �→ U (g)U (h)ϕ = U (gh)ϕ is alsoC∞, so it follows that
U (h)ϕ ∈ D∞(U ). This shows that D∞(U ) is invariant under the representation U.

Now we turn to ∗-representations of the Lie algebra g.
Definition 9.2 Let (D, 〈·, ·〉) be a complex inner product space. A ∗-representation
of the Lie algebra g on D is a linear mapping π : g �→ L(D) such that for x, y ∈ g
and ϕ,ψ ∈ D :

π([x, y]) = π(x)π(y) − π(y)π(x), (9.9)

〈π(x)ϕ,ψ〉 = − 〈ϕ,π(x)ψ〉. (9.10)

Recall that L(D) denotes the algebra of linear operators mapping D into itself.
From the universal property of the enveloping algebra E(g) and condition (9.9)

it follows that π extends uniquely to an algebra homomorphism, denoted also π,
of E(g) into L(D) such that π(1) = I . Since x+ = −x for x ∈ g, condition (9.10)
means 〈π(x)ϕ,ψ〉 = 〈ϕ,π(x+)ψ〉. Since π is an algebra homomorphism, it follows
easily (see Exercise 4.2) that the latter equation holds for all x ∈ E(g). Hence π is a
∗-representation of the ∗-algebra E(g) with domain D. Summarizing, the extension
of each Lie algebra ∗-representation is a nondegenerate ∗-representation of the
enveloping algebra E(g).

Let x ∈ g. Because t �→ exp t x is a continuous homomorphism of R into G,
t �→ U (exp t x) is a strongly continuous one-parameter unitary group onH(U ). Let
∂U (x) denote its infinitesimal generator. Then U (exp t x) = exp(t∂U (x)) for t ∈ R.

By Stone’s theorem (Proposition A.5), i∂U (x) is a self-adjoint operator on H(U ),
so ∂U (x) is skew-adjoint, and we have

D(∂U (x)) = {
ϕ ∈ H(U ) : ∂(Ux)ϕ := lim

t→0
t−1[U (exp t x) − I ]ϕ exists

}
.

From the latter we conclude that D∞(U ) ⊆ D(∂U (x)). For x ∈ g we define

dU (x) = ∂U (x)�D∞(U ).

Then, by the definition of ∂U (x)ϕ given above,

dU (x)ϕ = d

dt

(
U (exp t x)ϕ

) |t=0 for ϕ ∈ D∞(U ), x ∈ g. (9.11)
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Proposition 9.3 The map x �→ dU (x) is a ∗-representation of the Lie algebra g. Its
extension to the enveloping algebra E(g) is a nondegenerate ∗-representation dU of
the ∗-algebra E(g) on the subspace D(dU ) := D∞(U ) of H(U ). Further,

dU (Ad(g)x) = U (g)dU (x)U (g−1) for g ∈ G, x ∈ g. (9.12)

Proof Throughout this proof, let ϕ ∈ D∞(U ) and x, y, z ∈ g. From (9.11),

lim
t→0

t−1[U (g exp t x)−U (g)]ϕ = U (g) lim
t→0

t−1[U (exp t x)−I ]ϕ = U (g)dU (x)ϕ.

Hence, since g �→ U (g)ϕ is a C∞-map of G into H(U ), so is g �→ U (g)dU (x)ϕ.

Therefore, dU (x)ϕ ∈ D∞(U ), that is, D∞(U ) is invariant under dU (x).
As noted above, ∂U (x), hence dU (x), is skew-symmetric on D∞(U ). Thus,

condition (9.10) in Definition 9.2 is satisfied.
Next we show that condition (9.9) holds. Let ψ ∈ H(U ). Since the inversion

g �→ g−1 is a C∞-map of G, the function

fϕ,ψ(g) := 〈U (g−1)ϕ,ψ〉 = 〈ϕ,U (g)ψ〉

belongs to C∞(G). Then, using (9.1) and (9.11) we derive

z̃ fϕ,ψ(g) = d

dt

(〈ϕ,U (exp(−t z)g)ψ〉) |t=0= d

dt

(〈U (exp(t z))ϕ,U (g)ψ〉) |t=0

= 〈dU (z)ϕ,U (g)ψ〉 ≡ fdU (z)ϕ,ψ(g). (9.13)

Since dU (z)ϕ ∈ D∞(U ), the function fdU (z)ϕ,ψ is of the same form as fϕ,ψ, so we
can apply x̃ or ỹ to this function. Then, a repeated use of formula (9.13) yields

(x̃ ỹ − ỹ x̃) fϕ,ψ(g) = 〈(dU (x)dU (y) − dU (y)dU (x))ϕ,U (g)ψ〉, (9.14)

[̃x, y] fϕ,ψ(g) = 〈dU ([x, y])ϕ,U (g)ψ〉. (9.15)

By (9.2), the left-hand sides of (9.14) and (9.15) coincide, so do the right-hand sides.
Setting g = e and using that ψ ∈ H(U ) was arbitrary, we obtain

dU ([x, y]) = dU (x)dU (y) − dU (y)dU (x),

which proves (9.9). A similar, even simpler reasoning shows the linearity of the map
x �→ dU (x). Thus, dU is a ∗-representation of Lie algebra g. As discussed after
Definition 9.2, dU extends uniquely to a nondegenerate ∗-representation of E(g).

Finally, we verify formula (9.12). From (9.3) it follows that

U (exp(t Ad(g)x))ϕ = U (exp (Ad(g)t x))ϕ = U (g)U (exp t x)U (g−1)ϕ. (9.16)
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Since D∞(U ) is invariant under U , we have U (g−1)ϕ ∈ D∞(U ). Hence we can
differentiate both sides of equation (9.16) at t = 0 by using (9.11) and obtain
dU (Ad(g)x)ϕ = U (g)dU (x)U (g−1)ϕ. This proves (9.12). �
Definition 9.4 The ∗-representation dU of the ∗-algebra E(g) from Proposition
9.3 is called the infinitesimal representation, or the derived representation, or the
differential, of the unitary representation U of the Lie group G.

In Proposition 9.3 it was only shown that dU is a ∗-representation of E(g) on
the complex inner product space (D∞(U ), 〈·, ·〉). From Proposition 9.6, (iv) and (v),
below it follows thatD∞(U ) is dense in the Hilbert spaceH(U ). Thus, dU is indeed
a ∗-representation on the Hilbert space H(dU ) = H(U ) in the sense of Sect. 4.1.

The representations of the form dU are the most important ∗-representations of
enveloping algebras; they are called integrable; see also Definition 9.47 below.

A nice class of C∞-vectors are the vectors in the range of the following “smooth-
ing operator” U f . Let f ∈ C∞

0 (G) and ϕ ∈ H(U ). Since g �→ f (g)U (g)ϕ is a
continuous mapping of G intoH(U ), the H(U )-valued Bochner integral

U f ϕ :=
∫
G

f (g)U (g)ϕ dμl(g)

exists. Clearly, U f is a bounded operator on H(U ) and ‖U f ‖ ≤ ∫
G | f (g)|dμl .

Definition 9.5 The linear span of vectors U f ϕ, where f ∈ C∞
0 (G) and ϕ ∈ H(U ),

is called the Gårding domain of U and denoted by DG(U ).

Basic properties of these vectors U f ϕ are collected in the next proposition.

Proposition 9.6 Suppose g ∈ G, x ∈ E(g), and f, f1, f2 ∈ C∞
0 (G). Then:

(i) U (g)U f = U f (g−1·) .
(ii) U (g)DG(U ) ⊆ DG(U ).
(iii) dU (x)U f = Ux̃ f .
(iv) dU (x)DG(U ) ⊆ DG(U ) and DG(U ) ⊆ D∞(U ).

(v) DG(U ) is a dense linear subspace of H(U ).
(vi) U f1U f2 = U f1∗ f2 and U f + = (U f )

∗.

Proof Throughout this proof, let ϕ ∈ H(U ).

(i): Using the left invariance of the measure μl we obtain

U (g)U f ϕ =
∫
G
f (h)U (gh)ϕ dμl(h) =

∫
G
f (g−1h)U (h)ϕ dμl(h) = U f (g−1·)ϕ.

(ii): Follows at once from (i), since f (g−1·) is also in C∞
0 (G).

(iii) and (iv): First suppose x ∈ g. Let t ∈ R. Then, by the preceding formula,
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t−1[U (exp t x) − I ]U f ϕ =
∫
G
t−1[ f (exp(−t x)g) − f (g)]U (g)ϕ dμl(g).

(9.17)

Since f ∈ C∞
0 (G),we have limt→0 t−1[ f (exp(−t x)g) − f (g)] = (x̃ f )(g) uni-

formly on G. Hence we can interchange integration and limt→0 in Eq. (9.17)
and obtainU f ∈ D(∂U (x)) and ∂U (x)U f ϕ = Ux̃ f ϕ. Set f1(·) := (x̃ f )(g−1·).
Then, f1 ∈ C∞

0 (G) and

d

dt
(U (g exp t x)U f ϕ) |t=0= U (g)∂U (x)U f ϕ = U (g)U(x̃ f )ϕ = U f1ϕ.

This shows that all first-order partial derivatives of the map g �→ U (g)U f ϕ exist
and are again of the form U f1ϕ with f1 ∈ C∞

0 (G). By a repeating application
of this fact it follows that partial derivatives of arbitrary order exist. Hence the
map g �→ U (g)U f ϕ is C∞, so U f ∈ D∞(U ) and DG(U ) ⊆ D∞(U ).

SinceU f ∈ D∞(U ), we have dU (x)U f ϕ = ∂U (x)U f ϕ = Ux̃ f ϕ ∈ DG(U ) for
x ∈ g. Clearly, the relation dU (x)U f = Ux̃ f ∈ DG(U ) for x ∈ g extends to ele-
ments x of the enveloping algebra E(g).

(v): If f ∈ C∞
0 (G) is nonnegative and

∫
f (g)dμl = 1, then

‖U f ϕ − ϕ‖ =
∥∥∥

∫
f (g)(U (g) −U (e))ϕ dμl(g)

∥∥∥ ≤ sup
g∈supp f

‖(U (g) −U (e))ϕ‖.

Hence, by the continuity of U , we have U f ϕ → ϕ inH(U ) as supp f shrinks
to {e}. This shows that each vector ϕ ∈ H(U ) is in the closure of DG(U ).

(vi): Let ϕ,ψ ∈ H(U ). Using (9.4), the left invariance of the Haar measure μl , and
Fubini’s theorem we compute

U f1U f2ϕ =
∫
G
f1(g)U (g)

( ∫
G
f2(h)U (h)ϕ dμl(h)

)
dμl(g)

=
∫
G
f1(g)U (g)

( ∫
G
f2(g

−1h)U (g−1h)ϕ dμl(h)
)
dμl(g)

=
∫
G

( ∫
G
f1(g) f2(g

−1h) dμl(g)
)
U (h)ϕ dμl(h) = U f1∗ f2ϕ.

Using that U (g)∗ = U (g−1) and formulas (9.7) and (9.6) we derive

〈U f +ϕ, ψ〉 =
∫
G

f (g−1)ΔG(g)−1〈U (g)ϕ, ψ〉 dμl(g)

=
∫
G
〈ϕ, f (g−1)ΔG(g)−1U (g−1)ψ〉 dμl(g)

=
∫
G
〈ϕ, f (g)U (g)ψ〉 dμl(g) = 〈ϕ,U f ψ〉 = 〈(U f )

∗ϕ, ψ〉,

which yields U f + = (U f )
∗. �
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An immediate consequence of Proposition 9.6, (v) and (vi), is

Corollary 9.7 The map f �→ U f is a nondegenerate ∗-representation of the
∗-algebra C∞

0 (G) on the Hilbert space H(U ) such that ‖U f ‖ ≤ ∫
G | f (g)| dμl(g).

The Gårding domain DG(U ) of a unitary representation U is better manageable
than the space of C∞-vectors, because it is closer related to the Lie group G itself.
For instance, by Proposition 9.6, (i) and (iii), the actions of U (g) and dU (x) on a
vector U f ϕ correspond to the left regular representation Ul(g) (see (9.18) below)
and the differential operator x̃ on the function f , respectively.

Remark 9.8 By a deep theorem of Dixmier andMalliavin [DM78], for each unitary
representation U of a connected Lie group G the Gårding domain DG(U ) is equal
to the space D∞(U ) of C∞-vectors. We will not use this result in this book.

More precisely, by [DM78, Theorem 3.1], each f ∈ C∞
0 (G) is a finite sum of

functions of the form f1 ∗ f2, where f1, f2 ∈ C∞
0 (G). (The case G = R

d is also
treated in [RST78].) As a consequence, it is shown [DM78, Theorem 3.3] that each
ϕ ∈ D∞(U ) is a finite sum of vectors U f ψ, where f ∈ C∞

0 (G), ψ ∈ D∞(U ). �
We illustrate the preceding with an important example.

Example 9.9 (Left and right regular representations)
The left regular representation of the Lie group G is defined by

(Ul(g)ϕ)(h) = ϕ(g−1h) for g ∈ G, ϕ ∈ H(Ul) := L2(G;μl). (9.18)

Statement 1: Ul is a unitary representation of the Lie group G.

Proof The left invariance of the measure μl implies that each operator Ul(g) is
unitary. The map g �→ Ul(g) is a group homomorphism, since

Ul(g1)(Ul(g2)ϕ)(h) = (Ul(g2)ϕ)(g−1
1 h) = ϕ(g−1

2 g−1
1 h) = (Ul(g1g2)ϕ)(h).

The continuity is proved by the following standard argument. Using Lebesgue’s
dominated convergence theorem we first show that limg→e Ul(g)ψ = ψ for ψ in
Cc(G). For vectors ϕ ∈ L2(G;μl) we use the famous “3ε–trick.” Given ε > 0 we
can choose ψ ∈ Cc(G) such that ‖ϕ − ψ‖ ≤ ε (since Cc(G) is dense in L2(G;μl))
and a neighborhood V of e such that ‖Ul(g)ψ − ψ‖ ≤ ε on V . Then, for g ∈ V ,

‖Ul(g)ϕ − ϕ‖ = ‖Ul(g)(ϕ − ψ) + (Ul(g)ψ − ψ) + (ψ − ϕ)‖
≤ 2‖ϕ − ψ‖ + ‖Ul(g)ψ − ψ‖ ≤ 3ε. �

Statement 2: C∞
0 (G) ⊆ D∞(Ul) and dUl(x) f = x̃ f for f ∈ C∞

0 (G), x ∈ E(g).
In particular, the ∗-representation dUl of E(g) is faithful.
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Proof First let x ∈ g. Since x̃ f ∈ C∞
0 (G), M := sup { |(x̃ f )(h)| : h ∈ G} < ∞.

Using the mean value theorem we conclude that

| f (exp(−t x)g) − f (g)| ≤ |t | sup
{ ∣∣∣

( d

ds
f
)
(exp(−sx)g)

∣∣∣ : |s| ≤ |t |
}

≤ |t | sup { |(x̃ f )(exp(−sx)g)| : s ∈ R} ≤ |t |M

and therefore

|t−1[ f (exp(−t x)g) − f (g)] − (x̃ f )(g)|2
≤ 2|t−1[ f (exp(−t x)g) − f (g)] |2 + 2|(x̃ f )(g)|2 ≤ 4M2.

Hence the assumptions of Lebesgue’s dominated convergence theorem are satisfied,
so we can interchange integral and limit in the norm of L2(G;μl) and obtain

lim
t→0

‖t−1[ f (exp(−t x)·)− f ] − x̃ f ‖ = lim
t→0

‖t−1[Ul(exp t x)−I ) f ] − x̃ f ‖ = 0

in L2(G;μl).Thus, f ∈ D(∂Ul(x)) and ∂Ul(x) f = x̃ f. Since x̃ f is also inC∞
0 (G),

arguing as in the proof of Proposition 9.6(iv),we derive f ∈ D∞(Ul).Then dUl(x) =
x̃ f . By repeated application this extends to elements of E(g).

A basic fact from Lie theory [Va64, Theorem 3.4.1] says that the map x �→ x̃ of
E(g) is injective on C∞

0 (G). Hence, if dUl(x) = 0, then dUl(x) f = x̃ f = 0 for all
f ∈ C∞

0 (G), so x̃ = 0 and therefore x = 0. This proves that dUl is faithful. �
Let f ∈ C∞

0 (G) and ϕ ∈ L1(G;μl) ∩ L2(G;μl). Then we compute

(Ul) f ϕ =
∫
G
f (h)Ul(h)ϕ dμl(h) =

∫
G
f (h)ϕ(h−1·) dμl(h) = f ∗ ϕ. (9.19)

That is, for the left regular representation Ul the element (Ul) f ϕ of the Gårding
domain DG(Ul) is just the convolution of the functions f and ϕ on G.

It can be shown [Pu72, Example 5.2] that the space of C∞-vectors for Ul is

D∞(Ul) = {
f ∈ C∞(G) : x̃ f ∈ L2(G;μl) for all x ∈ E(g)

}
.

The right regular representation is the unitary representationUr of the Lie group
G acting on the Hilbert space H(Ur ) := L2(G;μl) by

(Ur (g)ϕ)(h) = ΔG(g)1/2ϕ(hg) for g ∈ G, ϕ ∈ L2(G;μl). (9.20)

The representationsUl andUr are unitarily equivalent, where the equivalence is given
by the unitary V defined by (Vϕ)(h) := ΔG(h)−1/2ϕ(h−1).That the operatorsUr (g)

and V are unitary on L2(G;μl) follows from (9.5) and (9.6). �



196 9 Integrable Representations of Enveloping Algebras

9.3 The Graph Topology of the Infinitesimal
Representation

The following proposition contains a description of the spaceD∞(U ) and the graph
topology tdU (seeDefinition 4.8) in terms of the infinitesimal generators ∂U (x j ). The
proof uses only “elementary” Lie group techniques. A much stronger result based
on elliptic regularity theory will be given in Theorem 9.30 below.

Proposition 9.10 The locally convex space D∞(U )[tdU ] is a Frechet space,

D∞(U ) =
∞⋂
k=1

⋂
j1,..., jk∈{1,...,d}

D(∂U (x j1) · · · ∂U (x jk )), (9.21)

and the graph topology tdU on D∞(U ) is given by the seminorms

ϕ �→ ‖dU (x j1 · · · x jk )ϕ‖ = ‖∂U (x j1) · · · ∂U (x jk )ϕ‖, (9.22)

where j1, . . . , jk ∈ {1, . . . , d}, k ∈ N, together with the Hilbert space norm ‖ · ‖.
Proof We denote the right-hand side of (9.21) byD. Letϕ ∈ D∞(U ). SinceD∞(U )

is invariant under dU by the proof of Proposition 9.3, ϕ is in the domain of
dU (x j1) · · · dU (x jk ), hence of ∂U (x j1) · · · ∂U (x jk ). Thus ϕ ∈ D.

We prove the converse inclusion D ⊆ D∞(U ). Let Dn denote the intersection of
domains in (9.21) with k ≤ n. For t = (t1, . . . , td) ∈ R

d and j = 1, . . . , d + 1, set

g1(t) = e, g j (t) := exp t1x1 · · · exp t j−1x j−1, j ≥ 2, and g(t) := gd+1(t).

Let ϕ ∈ D1. We prove that the map R
d 	 t �→ Fϕ(t) := U (g(t))ϕ ∈ H(U ) is

differentiable at t = 0. Since U is a group homomorphism, we have

U (g(t)) − I =
d∑
j=1

U (g j (t))[U (exp t j x j ) − I ].

This equation implies the identity

Fϕ(t) − Fϕ(0) −
d∑
j=1

t j∂U (x j )ϕ =

d∑
j=1

(
U (g j (t))[(U (exp t j x j )−I )ϕ − t j∂U (x j )ϕ] + [U (g j (t))−I ]t j∂U (x j )ϕ

)
.

Since U (·) is unitary and |t j | ≤ ‖t‖, we therefore obtain
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‖t‖−1
∥∥∥Fϕ(t) − Fϕ(0) −

d∑
j=1

t j∂U (x j )ϕ
∥∥∥

≤
d∑
j=1

(
‖t−1

j (U (exp t j x j ) − I )ϕ − ∂U (x j )ϕ‖ + ‖(U (g j (t)) − I )∂U (x j )ϕ‖
)
.

Since ϕ ∈ ∩ jD(∂U (x j )) and U is continuous, the right side tends to 0 as ‖t‖ → 0.
Hence the derivative F ′

ϕ(0) exists and is the linear map of R
d into H(U ) given by

F ′
ϕ(0)(t) = ∑d

j=1 t j∂U (x j )ϕ. In particular, since U (h)Fϕ(t) = U (hg(t))ϕ and U
is continuous, it follows that

∂

∂t j
(U (hg(t))ϕ) |t=0= U (h)∂U (x j )ϕ, j = 1, . . . , d, (9.23)

for h ∈ G and these partial derivatives are continuous. Therefore, since t �→ hg(t)
is a C∞-isomorphism of a neighborhood of 0 in R

d on a neighborhood of h in G,
we have shown that the map g �→ U (g)ϕ of G intoH(U ) is C1.

Suppose that ϕ ∈ D2. Let i ∈ {1, . . . , d}. Then ∂U (xi )ϕ ∈ D1 and hence

∂

∂t j
(U (hg(t))∂U (xi )ϕ) |t=0= U (h)∂U (x j )∂U (xi )ϕ

by (9.23). Thus,U (hg(t)) has continuous second-order partial derivatives. Hence the
map g �→ U (g)ϕ is C2. Now assume ϕ ∈ Dn . Let j1, . . . , jn ∈ {1, . . . , d}. Then, by
the definition ofDn we have ϕ ∈ D(∂U (x j1) · · · ∂U (x jn )). By a repeated application
of (9.23) it follows that the partial derivative ∂

∂t j1
· · · ∂

∂t jn
of U (hg(t))ϕ at t = 0 is

U (h)∂U (x j1) · · · ∂U (x jn )ϕ. This implies that themap g �→ U (g)ϕ isCn . Therefore,
D = ∩nDn ⊆ D∞(U ), so that D = D∞(U ).

We turn to the graph topology tdU . Since dU (x j ) ⊆ ∂U (x j ) and E(g) is the span
of elements 1, x j1 · · · x jk , the Hilbert space norm and the seminorms (9.22) generate
the topology tdU . This is a countable family of seminorms. Hence tdU is metrizable.

Let (ϕn)n∈N be a Cauchy sequence in D∞(U )[tdU ]. Then (ϕn)n∈N and each
sequence (dU (x j1 · · · x jk )ϕn)n∈N = (∂U (x j1) · · · ∂U (x jk )ϕn)n∈N are Cauchy
sequences inH(U ). Let ϕ denote the limit of the sequence (ϕn)n∈N inH(U ). Since
each operator ∂U (x j ) is closed, it follows that ϕ ∈ D(∂U (x j1) · · · ∂U (x jk )) and
limn ∂U (x j1) · · · ∂U (x jk )ϕn = ∂U (x j1) · · · ∂U (x jk )ϕ.Henceϕ ∈ D∞(U )by (9.21),
and we have limn ϕn = ϕ in the graph topology tdU . This proves that D∞(U )[tdU ]
is complete and hence a Frechet space. �
Proposition 9.11 For each vector ϕ ∈ D∞(U ), the map g �→ U (g)ϕ of G into the
locally convex space D∞(U )[tdU ] is a C∞-mapping.
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Proof Fix ϕ ∈ D∞(U ). Let h ∈ G and put ψ := U (h)ϕ ∈ D∞(U ). Note that t =
(t1, . . . , td) �→ g(t) = exp t1x1 · · · exp t1xd is a C∞-map of R

d into G. The compo-
sition (s, t) �→ U (g(s)g(t))ψ of the C∞-mappings (s, t) �→ g(s)g(t) of R

2d into G
and g �→ U (g)ψ of G intoH(U ) is a C∞-mapping of R

2d intoH(U ).

For n = (n1, . . . , nd) ∈ N
d
0 we abbreviate Dn

s := ( ∂
∂s1

)n1 · · · ( ∂
∂sd

)nd . By (9.11),

for n ∈ N
d
0 and t ∈ R

d we obtain

dU (xn)U (g(t))ψ = Dn
s

(
U (g(s))U (g(t))ψ

) |s=0 = Dn
s

(
U (g(s)g(t))ψ

) |s=0 .

Hence the map t �→ dU (xn)U (g(t))ψ of R
d into H(U ) is C∞. Since the xn span

E(g), the same is true for t �→ dU (x)U (g(t))ψ with x ∈ E(g). Since the operators
dU (x) are closable and D∞(U )[tdU ] is complete, each derivative Dn

t U (g(t))ψ in
the Hilbert space norm is equal to the derivative Dn

t (U (g(t))ψ in the graph topology
tdU . Hence the map t �→ U (g(t))ψ = U (g(t)h)ϕ of R

d into D∞(U )[tdU ] is C∞
and so is the map g �→ U (g)ϕ in a neighborhood of h ∈ G. �

The following important and very useful result is Poulsen’s theorem.

Theorem 9.12 Let D be a linear subspace of D∞(U ) which is dense in H(U ).
Suppose D is invariant under U (g) for all elements g of the connected component
G0 of the unit element of G. Then D is dense in D∞(U ) with respect to the graph
topology tdU and D is a core for each operator dU (x), x ∈ E(g), that is,

dU (x)�D = dU (x) for x ∈ E(g). (9.24)

Proof Let D denote the closure of D in the space D∞(U )[tdU ]. Fix ϕ ∈ D and
f ∈ C∞

0 (G0). Let x ∈ E(g). By Proposition 9.11, the map g �→ U (g)ϕ is C∞ in the
graph topology tdU .Hence themap g �→ dU (x)U (g)ϕofG intoH(U ) is continuous,
so the Bochner integral

∫
f (g)dU (x)U (g)ϕ dμl exists and we have

dU (x)U f ϕ =
∫
G0

f (g)dU (x)U (g)ϕ dμl(g). (9.25)

Thus, the Bochner integral U f ϕ = ∫
f (g)U (g)ϕ dμl exists in the graph topology.

Hence U f ϕ is the tdU -limit of Riemann sums for this integral. Since D is invariant
under U (g) for g ∈ G0, these sums are in D and therefore U f ϕ ∈ D.

Now let ϕ ∈ D∞(U ). We prove thatU f ϕ ∈ D for f ∈ C∞
0 (G0). By assumption,

D is dense inH(U ). Hence there is a sequence (ϕn)n∈N of vectors ϕn ∈ D such that
limn ϕn = ϕ inH(U ). Let x ∈ E(g). Using Proposition 9.6(iii) and the fact that the
smoothing operator Ux̃ f is bounded we obtain

lim
n→∞ dU (x)U f ϕn = lim

n→∞Ux̃ f ϕn = Ux̃ f ϕ = dU (x)U f ϕ.

Hence limn U f ϕn = U f ϕ in D∞(U )[tdU ]. In the preceding paragraph we have
shown that U f ϕn ∈ D. Thus U f ϕ ∈ D.
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Next we mimic the proof of Proposition 9.6(v) and choose a sequence ( fn)n∈N
of nonnegative functions fn ∈ C∞

0 (G0) such that
∫

fn(g)dμl = 1 for n ∈ N and
supp fn shrinks to {e} as n → ∞. Using (9.25) we derive

‖dU (x)(U fnϕ − ϕ)‖
=

∥∥∥dU (x)
∫
G0

fn(g)U (g)ϕ dμl(g) − dU (x)
∫
G0

fn(g)ϕ dμl(g)

∥∥∥
=

∥∥∥
∫
G0

fn(g)dU (x)(U (g) − I )ϕ dμl(g)

∥∥∥
≤ sup

{ ‖dU (x)(U (g) − I )ϕ‖ : g ∈ supp fn
}
. (9.26)

Since, by Proposition 9.11, the map g �→ U (g)ϕ of G intoD∞(U )[tdU ] is continu-
ous, the expression in (9.26) tends to zero as n → ∞. Therefore, limn U fnϕ = ϕ in
the locally convex space D∞(U )[tdU ]. Since U fnϕ ∈ D as proved in the preceding
paragraph, ϕ ∈ D. Thus, D = D∞(U ), that is, D is dense in D∞(U )[tdU ]. By the
definition of the graph topology the latter means that D is a core for each operator
dU (x), x ∈ E(g). �

By Proposition 9.6, (ii) and (v), the Gårding domain satisfies the assumptions of
Theorem 9.12. Thus, Theorem 9.12 has the following corollary.

Corollary 9.13 The Gårding domain DG(U ) is dense in the locally convex space
D∞(U )[ tdU ], and it is a core for each operator dU (x), x ∈ E(g).

According to Remark 9.8, if G is connected, we even have DG(U ) = D∞(U )

by the Dixmier–Malliavin theorem [DM78]. But Corollary 9.13 suffices for most
applications.

9.4 Elliptic Elements

If a = a+ ∈ E(g), then dU (a) is a symmetric operator. It is natural to ask whether
this operator is essentially self-adjoint. For this and other problems elliptic elements
play an important role. Let us begin with some technical preparations.

9.4.1 Preliminaries on Elliptic Operators

The first lemma says that weak C∞-mappings into Hilbert spaces are (strong) C∞-
mappings.

Lemma 9.14 Suppose ϕ : O �→ H is a mapping from an open set O of R
d into a

Hilbert space H. Set fη(t) = 〈η,ϕ(t)〉 for η ∈ H and t ∈ O.
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(i) If fη ∈ C2(O) for all η ∈ H, then ϕ is a C1-mapping from O intoH.
(ii) If fη ∈ C∞(O) for all η ∈ H, then ϕ is a C∞-mapping from O into H.

Proof (i): Let Dk denote the directional derivative in the direction of the basis vector
ek of R

d . Let t ∈ O and η ∈ H. Then

lim
λ→0

〈η,λ−1(ϕ(t + λek) − ϕ(t))〉 = Dk fη(t).

Hence, by the Banach–Steinhaus theorem, η �→ Dk fη(t) is a continuous linear
functional on H, so by the Riesz theorem there exists a vector ξk(t) ∈ H such
that

Dk fη(t) = 〈η, ξk(t)〉, η ∈ H. (9.27)

We fix t ∈ O and show that the map s �→ ϕ(s) of O into H is continuous at t .
We choose a compact convex neighborhood U of t in O. Since fη ∈ C2(O) by
assumption, Dk fη(·) is continuous, so s �→ ξk(s) is weakly continuous. There-
fore ξk(U ) is weakly compact, hence norm bounded in H, so there is a c > 0
such that

‖ξk(s)‖ ≤ c for s ∈ U, k = 1, . . . , d. (9.28)

Since U is convex, there exists an ε > 0 such that t + a ∈ U for all a =∑d
i=1 λi ei with |λi | ≤ ε. We fix such a vector a and set a j := ∑ j−1

i=1 λi ei for
j = 2, . . . , d and a1 := 0. Using the mean value theorem, (9.27), and (9.28) we
derive for η ∈ H,

|〈η,ϕ(t + a) − ϕ(t)〉| = | fη(t + a) − fη(t)|

=
∣∣∣

d∑
i=1

fη(t + ai + λi ei ) − fη(t + ai )
∣∣∣

≤
d∑

i=1

|λi | sup
{ |Di fη(t + ai + γi ei )| : |γi | ≤ |λi |

}

=
d∑

i=1

|λi | sup
{|〈η, ξi (t + ai + γi ei )〉| : |γi | ≤ |λi |

} ≤
d∑

i=1

|λi | ‖η‖ c .

Therefore, ‖ϕ(t + a) − ϕ(t)‖ ≤ c
∑d

i=1 |λi |. This implies the continuity of
ϕ at t .
Since fη ∈ C2(O), the same reasoning applies to the map t �→ ξk(t) of O into
H and shows that this map is continuous. Hence, to complete the proof of (i) it
suffices to show that ξk(t) = Dkϕ(t). By (9.27) we derive for small λ �= 0,
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|〈η,λ−1(ϕ(t + λek) − ϕ(t)) − ξk(t)〉| = |λ−1[ fη(t + λek) − fη(t)] − Dk fη(t)|

=
∣∣∣λ−1

∫ λ

0
(Dk fη(t + γek) − Dk fη(t)) dγ

∣∣∣
≤ ‖η‖ sup

{‖ξk(t + γek) − ξk(t)‖ : |γ| ≤ |λ|},
so that

‖λ−1(ϕ(t + λek) − ϕ(t)) − ξk(t)‖ ≤ sup
{‖ξk(t + γek) − ξk(t)‖ : |γ| ≤ |λ|}.

Hence, by the continuity of ξk(·), limλ→0 λ−1(ϕ(t + λek) − ϕ(t)) = ξk(t) in
the norm ofH, that is, ξk(t) = Dkϕ(t).

(ii) follows from the following result. Using (i) one proves by induction on n:
If fη ∈ Cn+1(O) for all η ∈ H, then ϕ is a Cn-mapping from O intoH. �

The next proposition gives a scalar characterization of C∞-vectors. The obvious
implication (i)→(iii) was already used in the proof of Proposition 9.3.

Proposition 9.15 Let ϕ ∈ H(U ) and let U be an open subset of G. The following
statements are equivalent:

(i) ϕ ∈ D∞(U ).

(ii) For each ψ ∈ H(U ), the function 〈ψ,U (g)ϕ〉 is in C∞(U).

(iii) For each ψ ∈ H(U ), the function 〈U (g)ψ,ϕ〉 is in C∞(U).

Proof (i)→(ii) is trivial. Clearly, 〈ψ,U (hg)ϕ〉 = 〈U (h−1)ψ,U (g)ϕ〉 for g, h ∈ G.
Hence (ii) implies 〈ψ,U (g)ϕ〉 ∈ C∞(G). Since 〈ψ,U (g−1)ϕ〉 = 〈U (g)ψ,ϕ〉 and
the map g �→ g−1 ofG isC∞, (ii) for U−1 is equivalent to (iii) for U . From these two
facts it follows that it suffices to show that 〈ψ,U (g)ϕ〉 ∈ C∞(G) for all ψ ∈ H(U )

implies (i).
We fix g0 ∈ G and choose a diffeomorphism t �→ g(t) of an open subsetO ⊆ R

d

on a neighborhood U0 of g0. Set ϕ(t) := U (g(t))ϕ. Since 〈ψ,U (g)ϕ〉 ∈ C∞(U0)

by the assumption, the map ϕ(t) : O �→ H(U ) is C∞ by Lemma 9.14(ii). Hence
U0 	 g �→ U (g)ϕ ∈ H(U ) is C∞, which proves that ϕ ∈ D∞(U ). �

Now we consider elliptic operators on a bounded domain O of R
d . Recall the

notation Dα
t := ( ∂

∂t1
)α1 · · · ( ∂

∂td
)αd for α ∈ N

d
0 , t ∈ R

d . Let m ∈ N.

Let bα(t) ∈ C∞(O) be given for α ∈ N
d
0 , |α| ≤ m. The differential operator

T :=
∑

|α|≤m

bα(t)Dα
t

is called uniformly elliptic of order m onO if there exists a constant c > 0 such that

∣∣∣∣
∑

|α|=m

bα(t)ξα

∣∣∣∣ ≥ c|ξ|m for ξ ∈ R
d , t ∈ O. (9.29)
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The following result is essentially based on the elliptic regularity theorem com-
bined with the embedding of Sobolev spaces.

Lemma 9.16 Suppose T = ∑
|α|≤m bα(t)Dα

t is a uniformly elliptic differential
operator of order m on the bounded domain O of R

d . Let u, v ∈ C(O). If

∫
O

(T f )(t)u(t) dt =
∫
O

f (t)v(t) dt for all f ∈ C∞
0 (O), (9.30)

then u ∈ Ck(O) for k ∈ N0, k < m − d/2. In particular, u ∈ Cm−d(O) if m ≥ d.

Proof The formal adjoint T † := ∑
α(−1)|α|Dα

t bα has the homogeneous part
(−1)m

∑
|α|=m bαDα

t of highest degree, so T † is also uniformly elliptic on O. Now
(9.30) implies that

∫
f (T †u) dt = ∫

f v dt for f ∈ C∞
0 (O). This means the equa-

tion T †u = v holds in the sense of distributions. Since v ∈ C(O), it follows from
the elliptic regularity theorem (see [BJS66, p. 190, Theorem 1] or [Ag15, Theorem
6.2.3]), applied to T †, that u belongs to the local Sobolev space Hm

loc(O). Therefore,
by the Sobolev embedding theorem [Ag15], we get u ∈ Ck(O) for k < m − d/2. In
particular, if m − d ≥ 0, then k := m − d < m − d/2 and hence u ∈ Cm−d(O). �

Next we turn to elliptic elements of E(g). Let a ∈ E(g), a �= 0. Recall that, by
the Poincare–Birkhoff–Witt theorem, {xn : n ∈ N

d
0} is a vector space basis of E(g).

Hence a can be written as

a =
∑

n∈Nd
0 ,|n|≤m

γnx
n, m ∈ N0, (9.31)

where γn ∈ C are uniquely determined by a. We say that a has degree m and write
m = deg(a) if there is an n ∈ N

d
0 such that |n| = m and γn �= 0. To any element a

of degree m we associate a homogeneous polynomial pa,m ∈ C[ξ1, . . . , ξd ] by

pa,m(ξ) :=
∑

|n|=m

γnξ
n.

Definition 9.17 The element a ∈ E(g) in (9.31) is called elliptic if a has degree
m ∈ N and the polynomial pa,m(ξ) is nonzero for all nonzero ξ ∈ R

d .

A typical example of an elliptic element is a = x2k1 + · · · + x2kd , k ∈ N. Note that
according to Definition 9.17 elliptic elements have always positive degrees.

Lemma 9.18 If a, b ∈ E(g) are elliptic, so are ab and a+.

Proof Let k = deg(a) and n = deg(b). Since xnxm − xn+m has a lower degree
than xnxm, we have kn = deg(ab) and pkn,ab(ξ) = pk,a(ξ)pn,b(ξ), so ab is elliptic.
Since x+

j = −x j , (−1)|n|xn − xn has a lower degree than xn. This implies that

k = deg(a+) and pk,a+(ξ) = (−1)k pk,a(ξ) on R
d , so a+ is also elliptic. �
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An element a = ∑
n γnxn ∈ E(g) of degree m ∈ N is elliptic if and only if there

exists a constant c > 0 such that

|pa,m(ξ)| ≥ c|ξ|m for ξ ∈ R
d . (9.32)

The if part is trivial. Conversely, let c be the minimum of the continuous function
pa,m(ξ) on the unit sphere. Since a is elliptic, c > 0 and (9.32) follows by scaling.

The following lemma applies Lemma 9.16 to elliptic elements of E(g).

Lemma 9.19 Suppose a ∈ E(g) is elliptic and deg(a) = m ≥ d. Let ϕ ∈ H(U ).
Suppose for each ψ ∈ H(U ) there exist vectors ζ, η ∈ H(U ) such that

∫
G
(ã f )(g) 〈U (g)ψ,ϕ〉 dμl(g) =

∫
G
f (g) 〈U (g)ζ, η〉 dμl(g) (9.33)

for f ∈ C∞
0 (G). Then, for all ψ ∈ H(U ), the function 〈U (g)ψ,ϕ〉 is in Cm−d(G).

Proof Set F(g) := 〈U (g)ψ,ϕ〉 and F0(g) := 〈U (g)ζ, η〉.We rewrite (9.33) in terms
of exponential coordinates. The C∞-map t �→ g(t) := exp(t1x1 + · · · + td xd) is a
diffeomorphism of a neighborhood of 0 in R

d on a neighborhood of e in G. The
following statements hold for all t in some appropriate neighborhood of 0 in R

d and
for all f ∈ C∞

0 (G) that are supported on some appropriate neighborhood of e in G.
We express the Haar measure μl and the operators x̃α in exponential coordinates

g(t). From (9.8) we recall that in some neighborhood of 0 in g there exists a C∞-
function H(t) > 0 such that dμl(g(t)) = H(t)dt . For α ∈ N

d
0 , there exists a C∞-

function bα such that bα(0) = (−1)|α| and (x̃α f )(g)|g=g(t) = bα(t)(Dα
t ( f ◦ g))(t).

Let a = ∑
|α|≤m γαxα. We define T := ∑

|α|≤m γαbα(t)Dα
t . Then we have

(̃a f )(g)|g=g(t) = (T ( f ◦ g))(t). Since a is elliptic, there is a constant c′ > 0 such
that | ∑|α|=m γαξα| ≥ c′|ξ|m , ξ ∈ R

d . Since the functions bα(t) are continuous and
bα(0) = (−1)m for |α| = m, it follows that (9.29) holds, with a positive constant
c < c′, for t in some neighborhood of 0. Now we choose open neighborhoods O
of 0 and U of e such that U = g(O) and all preceding facts hold for t ∈ O and
f ∈ C∞

0 (U). Then the differential operator T is uniformly elliptic on O and for
f ∈ C∞

0 (U) Eq. (9.33) reads as

∫
O

(T ( f ◦ g))(t) F(g(t))H(t) dt =
∫
O

( f ◦ g)(t)) F0(g(t))H(t)dt. (9.34)

All functions of C∞
0 (O) are of the form f ◦ g with f ∈ C∞

0 (U). Since the rep-
resentation U is continuous, so are the functions F(g), F0(g) on G and hence
F(g(t)), F0(g(t)) on O. Thus, the assumptions of Lemma 9.16 are satisfied, with
u(t) = F(g(t))H(t), v(t) = F0(g(t))H(t). Then, F(g(t))H(t) ∈ Cm−d(O) by
Lemma 9.16. Since H(t) > 0 on O and H ∈ C∞(O), F(g(t)) ∈ Cm−d(O) and
so F(g) = 〈U (g)ψ,ϕ〉 ∈ Cm−d(U). Replacing ψ by U (h)ψ, we conclude that
F(gh) ∈ Cm−d(U) for all h ∈ G. Therefore, F(g) ∈ Cm−d(G). �
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9.4.2 Main Results on Elliptic Elements

The next lemma contains the crucial technical steps for our first main theorem.

Lemma 9.20 (i) Suppose a ∈ E(g) is an elliptic element and m := deg(a) ≥ d. If
ϕ ∈ D(dU (a)∗) and ψ ∈ H(U ), then the function 〈U (g)ψ,ϕ〉 is in Cm−d(G).

(ii) Suppose an ∈ E(g), n ∈ N, are elliptic and supn∈N deg(an) = +∞. Then

∞⋂
n=1

D(dU (an)∗) ⊆ D∞(U ). (9.35)

Proof (i): Let f ∈ C∞
0 (G). Using Proposition 9.6(iii) we derive

∫
G
(̃a f )(g)〈U (g)ψ,ϕ〉 dμl(g) =

〈 ∫
G
(̃a f )(g)U (g)ψ dμl(g),ϕ

〉

= 〈Uã f ψ,ϕ〉 = 〈dU (a)U f ψ,ϕ〉 = 〈U f ψ, dU (a)∗ϕ〉
=

∫
G
f (g)〈U (g)ψ, dU (a)∗ϕ〉 dμl(g).

for all ψ ∈ H(U ). Therefore, 〈U (g)ψ,ϕ〉 ∈ Cm−d(G) by Lemma 9.19.

(ii): Suppose ϕ ∈ ∩∞
n=1D(dU (an)∗). Let ψ ∈ H(U ). Then, by (i), we have

〈U (g)ψ,ϕ〉 ∈ Cmn−d(G) ifmn := deg(an) ≥ d. Since supn mn = ∞, it follows
that 〈U (g)ψ,ϕ〉 ∈ C∞(G) for all ψ ∈ H(U ). Therefore, ϕ ∈ D∞(U ) by Propo-
sition 9.15, (iii)→(i). �

Corollary 9.21 The ∗-representation dU of E(g) is self-adjoint.

Proof Take an elliptic element a ∈ E(g). Then, by Lemma 9.20(ii), with an := an ,

D((dU )∗) ⊆ ∩nD(dU (an)∗) ⊆ D∞(U ) = D(dU ).

Since dU is a ∗-representation, dU ⊆ (dU )∗. Thus dU = (dU )∗. �
The following theorem collects our main results concerning elliptic elements.

Recall that for a Hilbert space operator T we abbreviate D∞(T ) := ∩∞
n=1D(T n).

Theorem 9.22 Suppose a ∈ E(g) is an elliptic element. Then

dU (a+) = dU (a)∗. (9.36)

In particular, if a = a+, then dU (a) is self-adjoint. Further,

D∞(U ) = D∞(
dU (a)

)
, (9.37)

the locally convex spaceD∞(U )[tdU ] is a Frechet space, and the graph topology tdU
is given by the family of seminorms ϕ �→ ‖dU (an)ϕ‖, n ∈ N0.
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Proof First assume a = a+. Let ξ ∈ ker(dU (a)∗ − λI ) for some λ ∈ C\R. Then
ξ ∈ D((dU (a)∗)n) ⊆ D((dU (a)n)∗) = D(dU (an)∗) for n ∈ N.Hence ξ ∈ D∞(U )

by Lemma 9.20(ii), applied with an = an . Therefore, since a = a+, it follows that
dU (a)ξ = dU (a)∗ξ = λξ. Since λ /∈ R and dU (a) is symmetric, ξ = 0. Hence
dU (a) is essentially self-adjoint by Proposition A.1, so dU (a) is self-adjoint.

Now let a be an arbitrary elliptic element. Then aa+ is hermitian and elliptic
by Lemma 9.18, so dU (aa+) = dU (a)dU (a)+ is essentially self-adjoint, as shown
in the preceding paragraph. Hence dU (a+) = dU (a)+ = dU (a)∗ by Lemma 7.1,
applied with x = dU (a). This proves (9.36).

Set an := (a+)n for n ∈ N. By Lemma 9.18, an is also elliptic. Then, since
supn deg an = +∞, Lemma 9.20(ii) yields

∞⋂
n=1

D(dU ((a+)n)∗) ⊆ D∞(U ). (9.38)

On the other hand, dU (a) ⊆ dU (a+)∗, so that dU (a) ⊆ dU (a+)∗. Therefore,
( dU (a) )n ⊆ (dU (a+)∗)n ⊆ (dU (a+)n)∗ = dU ((a+)n)∗, and

D∞( dU (a) ) ⊆
∞⋂
n=1

D(dU ((a+)n)∗). (9.39)

Combining (9.38) and (9.39) yields D∞( dU (a) ) ⊆ D∞(U ). Since the opposite
inclusion holds trivially, we obtain (9.37).

Let t denote the locally convex topology onD∞(U ) generated by the seminorms
ϕ �→ ‖dU (an)ϕ‖, n ∈ N0. Since D∞(U ) = D∞( dU (a) ) for the closed operator
dU (a), D∞(U )[ t ] is a Frechet space. From the closed graph theorem it follows
that tdU ⊆ t; see also Lemma 3.6. Thus, tdU = t. �

9.4.3 Applications of Elliptic Elements

Our main application to self-adjointness questions is the following theorem.

Theorem 9.23 Suppose a is an elliptic element of E(g) and T ∈ L+(D∞(U )) such
that T and T+ commute with dU (a) on D∞(U ). Then T T+ is essentially self-
adjoint and T+ = T ∗. In particular, each symmetric operator on D∞(U ), which
leaves D∞(U ) invariant and commutes with dU (a), is essentially self-adjoint.

Proof The closed graph theorem implies that the operator T T+ maps the Frechet
spaceD∞(U )[tdU ] continuously in theHilbert spaceH(U ).ByLemma 9.18, the ele-
ment b := a+a + 1 is also elliptic. Therefore, by Theorem 9.22, the graph topology
tdU is generated by the family of seminorms ‖dU (bn) · ‖, n ∈ N0. It follows easily
that ‖dU (bn) · ‖ ≤ ‖dU (bn+1) · ‖ for n ∈ N0. Hence there exist numbers n ∈ N and
c > 0 such that ‖ϕ‖ + ‖T T+ϕ‖ ≤ c‖dU (bn)ϕ‖ for ϕ ∈ D∞(U ).

Since T and T+ commute with dU (a) in the ∗-algebra L+(D∞(U )), both
operators commute also with dU (a+) = dU (a)+. Hence T T+ commutes with
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dU (bn) = (dU (a)dU (a)+ + I )n. Since bn is elliptic and (bn)+ = bn , dU (bn) is
self-adjoint by Theorem 9.22. Obviously, dU (bn) ≥ 0. Thus, the assumptions of
Lemma 7.3, with y = T T+ and x = dU (bn), are fulfilled. Therefore, T T+ is essen-
tially self-adjoint by Lemma 7.3 and hence T+ = T ∗ by Lemma 7.1. If T is sym-
metric, the latter means that T is essentially self-adjoint. �

An equivalent form of the commutativity assumption in Theorem 9.23 is that T
commutes with dU (a) and dU (a+). This formulation is used in the next corollary.

Corollary 9.24 Let a, b ∈ E(g), and suppose a is elliptic. If dU (b)dU (a) =
dU (a)dU (b) and dU (b)dU (a+) = dU (a+)dU (b), then dU (b+) = dU (b)∗.

Proof Apply Theorem 9.23 with T = dU (b). �
We derive a number of interesting corollaries of Theorem 9.23.

Corollary 9.25 If G is abelian, then dU (x+) = dU (x)∗ for all x ∈ E(g).

Proof Since G is abelian, E(g) is commutative. Hence dU (x), x ∈ E(g), commutes
with dU (a) for each elliptic element a ∈ E(g), so Corollary 9.24 applies. �
Corollary 9.26 Let Z be the center of E(g). Then dU (x+) = dU (x)∗ for x ∈ Z .
If x1 and x2 are hermitian elements of Z , then dU (x1) and dU (x2) are strongly
commuting self-adjoint operators.

Proof Since x ∈ Z commutes with all elliptic elements, Corollary 9.24 gives the
first assertion. The second assertion follows by combining the first assertion with
Lemma 7.2(ii), applied to x := x1 + ix2 ∈ Z . �
Corollary 9.27 Suppose x ∈ g. Then, for each polynomial p ∈ C[x],

dU (p(−ix)+) = dU (p(−ix))∗. (9.40)

In particular, for n ∈ N, dU (−ix)n = dU ((−ix)n) is essentially self-adjoint,

dU (x)n = ∂U (x)n and U (exp t x) = exp t dU (x) , t ∈ R. (9.41)

Proof There is a unitary representation U1 of the Lie group G1 = R defined by
U1(t) = U (exp t x), t ∈ R. Obviously, we can assume that x �= 0. Then we identify
the Lie algebra g1 of G1 with R · x and consider E(g1) as a ∗-subalgebra of E(g).
Note that y := −ix is hermitian in E(g). Fix p ∈ C[x] and set c := p(y) ∈ E(g1).
By the corresponding definitions,D∞(U ) ⊆ D∞(U1) and ∂U1(x) = ∂U (x). Hence
dU (c) ⊆ dU1(c) and dU (c+) ⊆ dU1(c+). From Corollary 9.25, applied to U1 and
G1, we obtain

dU1(c+) = dU1(c)
∗. (9.42)
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Since U1(t)U f ϕ = U (exp t x)U f ϕ = U f (exp(−t x)·)ϕ by Proposition 9.6(i),
U1 leaves the Gårding domain DG(U ) invariant, so Theorem 9.12 applies to U1

and D = DG(U ). Thus, DG(U ), hence D∞(U ), is a core for dU1(c+) and dU1(c),
so

dU (c+) ≡ dU1(c+)�D∞(U ) = dU1(c+) (9.43)

and similarly, dU (c) = dU1(c). Hence dU (c)∗ = dU1(c)∗. Combining the latter
with (9.42) and (9.43) we obtain dU (c+) = dU (c)∗, which is (9.40).

Now set p(x) = xn . Then p(−ix) = (−ix)n is hermitian, so Eq. (9.40) implies
that dU (−ix)n is self-adjoint.

Since ∂U (x) is the infinitesimal generator of a unitary group, −i∂U (x) is self-
adjoint by Stone’s theorem, so is (−i∂U (x))n ⊇ dU (−ix)n . Because dU (−ix)n

is self-adjoint, this implies (−i∂U (x))n = dU (−ix)n . Hence ∂U (x)n = dU (x)n .
Setting n = 1 and using the relation U (exp t x) = exp t ∂U (x) it follows that
U (exp t x) = exp t dU (x) . This proves (9.41). �

The following corollary says that in the case G = R
d the integrable representa-

tions of the commutative ∗-algebra E(g), as defined in Sect. 7.3, are precisely those
representations that are integrable with respect to the Lie group R

d . This justifies the
name “integrable representation” in Definition 7.7.

Corollary 9.28 Suppose G = R
d . We identify E(g) with the polynomial ∗-algebra

C[x1, . . . , xd ], with involution x+
j = −x j , j = 1, . . . , d. Then a ∗-representation π

of E(g) = C[x1, . . . , xd ] is integrable (according to Definition 7.7) if and only if
there exists a unitary representation U of the Lie group G = R

d such that π = dU.

Proof First suppose π is an integrable ∗-representation of A = C[x1, . . . , xd ] in the
sense of Definition 7.7. Then π(−ix1), . . . ,π(−ixd) are strongly commuting self-
adjoint operators by Theorem 7.11. Hence the multi-dimensional spectral theorem
(Proposition A.4) applies, and there exists a spectral measure E on R

d such that
π(−ix j ) = ∫

Rd λ j dE(λ) for j = 1, . . . , d. We define

U (x) =
∫
Rd

ei xλE(λ), x ∈ R
d ,

where xλ denotes the inner product of x,λ ∈ R
d . Using properties of spectral inte-

grals (see [Sch12]) it is easily shown that U is a unitary representation of the Lie
group R

d on H(π) and each one-parameter unitary group Uj (t) = ∫
Rd ei tλ j d E(λ),

t ∈ R, has the infinitesimal generator ∂U (x j ) = ∫
Rd iλ j dE(λ). Therefore,

∂U (x j ) = i π(−ix j ) = π(x j ) ⊇ π(x j ) for j = 1, . . . , d. Hence D(π) is invariant
under all operators ∂U (x j ). This impliesD(π) ⊆ D∞(U ) and π ⊆ dU. Then, since
π is integrable and hence self-adjoint, π = dU by Corollary 4.31.
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Conversely, suppose U is a unitary representation of the Lie group G = R
d .

Then, by Corollary 9.25, dU (x+) = dU (x)∗ for x ∈ E(g), so (7.4) is satisfied.
Hence, since dU is self-adjoint byCorollary 9.21,π := dU is integrable according to
Definition 7.7. �
Proposition 9.29 Let G0 denote the connected component of the unit element of G.
Then dU (E(g))′ = U (G0)

′. In particular, U�G0 is irreducible if and only if dU is.

Proof From operator theory it is well known that a bounded operator commutes with
a one-parameter unitary group if and only if it does with its infinitesimal generator.
Let x ∈ g and C ∈ B(H(U )). Then, by (9.41), C commutes with U (exp t x) for all
t ∈ R if and only if C commutes with dU (x) = ∂U (x).

Let C ∈ dU (E(g))′. For x ∈ g, C commutes with dU (x), hence with dU (x)
by Lemma 3.16(i) and then with U (exp x) by the result stated in the preceding
paragraph. Therefore, since G0 consists of finite products of elements exp x with
x ∈ g, C commutes with U (G0).

Now letC ∈ U (G0)
′.As noted above,C commuteswithdU (x) for x ∈ g. Further,

C leaves all domains D(∂U (x j1) · · · ∂U (x jd )) invariant and so D∞(dU ) by (9.21).
Hence C commutes with dU (x) for x ∈ g and therefore with dU (E(g)).

This proves that dU (E(g))′ = U (G0)
′. The assertion about the irreducibility fol-

lows at once from Proposition 4.26. �
The next theorem, due to R. Goodman, is also based on elliptic regularity theory.

It sharpens Proposition 9.10 by showing that mixed products ∂U (x j1) · · · ∂U (x jk ) as
in (9.21) are not needed to describe the domainD∞(U ) and the graph topology tdU .

Theorem 9.30 The space of C∞-vectors is given by

D∞(U ) =
d⋂

k=1
D∞(∂U (xk)) =

d⋂
k=1

∞⋂
n=1

D(
dU (xk)n

)
(9.44)

and the graph topology tdU on D∞(U ) is generated by the family of seminorms

ϕ �→ ‖dU (xnk )ϕ‖, k = 1, . . . , d, n ∈ N0. (9.45)

Proof Suppose ϕ ∈ ∩ jD∞(∂U (x j )), ψ ∈ H(U ), and f ∈ C∞
0 (G). Let n ∈ N and

j = 1, . . . , d. Then (x̃2nj f )(g) = ( d
dt )

2n f (exp(−t x j )g) |t=0 by (9.1) and

( d

dt

)2n
U (exp(−t x j ))ϕ |t=0 =

( d

dt

)2n
exp(−t∂U (x j ))ϕ |t=0 = ∂U (x j )

2nϕ

by (9.41). Using these facts we derive
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∫
G

(
x̃2nj f

)
(g) 〈U (g)ψ,ϕ〉 dμl(g)

=
∫
G

( d

dt

)2n
f ((exp(−t x j ))g) 〈U (g)ψ,ϕ〉 |t=0 dμl(g)

=
∫
G

( d

dt

)2n
f (g) 〈U ((exp t x j )g)ψ,ϕ〉 |t=0 dμl(g)

=
∫
G

( d

dt

)2n
f (g) 〈U (g)ψ,U (exp(−t x j ))ϕ〉 |t=0 dμl(g)

=
∫
G
f (g) 〈U (g)ψ, ∂U (x j )

2nϕ〉 dμl(g).

Set a := x2n1 + · · · + x2nd ∈ E(g). From the preceding calculation we obtain

∫
G
(̃a f )(g) 〈U (g)ψ,ϕ〉 dμl(g) =

∫
G
f (g)

〈
U (g)ψ,

d∑
j=1

∂U (x j )
2nϕ

〉
dμl(g)

for f ∈ C∞
0 (G). Suppose 2n ≥ d. Then Lemma 9.19 applies to the elliptic element

a of degree 2n and yields 〈U (g)ψ,ϕ〉 ∈ C2n−d(G) . Hence, since n ≥ d/2 is arbi-
trary, 〈U (g)ψ,ϕ〉 ∈ C∞(G) for all ψ ∈ H(U ). Therefore, ϕ ∈ D∞(U ) by Proposi-
tion 9.15, (iii)→(i). This proves ∩ jD∞(∂U (x j )) ⊆ D∞(U ). The opposite inclusion
is obvious, since dU (x j ) = ∂U (x j )�D∞(U ). This gives the first equality in (9.44);
the second restates only the first equality in (9.41).

The assertion about the graph topology is proved by verbatim the same reasoning
as in the proof of Theorem 9.22; see also Lemma 3.6. �

It is instructive to discuss the simplest case when G is the Lie group R.

Example 9.31 Let G = R. Then g = R · x , with x+ = −x , and E(g) is the polyno-
mial algebra C[y], with y+ = y and y := −ix . Clearly, a unitary representation U
of the Lie group G = R is just a one-parameter unitary group. By Stone’s theorem
(Proposition A.5), U is of the form U (t) = exp(i t A), t ∈ R, for some self-adjoint
operator A and ∂U (x) = iA is its infinitesimal generator. Then formula (9.21) yields

D∞(U ) =
∞⋂
n=1

D(An) = D∞(A). (9.46)

Using that dU (y) = dU (−ix) = −i∂U (x)�D∞(U ) = A�D∞(A) we derive

dU (p(y)+) = p+(dU (y)) = p+(A)�D∞(A) ⊆ p+(A)

= p(A)∗ ⊆ (p(A)�D∞(A))∗ = p(dU (y))∗ = dU (p(y))∗
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for p ∈ C[y]. Since dU (p(y)+) = dU (p(y))∗ by (9.40), the latter gives

p+(A)�D∞(A) = p+(A) = (p(A)�D∞(A))∗ (9.47)

for each polynomial p. Of course, the equality (9.47) can be also derived from the
spectral theorem. We leave this an exercise for the reader. �

We closed this section with an operator-theoretic application of Theorem 9.12.

Proposition 9.32 Suppose A is a self-adjoint operator on a Hilbert space H. Let
U (t) := exp(it A), t ∈ R, be the corresponding unitary group. Suppose that D is a
linear subspace of D∞(A) := ∩∞

n=1D(An) such that D is dense inH and invariant
under U (t) for all t ∈ R. Then, for any polynomial p ∈ C[x], we have

p+(A)�D = p+(A) = (p(A)�D)∗. (9.48)

If p ∈ R[x], then p(A)�D is essentially self-adjoint. In particular, An�D is essen-
tially self-adjoint for any n ∈ N.

Proof We apply Theorem 9.12 to the unitary representation U of the Lie group
R and use the notation and facts from Example 9.31. Recall that p+(A)�D∞(A) =
dU (p(y)+) and p(A)�D∞(A) = dU (p(y)). By Theorem 9.12 (see (9.24)), D is a
core for dU (p(y)+) and dU (p(y)). Therefore, since D∞(U ) = D∞(A) by (9.46),
we can replace D∞(A) in (9.47) by D and obtain (9.48). If p ∈ R[x], then p+ = p
and (9.48) means that p(A)�D is essentially self-adjoint. �

9.5 Two Examples

In this section we elaborate some of the preceding results for two Lie groups.

Example 9.33 (Heisenberg group)
Let G be the three-dimensional Heisenberg group; that is, G is the Lie group of
matrices

g(a, b, c) :=
⎛
⎝ 1 a c
0 1 b
0 0 1

⎞
⎠ , where a, b, c ∈ R.

The group law is obtained by matrix multiplication, that is,

g(a1, b1, c1)g(a2, b2, c2) = g(a1 + a2, b1 + b2, c1 + c2 + a1b2).

(Note that this version of the Heisenberg group is isomorphic to the one used in
Sect. 8.5; see formula (8.45).)
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The Lie algebra g of G has a basis {x1, x2, x3} with commutation relations

[x1, x2] = x3, [x1, x3] = [x2, x3] = 0.

The corresponding one-parameter groups in G are

exp t x1 = g(t, 0, 0), exp t x2 = g(0, t, 0), exp t x3 = g(0, 0, t), t ∈ R.

The Lie group G has a familyUλ, λ ∈ R\{0}, of infinite-dimensional irreducible
unitary representations [Ty86, Chap. 1, Theorem 2.5], which exhaust the infinite-
dimensional irreducible unitary representations of G. They act by

(Uλ(g(a, b, c))ϕ)(t) := exp(iλ(tb + c))ϕ(t + a), ϕ ∈ H(Uλ) = L2(R). (9.49)

The unitary group Uλ(exp t x1) acts by translation; hence, its infinitesimal generator
is ∂Uλ(x1) = d

dt , with domain of all absolutely continuous functions ϕ ∈ L2(R)

such that ϕ′ ∈ L2(R). Similarly, the generator of the unitary group Uλ(exp t x2) is
the multiplication operator ∂Uλ(x2) = iλt , with domain of ϕ ∈ L2(R) for which
tϕ(t) ∈ L2(R). Obviously, ∂Uλ(x3) = iλ · I . From this it follows that dUλ(E(g))
consists of all ordinary differential operators on R with polynomial coefficients.

From Proposition 9.10 we easily conclude that D∞(Uλ) is the Schwartz space

S(R) = {
ϕ ∈ C∞(R) : sup{|t kϕ(n)(t)| : t ∈ R} < ∞ for k, n ∈ N0

}
.

Theorem 9.30 gives an apparently weaker, but equivalent characterization of the
Schwartz space, which is of interest in itself: A function ϕ ∈ C∞(R) belongs to
S(R) if and only if tkϕ(t) and ϕ(n)(t) are in L2(R) for all k, n ∈ N0.

By (9.49), C∞
0 (R) is invariant under Uλ. Thus, since C∞

0 (R) ⊆ S(R) is dense in
L2(R), it follows from Theorem 9.12 that C∞

0 (R) is a core for all operators dUλ(x),
x ∈ E(g). This restates a known fact from analysis: For each differential operator
T = ∑n

k=0 pk(t)(
d
dt )

k , pk ∈ C[t], andϕ ∈ S(R) there is a sequence (ϕn)of functions
ϕn ∈ C∞

0 (R) such that limn ϕn = ϕ and limn Tϕn = Tϕ in L2(R).
The element a = −x21 − x22 − x23 of E(g) is elliptic and hermitian. Hence, by

Theorem 9.22, the operator dUλ(a) = − d2

dt2 + λ2t2 + λ2 is essentially self-adjoint
on S(R) and we have D∞(Uλ) = D∞(

dUλ(a)
)
by (9.37). In particular, this gives

the well-known description (see, e.g., [RS72]) of the Schwartz space as S(R) =
D∞(T ) for the self-adjoint operator T = − d2

dt2 + t2 + 1.
The image T := dU1(ix2x1x2) = −t2 d

dt − it of the hermitian element ix2x1x2
of E(g) under the ∗-representation dU1 is a symmetric operator which is not essen-
tially self-adjoint. It can be shown that T has deficiency indices (1, 1). (In fact, we
have ϕ± ∈ ker(T ∗ ± i), whereϕ± are defined by ϕ+(t) = t−1 exp(−t−1) for t > 0,
ϕ+(t) = 0 for t ≤ 0, ϕ−(t) = t−1 exp t−1 for t < 0, ϕ−(t) = 0 for t ≥ 0.) �
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Example 9.34 (Affine group of the real line)
The affine group of the real line, or the ax + b-group , is the Lie group G of matrices

g(a, b) :=
(
a b
0 1

)
, where a, b ∈ R, a > 0.

The group law is g(a1, b1)g(a2, b2) = g(a1a2, a1b2 + b1). The Lie algebra g has a
basis {x1, x2} with commutation relation [x1, x2] = x2, and the corresponding expo-
nentials are exp t x1 = g(et , 0) and exp t x2 = g(1, t), t ∈ R.

TheLie groupG has (up to unitary equivalence) precisely two infinite-dimensional
irreducible unitary representations U± (see, e.g., [Ty86, p. 150]). They are defined
by

(U±(g(a, b))ϕ)(t) = exp(±i etb)ϕ(t + log a), ϕ ∈ H(U±) := L2(R). (9.50)

Then ∂U±(x1) = d
dt and ∂U±(x2) = ±iet . Now Theorem 9.30 yields

D∞(U±) = {
ϕ ∈ C∞(R) : etnϕ(t) ∈ L2(R),ϕ(n)(t) ∈ L2(R) for n ∈ N0

}
.

From Theorem 9.22 it follows that the image dU±(a) = − d2

dt2 + e2t of the
hermitian elliptic element a := −x21 − x22 ∈ E(g) is essentially self-adjoint and
D∞(U±) = D∞(

dU±(a)
)
.

From (9.50) it is clear that C∞
0 (R) ⊆ D∞(U±) is invariant under U±. Hence

C∞
0 (R) is a core for all operators dU±(x), x ∈ E(g) , by Theorem 9.12.
On the other hand, the image dU±(x) = ±2i et d

dt ± i et of the hermitian element
x := x1x2 + x2x1 has no self-adjoint extension on the Hilbert space L2(R). It can
be shown that the symmetric operators dU+(x) and dU−(x) have deficiency indices
(0, 1) and (1, 0), respectively.

In the literature, the representations U± are often realized on the Hilbert spaces
H(U+) := L2(0,+∞) and H(U−) := L2(−∞, 0) by the formulas

(U±(g(a, b))ϕ)(t) = exp(i tb)
√
a ϕ(at). �

9.6 Analytic Vectors

Our aim is to study analytic vectors for representations. But let us begin with analytic
vectors for one operator.
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9.6.1 Analytic Vectors for Single Operators

Let T be a linear operator on a Hilbert space H.

Definition 9.35 A vector ϕ ∈ H is called an analytic vector for T if ϕ ∈ D(T n) for
all n ∈ N and there exists a constant C > 0 such that

‖T nϕ‖ ≤ Cnn! for n ∈ N0. (9.51)

The set of analytic vectors for T is denoted by Da(T ).

It is clear thatDa(T ) is a linear space.Obviously, eigenvectors are analytic vectors.
Large classes of examples are obtained from the following proposition.

Proposition 9.36 Let T be a self-adjoint operator, and let T = ∫
R

λ dE(λ) be its
spectral resolution. For any α > 0, the ranges of the operators E([−α,α]) and
e−αT 2 := ∫

R
e−αλ2

dE(λ) are contained in Da(T ). The set Da(T ) is dense inH.

Proof First note that e−αT 2
is a bounded operator defined onH, because the function

e−αλ2
is bounded on R. By Stirling’s formula [RW91, p. 45] there exists a null

sequence (εn) such that n! = √
2π nn+1/2 e−n(1 + εn) for n ∈ N. Hence there is a

constant c > 0 such that e−nnn ≤ c n! for n ∈ N. It is not difficult to verify that the
function λ2ne−2αλ2

has the maximum (2α)−ne−nnn on R. Let ψ ∈ H. Then

∫
R

λ2ne−2αλ2
d〈E(λ)ψ,ψ〉 ≤

∫
R

(2α)−ne−nnn d〈E(λ)ψ,ψ〉 (9.52)

≤ c(2α)−nn!
∫
R

d〈E(λ)ψ,ψ〉 = c‖ψ‖2(2α)−nn! .

Hence, by the functional calculus, ψ ∈ D(T ne−αT 2
), ϕ := e−αT 2

ψ ∈ D(T n), and
the first integral in (9.52) is ‖T ne−αT 2

ψ‖2 = ‖T nϕ‖2. Thus, we have shown that
‖T nϕ‖2 ≤ c‖ψ‖2(2α)−nn! for n ∈ N. This implies ϕ = e−αT 2

ψ ∈ Da(T ).
Now let ϕ ∈ E([−α,α])H. Using again the functional calculus we derive

‖T nϕ‖2 =
∫ α

−α

λ2nd〈E(λ)ϕ,ϕ〉 ≤ α2n‖ϕ‖2 ≤ (α(1 + ‖ϕ‖))2n, n ∈ N,

so thatϕ ∈ Da(T ). Here we even have ‖T nϕ‖ ≤ Mn for some constant M > 0; such
vectors are called bounded vectors.

Since ψ = limα→∞E([−α,α])ψ for all ψ ∈ H, Da(T ) is dense inH. �
Example 9.37 Let T be the multiplication operator by the variable x on L2(R).

Then, for each polynomial p ∈ C[x] and β > 0, ϕ(x) := p(x)e−βx2 is in Da(T ).
(Indeed, setting α := β/2, we have ψ := p(x)e−αx2 ∈ L2(R) and ϕ = e−αx2ψ, so
Proposition 9.36 applies.) �

The next proposition gives an explanation for the terminology “analytic vector.”
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Proposition 9.38 Suppose T is a self-adjoint operator andϕ ∈ Da(T ). LetC denote
the constant from (9.51). Then, for |z| < C−1, we have ϕ ∈ D(ezT ) and

ezTϕ = lim
n→∞

n∑
k=0

zk

k! T
kϕ. (9.53)

For ψ ∈ H, the function z �→ 〈eizTϕ,ψ〉 is holomorphic on {z : |Im z| < C−1}.
Proof [Sch12, Proposition 7.8 and Corollary 7.10]. �

By Proposition 9.36, Da(T ) is dense if T is self-adjoint. The following Nelson
theorem says that the denseness of Da(T ) implies the essential self-adjointness.

Theorem 9.39 Suppose T is a symmetric operator onH such that the setDa(T ) of
analytic vectors for T is dense inH. Then T is essentially self-adjoint. In particular,
if in addition T is closed, then T is self-adjoint.

Proof [N59, Lemma 5.1], see, e.g., [Sch12, Theorem 7.16]. �
Example 9.40 (Analytic vectors for the self-adjoint operator T = −i d

dx on L2(R))
Using the Paley–Wiener theorem [Kz68, Theorem 7.1] it can be shown [Sch12,
Example 7.8] that ϕ ∈ D(T ) is in Da(T ) if and only if ϕ is the restriction to R of a
holomorphic function F on a strip {z ∈ C : |Im z| < c} for some c > 0 satisfying

sup
|y|<c

∫
R

|F(x+iy)|2 dx < ∞.

In particular, Da(T ) ∩ C∞
0 (R) = {0}. Hence Da(T0) = {0} for T0 := T �C∞

0 (R).
But, since the translation group eitT leaves the dense linear subspace C∞

0 (R) of
L2(R) invariant, T0 is essentially self-adjoint according to Proposition 9.32. This
shows that the converse of Nelson’s Theorem 9.39 does not hold. �
Example 9.41 Let {en : n ∈ N0} be an orthonormal basis of a Hilbert space and
D := Lin {en : n ∈ N0}. Let (αn)n∈N0 , (βn)n∈N0 , (γn)n∈N0 , (δn)n∈N0 , (ηn)n∈N0 be com-
plex sequences. Suppose there exist constants a > 0 and b > 0 such that

|α j |, |β j |, |γ j |, |δ j |, |η j | ≤ an + b for all j ≤ n, n ∈ N. (9.54)

We define a linear operator T with domain D(T ) := D by

T ek = αk−2ek−2 + βk−1ek−1 + γkek + δk+1ek+1 + ηk+2ek+2, (9.55)

where we set e j = 0 if j < 0. We prove that Da(T ) = D.

SinceDa(T ) is a vector space, it suffices to show that ek ∈ Da(T ), k ∈ N0. From
(9.55) it follows that T nek is a sum of at most 5n terms of the form ζmem , where
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m ≤ k + 2n and ζm is a product of n factors α j ,β j , γ j , δ j , η j with j ≤ k + 2n.
Therefore, by (9.54), ‖T nek‖ ≤ 5n(a(2n + k) + b)n .

As noted in the proof of Proposition 9.36, we have nn ≤ c0 enn! for n ∈ N and
some constant c0 > 0. Set c := ak+b

2a . Then we derive

‖T nek‖ ≤ 5n(a(2n + k) + b)n = (10a)n(1 + cn−1)nnn ≤ (10a)necc0e
n n!.

Hence ek ∈ Da(T ), which completes the proof of the equality Da(T ) = D. �
Example 9.42 (Application to the canonical commutation relation)
Consider the subspace of elements of degree at most two of the Weyl algebra W:

B := Lin {1, a, a+, a2, (a+)2, a+a, aa+} = Lin {1, p, q, p2, q2, pq, qp}.

Let x ∈ B. From the definition of the Bargmann–Fock representation πC and
(8.22) it follows that πC(x) is of the form (9.55) and that (9.54) is satisfied. Hence,
by Example 9.41, all vectors of DC := Lin {en : n ∈ N0} are analytic for πC(x).

Recall from Proposition 8.13 that the unitary equivalence of the Bargmann–Fock
representation πC and the Schrödinger representation πS is provided by a unitary
that maps the Hermite function Hn ∈ L2(R) to en ∈ l2(N0). Therefore, for x ∈ B,
all vectors of DS := Lin {Hn : n ∈ N0} are analytic vectors for πS(x). �

9.6.2 Analytic Vectors for Unitary Representations

Recall thatU is a unitary representation of the Lie groupG on a Hilbert spaceH(U ).
The following definition uses the real analytic structure of the Lie group G.

Definition 9.43 Avector ϕ ∈ H(U ) is called analytic forU if themap g �→ U (g)ϕ
of the real analytic manifold G into H(U ) is real analytic.

The analytic vectors for U form a vector space which is denoted Da(U ). The
following infinitesimal characterization can be also taken as a definition of the space
Da(U ).

Proposition 9.44 A vector ϕ ∈ H(U ) is an analytic vector for U if and only if
ϕ ∈ D∞(U ) and there exists a constant C > 0 such that

‖dU (x j1 · · · x jn )ϕ‖ ≤ Cnn! for j1, . . . , jn ∈ {1, . . . , d}, n ∈ N.

Proof [N59, Lemma 7.1]. �
Set Δ := x21 + · · · + x2d . Then 1 − Δ is a hermitian elliptic element of E(g).

Therefore, the operator A := dU (1 − Δ) is self-adjoint by Theorem 9.22. Note that
A ≥ I , since (x j )

+ = −x j , hence (x j )
+x j = −x2j , and dU (−Δ) ≥ 0.

Fundamental results on the space Da(U ) are collected in the next theorem.
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Theorem 9.45 (i) The space Da(U ) of analytic vectors is dense inH(U ).
(ii) Each analytic vector for A is an analytic vector for U: Da(A) ⊆ Da(U ).

(iii) Da(A1/2) = Da(U ).
(iv) A vector ϕ ∈ D∞(U ) is in Da(U ) if and only if there exists a constant M > 0

such that ‖dU (Δn)ϕ‖ ≤ Mn(2n)! for n ∈ N0.

Proof (ii) follows at once from (iii), and (iv) is easily derived from (iii).

(i): [CD58] or [N59, Theorem 7.3] or [Sch90, Corollary 10.4.12] or [Wr72, The-
orem 4.4.5.7].

(ii): [N59, Theorem 7.3] or [Sch90, Theorem 10.4.4].
(iii): [G69b] or [Wr72, Theorem 4.4.6.1].
(iv): [Wr72, Corollary 4.4.6.4]. �

The following interesting result was proved in [FS73]: There exists a basis
{x1, . . . , xd} of the Lie algebra g such that Da(U ) = ∩d

j=1Da
(
dU (x j )

)
for any

unitary representation U of the Lie group G.
Proposition 9.44 suggests the following definition of analytic vectors for general

∗-representations of E(g).

Definition 9.46 For a ∗-representation π of E(g), letDa(π) denote the set of vectors
ϕ ∈ D(π) for which there exists a constant C > 0 such that

‖π(x j1 · · · x jn )ϕ‖ ≤ Cnn! for j1, . . . , jn ∈ {1, . . . , d}, n ∈ N.

Obviously,Da(π) is a vector space. It is invariant under π (Exercise 16) and does
not depend on the particular basis of g. By Proposition 9.44, Da(U ) = Da(dU ).

9.6.3 Exponentiation of Representations of Enveloping
Algebras

In this section, we assume that the Lie group G is connected and simply connected.
Given a ∗-representation π of E(g), it is natural to ask:

Does there exist a unitary representation U such that π ⊆ dU or π = dU?

This question leads to the following definitions.

Definition 9.47 A ∗-representation π of E(g) is called exponentiable if there exists
a unitary representation U of the Lie group G such that π(x j ) = dU (x j ) for j =
1, . . . , d and it is called integrable if π = dU .

Obviously, integrable representations are exponentiable. The converse is not true;
see Exercise 11.

Proposition 9.48 Suppose π is an exponentiable ∗-representation of E(g). Then the
corresponding unitary representation U from Definition 9.47 is uniquely determined
byπ, andwe haveπ ⊆ dU andπ∗ = dU. Ifπ is self-adjoint, thenπ = dU.Moreover,
all operators π(−ix j ), j = 1, . . . , d, are self-adjoint.
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Proof Let V be another unitary representation of the Lie group G such that π(x j ) =
dV (x j ) for j = 1, . . . , d. Then dU (x j ) = dV (x j ) and therefore

U (exp t x j ) = exp t dU (x j ) = exp t dV (x j ) = V (exp t x j ), t ∈ R,

by (9.41). From this equation it follows thatU and V coincide in a neighborhood of
e and hence on the whole group G, since G is connected.

Corollaries 4.16, applied with B = {1, x1, . . . , xd}, and 9.21 imply that π∗ =
(dU )∗ = dU . Hence π ⊆ dU , and π ⊆ π∗. Therefore, if π is self-adjoint, we have
π = π∗ = dU . By Corollary 9.27 , π(−ix j ) = dU (−ix j ) is self-adjoint. �

Now we state two fundamental exponentiation theorems without proofs. The first
result is Nelson’s theorem.

Theorem 9.49 Suppose π is a ∗-representation of E(g) such that the symmetric
operator π(Δ) is essentially self-adjoint. Then π is exponentiable.

Proof [N59, Theorem9.5] or [Sch90, Theorem10.5.6] or [Wr72, Theorem4.4.6.6].�
The second exponentiation theorem is due to M. Flato, J. Simon, H. Snellmann,

and D. Sternheimer; in the literature it is often called the FS3–theorem.

Theorem 9.50 Let π be a ∗-representation of E(g). If each vector ϕ ∈ D(π) is an
analytic vector for the operator π(x j ), j = 1, . . . , d, then π is exponentiable.

Proof [FSSS72] or [Sch90, Theorem 10.5.4]. �

9.7 Analytic Vectors and Unitary Representations
of SL(2,R)

Throughout this section, G denotes the Lie group SL(2, R). The Lie algebra g =
sl(2, R) of G consists of the real 2 × 2 matrices of trace zero. Its basis

x0 :=
(

0 1
−1 0

)
, x1 :=

(−1 0
0 1

)
, x2 :=

(
0 1
1 0

)

satisfies the commutation relations

[x0, x1] = 2x2, [x0, x2] = −2x1, [x2, x1] = 2x0. (9.56)

In the representation theory of G the compact abelian subgroup

K := SO(2) =
{
k(θ) :=

(
cos θ sin θ

− sin θ cos θ

)
: θ ∈ R

}



218 9 Integrable Representations of Enveloping Algebras

plays a crucial role. Clearly, exp t x0 = k(t), t ∈ R. It is convenient to set

x+ := x1 − ix2, x− := x1 + ix2. (9.57)

Then (x±)+ = −x∓. Note that x+ and x− are not in g, but they are in the complexi-
fication gC and in E(g). It is known and easily verified that the Casimir element

q := x20 − x21 − x22 = x20 − 2i x0 − x+x− = x20 + 2i x0 − x−x+ (9.58)

is a hermitian element belonging to the center of the algebra E(g).

Definition 9.51 Aunitary representationU of the Lie groupG = SL(2, R) is called
quasisimple if dU (q) = c · I for some c ∈ R.

For instance, irreducible unitary representations are quasisimple.
From now on we suppose that U is a quasisimple unitary representation.
The characters of the compact abelian group K are χn(exp θx0) = einθ, n ∈ Z.

Hence the restriction of U to K is a direct sum of subrepresentations acting on

Hn := {
ϕ ∈ H(U ) : U (exp t x0)ϕ = eintϕ, t ∈ R

}
. (9.59)

SinceU (exp t x0) = exp t dU (x0), we have dU (x0)ϕ = inϕ forϕ ∈ Hn . Therefore,
Hn⊥Hm if n �= m. It is not difficult to verify that the orthogonal projection ofH(U )

on the closed subspace Hn is given by

En = (2π)−1
∫ 2π

0
e−i ntU (exp t x0) dt.

Let HK denote the linear span of spaces Hn, n ∈ Z. It is easily shown that a vector
ϕ ∈ H(U ) belongs toHK if and only if dimU (K )ϕ is finite. For this reason, vectors
ofHK are called K–finite. These vectors play a fundamental role in the representation
theory of semisimple Lie groups.

Proposition 9.52 HK is a subspace of D∞(U ) and invariant under dU (E(g)).
Moreover, dU (x±)Hn ⊆ Hn±2 for n ∈ Z.

Proof Let f ∈ C∞
0 (G). The function f0(g) := (2π)−1

∫ 2π
0 e−int f (exp(−t x0)g)dt is

also in C∞
0 (G), and we have EnU f ϕ = U f0ϕ for ϕ ∈ H(U ) by Proposition 9.6(i).

Hence En leaves the Gårding space DG(U ) invariant. Therefore, since DG(U ) is
dense inH(U ), Dn := EnDG(U ) is dense inHn = EnH(U ). Fix n ∈ Z. Letϕ ∈ Dn .
Since x0x± = x±(x0 ± 2i) by (9.56) and (9.57),

dU (x0)dU (x±)ϕ = dU (x±)(dU (x0) ± 2i)ϕ = (n ± 2)i dU (x±)ϕ,

so dU (x±) : Dn �→ Dn±2 and hence dU (x j ) : Dn �→ Dn−2 + Dn+2. By (9.58),
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‖dU (x1)ϕ‖2 + ‖dU (x2)ϕ‖2 = 〈dU (−x21 − x22 )ϕ,ϕ〉
= 〈dU (q − x20 )ϕ,ϕ〉 = (c + n2)‖ϕ‖2, ϕ ∈ Dn.

Hence dU (x j ), j = 1, 2, is bounded on Dn . Therefore, since Dn is dense in Hn ,
the closure dU (x j ) is defined on Hn and maps Hn into Hn−2 ⊕ Hn+2. Hence
dU (x j )HK ⊆ HK . Clearly, dU (x0)HK ⊆ HK . Since D∞(U ) is the largest sub-
space invariant under ∂U (x j ) = dU (x j ), j = 0, 1, 2, we conclude that
HK ⊆ D∞(U ). The latter implies also that Dn = Hn .

Let ψ ∈ HK and x ∈ g. Since ψ ∈ D∞(U ) as just shown, it follows from
(9.12) that U (k)dU (x)ψ = dU (Ad(k)x)U (k)ψ for k ∈ K , so U (K )dU (x)ϕ is
contained in the image of the finite-dimensional space U (K )ψ under dU (g).
Hence U (K )dU (x)ϕ is finite-dimensional. Therefore, dU (x)ψ is K–finite, that is,
dU (x)ψ ∈ HK . Thus HK is invariant under dU (g) and hence under dU (E(g)). �
Proposition 9.53 HK ⊆ Da(U ), that is, all K -finite vectors are analytic vectors.

Proof Since Da(U ) is a linear space, it suffices to prove this for ϕ ∈ Hk , k ∈ Z.
We choose C ≥ (2k2 + |c| + 2)1/2. By induction on n ∈ N we prove that

‖dU (x jn · · · x j1)ϕ‖ ≤ ‖ϕ‖Cnn! for all jn, . . . , j1 ∈ {0, 1, 2}. (9.60)

Assume that the inequality (9.60) holds for n ∈ N0, with the obvious interpretation
for n = 0. Let jn, . . . , j1 ∈ {0, 1, 2}. First suppose that jn+1 = 1, 2. Since ϕ ∈ Hk ,
we can write ψ := dU (x jn · · · x j1)ϕ = ∑

j≤k+n ϕ j with ϕ j ∈ H j . From (9.58) and
(x±)+ = −x∓ we obtain

‖dU (x±)ϕ j‖2 = 〈dU (−x∓x±)ϕ j ,ϕ j 〉 = 〈dU (−x20 ∓ 2 ix0 + q)ϕ j ,ϕ j 〉
= ( j2 ± 2 j + c)‖ϕ j‖2 = (( j ± 1)2 + c − 1)‖ϕ j‖2. (9.61)

Recall that x1 = 1
2 (x+ + x−), x2 = i

2 (x+ − x−) and ‖ψ‖ ≤ ‖ϕ‖Cnn! by the induc-
tion hypothesis. Further, we have (C2 − 2)(n + 1)2 ≥ C2 − 2 ≥ 2k2 + |c| by the
choice of C . Note that c − 1 ≤ |c| and ϕ j⊥ϕl if j �= l. Using these facts and (9.61)
we derive

‖dU (x j )ψ‖2 ≤ 1

4

∑
j≤k+n

(
‖dU (x+)ϕ j‖ + ‖dU (x−)ϕ j‖

)2

≤
∑
j≤k+n

[( j + 1)2 + c − 1]‖ϕ j‖2 ≤ [(k + n + 1)2 + |c|)] ‖ψ‖2

≤ [2k2 + 2(n + 1)2 + |c|] ‖ϕ‖2C2n(n!)2 ≤ ‖ϕ‖2C2n+2((n + 1)!)2,

which gives (9.60) for jn+1 = 1, 2. The case jn+1 = 0 is even simpler. This completes
the induction proof of (9.60). Clearly, (9.60) implies ϕ ∈ Da(U ). �
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In the rest of this section we sketch two applications of the FS3-Theorem 9.50.
They illustrate the exceptional usefulness and power of this result.

The standard classification of irreducible unitary representations of the Lie group
SL(2, R) (see, for instance, [Lg85, Ty86], or [HT92]) is based on ∗-representations
π of E(g) for which the Casimir acts as a scalar multiple of the identity. Then one
finds an orthonormal basis {vn} with n ∈ Z such that π(x0)vn = invn ,

π(x1)vn = anvn+2 − an−2 vn−2, and π(x2)vn = i(anvn+2 + an−2 vn−2),

where |an| = ((n + 1)2 + γ)1/2 and γ depends only on the value of the Casimir;
see, e.g., [Ty86, p. 185]. Thus, π(x j ), j = 0, 1, 2, are operators of the form (9.55)
and assumption (9.54) is satisfied. From Example 9.41 we know that all vectors
in Lin {vn} are analytic vectors for the images of the basis. Therefore, the FS3-
Theorem 9.50 applies and π is exponentiable to a unitary representation of the
universal covering group G̃ of SL(2, R). Looking at the kernel of the canonical
projection G̃ �→ SL(2, R) leads then to unitary representations of SL(2, R); see
[Ty86, pp. 181–188] or [Lg85] for details.

The second application concerns the oscillator representation of the universal
covering group of SL(2, R). Recall that W denotes the Weyl algebra.

Lemma 9.54 There is a unital ∗-homomorphism ϑ : E(sl(2, R)) �→ W given by

ϑ(x0) = i

2
(q2 + p2), ϑ(x2) = i

2
(q2 − p2), ϑ(x1) = − i

2
(pq + qp). (9.62)

Proof To prove that Eq. (9.62) defines an algebra homomorphism, we have to show
that the elements ϑ(x j ) satisfy the relations (9.56), with ϑ(x j ) in place of x j . These
are straightforward computations; we carry out the proof of the first relation. Then,
since ϑ(x+

j ) = −ϑ(x j )
+ by (9.62), ϑ is a ∗-homomorphism.

Since [p, q] = −i in theWeyl algebraW, we have [p2, pq] = [p2, qp] = −2i p2

and [q2, pq] = [q2, qp] = 2 i q2. Therefore, the first relation of (9.56) follows by

4 [ϑ(x0),ϑ(x1)] = [q2 + p2, pq + qp] = 4 i q2 − 4 i p2 = 8ϑ(x2).

The proof of the third relation of (9.56) is almost the same. In the proof of the second
relation we use that [q2, p2] = −[p2, q2] = 2 i (pq + qp) in the algebra W. �

Recall that πS denotes the Schrödinger representation (8.31) of the Weyl alge-
bra W. Its composition with the ∗-homomorphism ϑ gives a nondegenerate ∗-
representation ρ of E(sl(2, R)) on the domain D(ρ) = S(R) of the Hilbert space
L2(R). Inserting πS(q) = t,πS(p) = −i ddt into (9.62) yields

ρ(x0) = i

2

(
t2 − d2

dt2

)
, ρ(x2) = i

2

(
t2 + d2

dt2

)
, ρ(x1) = −t

d

dt
− 1

2
.



9.7 Analytic Vectors and Unitary Representations of SL(2, R) 221

Let DS denote the span of Hermite functions Hn . As shown in Example 9.42, all
vectors of DS are analytic for the operators ρ(x j ). Therefore, the assumptions of
the FS3-Theorem 9.50 are fulfilled, so the ∗-representation ρ�DS is exponentiable.
Since DS is a core for the operators ρ(x j ), there exists a unitary representation U of

the universal covering group ˜SL(2, R) such that ρ(x j ) = dU (x j ), j = 0, 1, 2.
The representationU appears in the literature under different names such asShale–

Weil representation, metaplectic representation, and oscillator representation. In n

dimensions it is a representation of the universal covering group ˜Sp(n, R) of the
symplectic group. Note that Sp(1, R) = SL(2, R).

9.8 Exercises

1. What is the exponential map for the Lie group G = R
d?

2. Describe the Haar measures of the torus T and the multiplicative group R\{0}.
3. (Haar measure and modular function of the ax + b-group, see Example 9.34)

Let G be the Lie group of matrices g(a, b) :=
(
a b
0 1

)
, where a, b ∈ R, a > 0.

a. Show that dμl(g(a, b)) = a−2dadb is a left Haar measure of G.
b. Show that dμr (g(a, b)) = a−1dadb is a right Haar measure of G.
c. Show that the modular function of G is given by ΔG(g(a, b)) = a−1.

4. Show that the left and right regular representations, defined by (9.18) and (9.20),
respectively, are unitarily equivalent.

5. Let U be an open subset of G and ϕ ∈ H(U ). Show that if the function
〈U (g)ϕ,ψ〉 on G is in C∞(U) for all ψ ∈ H(U ), then ϕ ∈ D∞(U ).

6. Suppose an ∈ E(g), n ∈ N, are elliptic elements and supn deg(an) = +∞. Prove
that D∞(U ) = ∩∞

n=1D
(
dU (an)

)
.

7. Let π be a ∗-representation of C[x1, x2] such that the operator π(x21 + x22 ) is
essentially self-adjoint. UseTheorem9.49 forG = R

2 to prove that the operators
π(x1) and π(x2) are strongly commuting self-adjoint operators.

8. Use the Stone–vonNeumannTheorem8.18 to prove that each irreducible unitary
representation U of the Heisenberg group such that dU (x3) �= 0 is unitarily
equivalent to a representation Uλ,λ ∈ R

×, given by (9.49) in Example 9.33.
Hint:U (t) := U (g(t, 0, 0)), Vλ(s) := U (g(0,λ−1s, 0)), λ ∈ R\{0}, are unitary
groups satisfying the Weyl relation, where dU (x3) = iλI .

9. Let π be a ∗-representation of the Weyl algebra such that all vectors ofD(π) are
analytic vectors for π(p) and π(q). Show that π(p) and π(q) are self-adjoint
operators and their unitary groups fulfill the Weyl relation.
Hint: Use Theorem 9.39. Verify the Weyl relation (8.44) for small |s|, |t |.

10. Let π be a ∗-representation of the Weyl algebra W such that π(p2 + q2) is
essentially self-adjoint. Use Theorem 9.49 to prove that the operators π(p) and
π(q) are self-adjoint and their unitary groups satisfy the Weyl relation.
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11. Suppose G = R and let E(g) ∼= C[x], with involution x+ = −x . Define a ∗-
representation π of E(g) on the Hilbert space L2(0, 1) by π(ix) = −i ddt , with

D(π) = {ϕ ∈ C∞([0, 1]) : ϕ(0) = ϕ(1);ϕ(k)(0) = ϕ(k)(1) = 0, k ∈ N }.

a. Show that π is exponentiable, but not integrable.
b. Describe the corresponding unitary representation U of the Lie group R.

12. Let A be a self-adjoint operator onH and defineU (t) := eit A, t ∈ R. Let ψ ∈ H
and f ∈ L1(R). Show that if the Fourier transform of f has compact support,
then U f ψ := ∫

R
f (t)U (t)ψ dt is a bounded vector for A.

13. Show that for the Lie group G = R/Z the assertion of Theorem 9.49 is not true.
What is the reason for this?

14. Suppose G is connected and simply connected. Set Δ := x21 + · · · + x2d . Show
that a ∗-representation π of E(g) is integrable if and only if π(Δ) is self-adjoint
and D(π) = D∞(

π(Δ)
)
.

15. Let T be a symmetric operator on a Hilbert space. Prove thatDa(T 2) ⊆ Da(T ).

16. Let π be a ∗-representation of E(g). Show that Da(π) is invariant under π.

17. Let G be a connected and simply connected Lie group and f a positive linear
functional on the ∗-algebra E(g). Suppose ϕ f ∈ Da(π f ), see Definition 9.46.
Prove the following:

a. The GNS representation π f is exponentiable, so that, by Proposition 9.48,
(π f )

∗ = dU for some unique unitary representation U of the Lie group G.
b. The positive functional f is pure if and only if U is irreducible.

Hint: For a., use Exercise 16 and Theorem 9.50. For b., verify that U (G)′ =
π f (E(g))′w by using Corollary 5.10 and Proposition 9.29.

18. Show that each irreducible unitary representation of SL(2, R) is quasisimple.

9.9 Notes

The Gårding subspace was introduced in Gårding’s short note [Ga47]. Proposition
9.11 and Theorem 9.12 are due to N.S. Poulsen [Pu72]. Lemma 9.14 is a well-known
classical result; see, e.g., [Gk73, p. 134].

The pioneering work on elliptic elements of E(g) is due to Nelson and Stinespring
[NS59, N59] and Langlands [Ls60a]. The threemain theorems of Langlands’ unpub-
lished thesis [Ls60a]were announced in [Ls60b]. A first group of fundamental results
concerns self-adjointness properties. The important equality (9.36) in Theorem 9.22
was proved in [NS59, Ls60a]. Corollary 9.24 was obtained in [NS59]. The general
Theorem 9.23 is from Poulsen [Pu72]. Some results on the essential self-adjointness
of dU (x) for ix ∈ g and for central hermitian elements x ∈ E(g) (contained inCorol-
laries 9.26 and 9.27) were proved much earlier by Segal [Se51, Se52]. The second
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major result is the description (9.37) of theC∞-domain given in Theorem 9.22. It was
proved independently by Nelson [N59] for the Laplacian and by Langlands [Ls60a]
for general elliptic operators. Another basic result of Langlands [Ls60a] states that
uniformly elliptic elements generate holomorphic semigroups. Elliptic operators on
Lie groups are treated in [Rn91]; see also the references therein. Theorem 9.30 was
proved by Goodman [G69a].

Analytic vectors were introduced by Harish-Chandra [Hs53] under the name
“well-behaved vectors.” Fundamental and deep results on analytic vectors and the
exponentiation problem (such as Theorems 9.39, 9.45(ii), and 9.49) were obtained
by E. Nelson in his seminal paper [N59]. The denseness of analytic vectors (Theo-
rem 9.45(i)) was proved by Harish-Chandra [Hs53] in special cases and by Cartier
and Dixmier [CD58] in full generality; it is also contained in [N59]. The assertions
(iii), (iv) of Theorem 9.45 are due to Goodman [G69b]. Theorem 9.50 was proved
in [FSSS72]. This result remains valid if the Lie algebra basis is replaced by a set of
Lie algebra generators, as shown in [S72]. Other integrability results for Lie algebra
representations are given in [Rk87, BGJR88]. Exercise 17 is contained in [Ds71].

The oscillator representation is due to Shale [Sh62] and Weil [Wi64]; see [Ho88,
F89] for detailed presentations in n dimensions.

Infinitesimal representations are treated in [Wr72, BR77, Sch90, Nb00]. A num-
ber of results of this chapter remain valid for Banach space representations of Lie
groups; see, e.g., [Wr72, CD58, Pu72].



Chapter 10
Archimedean Quadratic Modules
and Positivstellensätze

Quadratic modules are basic objects of real algebraic geometry. If Q is an
Archimedean quadratic module of the polynomial algebra R[x1, . . . , xd ], then the
Archimedean Positivstellensatz [Ms08, Theorem 5.4.4] says that strictly positive
polynomials on the corresponding semi-algebraic set belong to Q. This chapter deals
with Archimedean quadratic modules and Positivstellensätze in noncommutative
∗-algebras.

In Sects. 10.1 and 10.2, we study the ∗-algebra Ab(Q) of bounded elements with
respect to a quadratic module Q. It carries a natural C∗-seminorm (Theorem 10.5)
which can be also characterized by means of Q-positive ∗-representations.

Section10.3 contains two abstract “Stellensätze” for Archimedean quadratic
modules. As an application, we derive in Sect. 10.4 a Positivstellensatz for matrix
algebras of polynomials (Theorem 10.25).

The main result of Sect. 10.6 is a Positivstellensatz for the Weyl algebra
(Theorem 10.33). The proof of this result relies essentially on the description of
∗-representations of a related ∗-algebra of fractions, which is studied in Sect. 10.5.

In Sect. 10.7, we prove the closedness of the cone
∑

A2 of finite sums of hermitian
squares for certain countably generated ∗-algebras (Theorems 10.35 and 10.36). This
result is used to characterize elements of

∑
A2 by the positivity in ∗-representations

or states (Theorem 10.37).

Throughout this chapter, A is a real or complex unital ∗-algebra and Q is a
quadratic module of A. We write λ instead of λ · 1 for λ in K = R or K = C.

10.1 Archimedean Quadratic Modules and Bounded
Elements

According to Definition 2.25, a quadratic module of A is a subset Q of Aher such
that 1 ∈ Q and a + b ∈ Q,λa ∈ Q, x+ax ∈ Q for a, b ∈ Q, λ ≥ 0, and x ∈ A.
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Recall that a seminorm on A is a mapping p : A → [0,+∞) such that

p(λa) = |λ|p(a) and p(a + b) ≤ p(a) + p(b) for a, b ∈ A, λ ∈ K. (10.1)

Definition 10.1 A C∗-seminorm on A is a seminorm p on A such that for a, b ∈ A,

p(a+) = p(a) and p(ab) ≤ p(a)p(b), (10.2)

p(a+a) = p(a)2. (10.3)

The second condition in (10.2) is called submultiplicativity and Eq. (10.3) is the
C∗-condition.

Remark 10.2 Z. Sebestyen ([Sb79]; see also [DB86, Theorem 38.1] or
[Pl01, Theorem 9.5.14]) has proved the following interesting theorem: Each semi-
norm on a complex ∗-algebrawhich satisfies theC∗-condition (10.3) is automatically
submultiplicative and a C∗-seminorm. We will not use this result in this book. �
Definition 10.3 An element a ∈ A is called bounded with respect to the quadratic
module Q if there exists a number λ > 0 such that λ2 − a+a ∈ Q.

The set of such elements is denoted by Ab(Q). For a ∈ Ab(Q) we define

‖a‖Q := inf
{
λ > 0 : λ2 − a+a ∈ Q

}
. (10.4)

A quadratic module Q is called Archimedean if Ab(Q) = A.

In general the infimum in (10.4) is not attained, as shown in Example 10.11 below.
The following lemma contains some simple but useful facts.

Lemma 10.4 Suppose a ∈ A, c ∈ Aher and λ > 0.

(i) If λ > ‖a‖Q, then λ2 − a+a ∈ Q.
(ii) λ2 − c2 ∈ Q if and only if λ ± c ∈ Q.

Proof (i) By (10.4), there exists μ > 0 such that ‖a‖Q < μ < λ and μ2 − a+a ∈
Q. Then λ2 − a+a = (λ2 − μ2) + (μ2 − a+a) ∈ Q.

(ii) If λ ± c ∈ Q, then

λ2 − c2 = 1

2λ

[
(λ + c)+(λ − c)(λ + c) + (λ − c)+(λ + c)(λ − c)

] ∈ Q.

Conversely, if λ2 − c2 ∈ Q, then

λ ± c = 1

2λ

[
(λ2 − c2) + (λ ± c)2

] ∈ Q. �

The main result of this section is the following.
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Theorem 10.5 The set Ab(Q) is a unital ∗-subalgebra of A and ‖ · ‖Q is a C∗-
seminorm on Ab(Q). Moreover,

‖a‖2Q ≤ ‖a+a + b+b‖Q for a, b ∈ A. (10.5)

Proof Let a ∈ Ab(Q). Take a number λ such that λ > ‖a‖Q . Then λ2 − a+a ∈ Q
by Lemma 10.4(i) and hence

(λ2/2)2 − (λ2/2 − aa+)2 = a(λ2 − a+a)a+ ∈ Q.

Therefore, from Lemma 10.4(ii), applied with c = λ2/2 − aa+, it follows that

λ2/2 + c = λ2/2 + (λ2/2 − aa+) = λ2 − aa+ ∈ Q.

Thus, a+ ∈ Ab(Q), so Ab(Q) is ∗-invariant, and ‖a+‖Q ≤ λ. Letting λ ↘ ‖a‖Q

yields ‖a+‖Q ≤ ‖a‖Q . Replacing a by a+ we obtain ‖a‖Q ≤ ‖a+‖Q . Thus, ‖a‖Q =
‖a+‖Q .

Next suppose a, b ∈ Ab(Q) and ‖a‖Q < λ, ‖b‖Q < μ. By Lemma 10.4(i), we
have λ2 − a+a ∈ Q and μ2 − b+b ∈ Q. Therefore, we conclude that

(λμ)2 − (ab)+ab = λ(μ2 − b+b)λ + b+(λ2 − a+a)b ∈ Q. (10.6)

Hence ab ∈ Ab(Q) and ‖ab‖Q ≤ λμ. Taking the infimum over λ,μ, we obtain
‖ab‖Q ≤ ‖a‖Q ‖b‖Q .

Now we consider a + b. Since ‖b+a‖Q ≤ ‖b+‖Q ‖a‖Q = ‖b‖Q ‖a‖Q < λμ as
shown in the preceding paragraphs, (λμ)2 − (b+a)+b+a = (λμ)2 − a+bb+a ∈ Q.

Similarly, (λμ)2 − b+aa+b ∈ Q. Putting these facts together, we obtain

4(λμ)2 − (a+b + b+a)2

= 2((λμ)2 − a+bb+a) + 2((λμ)2 − b+aa+b) + (a+b − b+a)+(a+b − b+a) ∈ Q.

FromLemma 10.4(ii), with c = a+b + b+a, we get 2λμ ± (a+b + b+a) ∈ Q.Then

(λ + μ)2 − (a + b)+(a + b)

= (λ2 − a+a) + (μ2 − b+b) + (2λμ − (a+b + b+a)) ∈ Q.

so a + b ∈ Q and ‖a + b‖Q ≤ λ + μ. This implies ‖a + b‖Q ≤ ‖a‖Q + ‖b‖Q .

It is easily checked that αa ∈ Ab(Q) and ‖αa‖Q = |α| ‖a‖Q for α ∈ K. Obvi-
ously, 1 ∈ Ab(Q). Summarizing the preceding, we have shown thatAb(Q) is a unital
∗-subalgebra and ‖ · ‖Q is a seminorm on Ab(Q) satisfying (10.2).

Next we prove (10.5). Take β > ‖a+a + b+b‖Q . Then β2 − (a+a + b+b)2 ∈ Q,
soβ − (a+a + b+b) ∈ Q byLemma10.4(ii).Henceβ − a+a ∈ Q and‖a‖Q ≤ √

β,
so that ‖a‖2Q ≤ β. Taking the infimum over β yields (10.5).
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Clearly, ‖a+a‖Q ≤ ‖a+‖Q ‖a‖Q = ‖a‖2Q ≤ ‖a+a‖Q , where the last inequality
follows from (10.5), applied with b = 0. Hence we have equality throughout, which
gives the C∗-condition (10.3). This completes the proof of Theorem 10.5. �

Since the seminorm ‖ · ‖Q satisfies the conditions in (10.2) (by Theorem 10.5),

JQ := {
a ∈ Ab(Q) : ‖a‖Q = 0

}
(10.7)

is a ∗-ideal of Ab(Q). By the definition of ‖ · ‖Q , an element a ∈ A belongs to JQ if
and only if ε − a+a ∈ Q for each ε > 0. The quotient ∗-algebra Ab(Q)/JQ carries
the C∗-norm ‖ · ‖Q given by ‖a + JQ‖Q := ‖a‖Q , a ∈ Ab(Q).

Corollary 10.6 The completion AQ of (Ab(Q)/JQ, ‖ · ‖Q) is a real or complex
C∗-algebra, respectively.

Proof By definition, AQ is a ∗-algebra, equipped with a C∗-norm ‖ · ‖Q , and com-
plete in this norm. Thus, for K = C, AQ is a complex C∗-algebra (Definition B.1).
In the case K = R, condition (10.5) implies that AQ is a real C∗-algebra according
to Definition B.3. �

Note that complex and real C∗-algebras are discussed in Appendix B.
The following corollaries show that it suffices to verify theArchimedean condition

for sets of generators.

Corollary 10.7 Suppose {ai : i ∈ I } is a set of hermitian elements of A which gen-
erate the ∗-algebra A. Then Q is Archimedean if and only if for each ai there exists
a number λi > 0 such that λi ± ai ∈ Q.

Proof By Lemma 10.4(ii), λi ± ai ∈ Q is equivalent to λ2
i − a2i ∈ Q and so to

ai ∈ Ab(Q). Since Ab(Q) is a ∗-algebra (by Theorem 10.5) and {ai : i ∈ I } is a set
of generators of A, the latter holds if and only if Ab(Q) = A. �
Corollary 10.8 Suppose that the ∗-algebraA is generated by finitely many elements
a1, . . . , ak . Then the following are equivalent:

(i) Q is Archimedean.
(ii) There exists a number λ > 0 such that λ − ∑k

j=1(a j )
+a j ∈ Q.

(iii) For each j = 1, . . . , k, there exists a λ j > 0 such that λ j − (a j )
+a j ∈ Q.

Proof (i)→(ii) is clear by definition. If λ − ∑d
i=1(ai )

+ai ∈ Q, then

λ − (a j )
+a j = λ −

∑

i
(ai )

+ai +
∑

i �= j
(ai )

+ai ∈ Q.

This proves (ii)→(iii). If (iii) holds, then a j ∈ Ab(Q) and hence Ab(Q) = A, since
Ab(Q) is a ∗-algebra by Theorem 10.5. Thus, (iii)→(i). �

We illustrate these considerations with three examples of commutative ∗-algebras.
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Example 10.9 Let A be the (real or complex) ∗-algebra generated by the functions

ai j := xi x j (1 + x21 + · · · + x2d )
−1, i, j = 0, . . . , d, where x0 := 1,

on Rd , with complex conjugation as involution. Obviously, (ai j )+ = ai j . Since 1 =
∑d

i, j=0 a
2
i j as easily verified, A is unital and 1 − ∑d

i, j=0 a
2
i j = 0 ∈ ∑

A2. Thus, by
Corollary 10.8, the quadratic module

∑
A2 is Archimedean.

Let K be a nonempty closed subset of Rd . We define a quadratic module of A by

Q := {
a ∈ Aher : a(x) ≥ 0, x ∈ K

}
.

Then Q is also Archimedean, because
∑

A2 ⊂ Q. The corresponding seminorm is

‖a‖Q = sup
{|a(x)| : x ∈ K

}
, a ∈ A. �

Example 10.10 (Archimedean quadratic modules of R[x1, . . . , xd ])
Let A = R[x1, . . . , xd ] and fix polynomials p1, . . . , pk ∈ A, k ∈ N. Let

K := {
x ∈ R

d : p1(x) ≥ 0, . . . , pk(x) ≥ 0
}

denote the semi-algebraic set and Q the quadratic module generated by p1, . . . , pk .
By the definition of K , all polynomials of Q are nonnegative on K .

Suppose Q is Archimedean. Since λ j − x2j ∈ Q by Corollary 10.8, λ j − x2j ≥ 0
on K . Hence K is bounded. Since K is closed, K is compact.

Let ‖ · ‖K be the supremum seminorm on K . We prove that

‖ f ‖Q = ‖ f ‖K for f ∈ A. (10.8)

Fix λ > ‖ f ‖K . Then the polynomial λ2 − f (x)2 is strictly positive on K . Hence,
by theArchimedean Positivstellensatz (see [Ms08, Theorem5.4] or [Sch17, Theorem
12.36]), it belongs to Q. Thus,λ > ‖ f ‖Q . Taking the infimumoverλ, we get ‖ f ‖K ≥
‖ f ‖Q . Now let λ < ‖ f ‖K . Then there exists an x ∈ K such that λ2 − f (x)2 < 0.
Henceλ2 − f 2 /∈ Q, because elements of Q are nonnegative on K . Thus,λ ≤ ‖ f ‖Q .
Letting λ ↗ ‖ f ‖K gives ‖ f ‖K ≤ ‖ f ‖Q , which completes the proof of (10.8). �
Example 10.11 Let A = R[x] and Q := (1 − x2)3

∑
A2 + ∑

A2. This is a special
case of Example 10.10: d = 1, p1(x) = (1 − x2)3, K = [−1, 1].

From the identity 4 − 3x2 = 4(1 − x2)3 + x2(2x2 − 3)2 ∈ Q it follows that√
3 x ∈ Ab(Q), so Q is Archimedean by Corollary 10.8. Therefore, formula (10.8)

holds, as shown in Example 10.10.
Let f (x) = x . Then ‖ f ‖Q = ‖ f ‖K = 1 by (10.8). We prove that 1 − f + f =

1 − x2 is not in Q; that is, the infimum in (10.4) is not attained.
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Assume to the contrary 1 − x2 ∈ Q, say 1 − x2 = (1 − x2)3
∑

p2i + ∑
q2
j , with

pi , q j ∈ A. This implies q j (±1) = 0. Hence q j = (1 − x2)r j with r j ∈ R[x]. Then
1 − x2=(1 − x2)3

∑
p2i + (1 − x2)2

∑
r2j , so1=(1 − x2)2

∑
p2i + (1 − x2)

∑
r2j .

Setting x = 1, we obtain a contradiction. �
In the remaining part of this chapter, A is a complex unital ∗-algebra. The next

result characterizes bounded elements in terms of their real and imaginary parts.

Proposition 10.12 Suppose A is a complex unital ∗-algebra. An element a ∈ A
belongs to Ab(Q) if and only if there exists a λ > 0 such that

(λ ± Re a) ∈ Q and (λ ± Im a) ∈ Q. (10.9)

Proof First assume that (10.9) holds. Setting a1 = Re a and a2 = Im a, we have
a = a1 + ia2. Then λ ± a j ∈ Q for j = 1, 2 and since Q is a quadratic module,

(a + 2λ)+(λ − a1)(a + 2λ) + (a − 2λ)+(λ + a1)(a − 2λ)

+(a + 2λi)+(λ − a2)(a + 2λi) + (a − 2λi)+(λ + a2)(a − 2λi)

belongs to Q. A straightforward computation shows that this element is equal to
4λ(4λ2 − a+a). Hence 4λ2 − a+a ∈ Q, so that a ∈ Ab(Q).

Conversely, let a ∈ Ab(Q). Then β − a+a ∈ Q for some β > 0 and hence

β − a+a + (a ± α)+(a ± α) = β + αα ± (αa + αa+) ∈ Q (10.10)

for all α ∈ C. Set λ := β + αα. Since we have (αa + αa+) = Re a for α = 1
2 and

(αa + αa+) = Im a for α = i
2 , (10.10) yields (10.9). �

The hermitian part Aher is an ordered real vector space with ordering defined by

a � b if and only if a − b ∈ Q.

Let a ∈ Aher. By Definition 10.3 and Lemma 10.4(ii), we have a ∈ Ab(Q) if and
only if λ ± a ∈ Q for some λ > 0. This implies that the unit element 1 of A is an
order unit for the cone Qb := Q ∩ Ab(Q)her in the real vector space Ab(Q)her; see
Appendix C.

Let Q∧ denote the set of Q-positive functionals f on A, that is,

Q∧ := {
f ∈ A∗ : f (a) ≥ 0 for a ∈ Q

}
.

Lemma 10.13 Suppose that Q is an Archimedean quadratic module of the complex
unital ∗-algebra A. If c ∈ Aher and c /∈ Q, then there exists an extremal functional
f ∈ Q∧ such that f (1) = 1 and f (c) ≤ 0.

Proof Since Q is Archimedean, Ab(Q) = A and Q = Qb. As noted above, 1 is
an order unit for Q = Qb. Hence, by Proposition C.5, applied to E = Aher, there
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exists an extremal Q-positive R-linear functional f on Aher such that f (1) = 1 and
f (c) ≤ 0. Since A = Aher + iAher, we can extend f to a C-linear functional on A,
which has the desired properties. �

10.2 Representations of ∗-Algebras with Archimedean
Quadratic Modules

From now on, A is a complex unital ∗-algebra.
The following definition appeared already in Sect. 4.4.

Definition 10.14 A ∗-representation π of A is Q-positive if π(a) ≥ 0 for a ∈ Q,
that is, 〈π(a)ϕ,ϕ〉 ≥ 0 for all a ∈ Q and ϕ ∈ D(π).

The family of Q-positive nondegenerate ∗-representations of A is denoted by
RepQ A.

Clearly, each ∗-representation of A is (
∑

A2)-positive. By Corollary 4.37, the
GNS representation π f of a Q-positive linear functional f on A is also Q-positive.

Proposition 10.15 Suppose Q is an Archimedean quadratic module of A. Then, for
any π ∈ RepQ A, all operators π(a), a ∈ A, are bounded and we have

‖a‖Q = sup
{‖π(a)‖ : π ∈ RepQ A

}
, a ∈ A, (10.11)

JQ = {
a ∈ A : π(x) = 0 for π ∈ RepQ A

}
. (10.12)

Proof Fix a ∈ A. Letπ ∈ RepQ A. Takeλ > ‖a‖Q .Thenλ2 − a+a ∈ Q. Therefore,
since π is Q-positive and π(1) = I , for ϕ ∈ D(π) we have

〈π(λ2 − a+a)ϕ,ϕ〉 = λ2‖ϕ‖2 − ‖π(a)ϕ‖2 ≥ 0,

so ‖π(a)ϕ‖ ≤ λ‖ϕ‖. Thus π(a) is bounded and ‖π(a)‖ ≤ λ. Taking the infimum
over λ and the supremum over π, we get sup {‖π(a)‖ : π ∈ RepQ A} ≤ ‖a‖Q.

Nowwe prove the converse inequality. It is obviously true if ‖a‖Q = 0, so we can
assume that ‖a‖Q > 0.We chooseα > 0 such that α < ‖a‖Q . Then,α2 − a+a /∈ Q
by the definition of ‖a‖Q . FromLemma 10.13 it follows that there exists a Q-positive
linear functional f on A such that f (1) = 1 and f (α2 − a+a) ≤ 0. Then

α2‖ϕ f ‖2 − ‖π f (a)ϕ f ‖2 = α2 f (1) − f (a+a) = f (α2 − a+a) ≤ 0,

which gives α ≤ ‖π f (a)‖. Since π f ∈ RepQ A byCorollary 4.37 andα < ‖a‖Q was
arbitrary, we conclude that ‖a‖Q ≤ sup {‖π(a)‖ : π ∈ RepQ A}.

Combining both paragraphs we obtain (10.11), and this implies (10.12). �
Suppose Q is an Archimedean quadratic module of A. Then A = Ab(Q).
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Let RepAQ denote the family of nondegenerate ∗-representations ρ of the C∗-
algebra AQ on a Hilbert space, that is, D(ρ) = H(ρ).

Recall that for any π ∈ RepQ A all operators π(a) are bounded by Proposition
10.15. Hence, π is closed if and only if D(π) = H(π).

Now let π ∈ RepQ A be closed. From (10.12) and (10.11) it follows that π
annihilates JQ and π is ‖ · ‖Q-continuous. Therefore, π passes to a continuous
∗-representation of the normed ∗-algebra (A/JQ, ‖ · ‖Q) and, since D(π) = H(π),
this ∗-representation extends by continuity to a ∗-representation π̆ ∈ RepAQ of the
completion AQ of (A/JQ, ‖ · ‖Q) on D(π̆) = H(π).

Conversely, let ρ ∈ RepAQ. It is easily verified that π(a) = ρ(a + JQ), a ∈ A,
defines a closed ∗-representation π ∈ RepQ A such that π̆ = ρ.

We summarize the outcome of the preceding discussion in the next proposition.

Proposition 10.16 Suppose Q is an Archimedean quadratic module of A. Then the
map π �→ π̆ is a bijection of the closed representations of RepQ A and RepAQ.

We now turn to the simplest and most important quadratic module Q = ∑
A2.

Definition 10.17 A unital ∗-algebra A is called algebraically bounded, or briefly
bounded, if the quadratic module

∑
A2 is Archimedean, or equivalently, for each

a ∈ A there exists a number λ > 0 such that λ − a+a ∈ ∑
A2.

The ∗-algebra in Example 10.9 is a bounded ∗-algebra.
Suppose A is a bounded ∗-algebra. Then, since ∑

A2 is Archimedean and
∗-representations are always (

∑
A2)-positive, all nondegenerate ∗-representations

of A act by bounded operators (Proposition 10.15). Further, J∑
A2 is the intersec-

tion of kernels of nondegenerate ∗-representations (by (10.12)) and hence of all
∗-representations of A (by Lemma 4.9(ii)). Thus, by Definition 4.43, the ∗-ideal
J∑

A2 is equal to the ∗-radical RadA of the bounded ∗-algebra A.

Proposition 10.18 Suppose A is a bounded commutative complex unital ∗-algebra.
Then each extremal state f on A is a hermitian character.

Proof Since each state is hermitian, it remains to prove that f is a character.
Let x ∈ A. First we note that is suffices to show that

f (x+ax) = f (a) f (x+x) for a ∈ A. (10.13)

Indeed, if (10.13) holds, then f (ax+x) = f (a) f (x+x), because A is commutative.
Since A = Lin

∑
A2 by (2.32), this extends by linearity to f (ab) = f (a) f (b) for

all a, b ∈ A, so f is a character.
Next, if f (x+x) = 0, then by the Cauchy–Schwarz inequality (2.34),

| f (x+ax)|2 = | f ((a+x)+x)|2 ≤ f (x+x) f ((a+x)+a+x) = 0.

Hence (10.13) holds, since both sides are zero. Thuswe can assume that f (x+x) �= 0.
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That the ∗-algebra A is bounded means that the quadratic module
∑

A2 is
Archimedean. Hence there exists a λ > 0 such that λ − x+x ∈ ∑

A2. Therefore
we have λ − f (x+x) ≥ 0. Upon replacing λ by λ + 1 and x by xλ−1/2 we can
assume without loss of generality that 1 − x+x ∈ ∑

A2 and 1 − f (x+x) > 0. Then
1 − x+x = ∑

j (y j )
+y j with y j ∈ A. Recall that f (1) = 1, because f is a state. For

a ∈ A we obtain

f ((1 − x+x)a+a) = f
( ∑

j
(y j )

+y ja+a
)

=
∑

j
f
(
(y ja)+y ja

) ≥ 0.

Hence there are states f1 and f2 on A defined by

f1(a) := f (x+ax)
f (x+x)

and f2(a) := f ((1 − x+x)a)

1 − f (x+x)
, a ∈ A,

and f = f (x+x) f1 + (1 − f +(xx)) f2 is a convex combination of f1 and f2. By
assumption, f is an extremal state. Therefore, f = f1, which gives (10.13). �

10.3 Stellensätze for Archimedean Quadratic Modules

Throughout this section, Q is anArchimedean quadratic module of a complex unital
∗-algebra A.

A crucial technical fact is contained in the following lemma.

Lemma 10.19 If a state f onA is an extremal element of Q∧, then f is a pure state.

Proof Suppose f = λ1 f1 + λ2 f2, where f1, f2 are states of A, λ1,λ2 ∈ (0, 1),
and λ1 + λ2 = 1. Fix j ∈ {1, 2}. Then λ j f j ≤ f . Since λ j > 0, it follows from
Theorem 5.3 that there exists a positive operator Tj ∈ π f (A)′w such that f j (·) =
〈Tjπ f (·)ϕ f ,ϕ f 〉. Since f ∈ Q∧, Corollary 4.37 implies that π f , hence π f , is Q-
positive. Hence all operators π f (a) are bounded by Proposition 10.15, so π f (A) is a
∗-algebra of bounded operators on H(π f ). Therefore, π f (A)′w = π f (A)′w = π f (A)′

is a von Neumann algebra. Hence T 1/2
j ∈ π f (A)′. Then, for a ∈ A,

f j (a) = 〈Tjπ f (a)ϕ f ,ϕ f 〉 = 〈T 1/2
j π f (a)ϕ f , T

1/2
j ϕ f 〉 = 〈π f (a)T 1/2

j ϕ f , T
1/2
j ϕ f 〉.

Therefore, since π f is Q-positive, f j is Q-positive, so that f j ∈ Q∧. Since f is
an extremal element of Q∧ and f, f1, f2 are states, we conclude that f j = f . This
proves that f is pure. �

The following results give algebraic certificates for the images in all Q-positive
representations of a hermitian element to be positive, in Theorem 10.20, and to be
not negative, in Proposition 10.21.
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Theorem 10.20 For any element a ∈ Aher the following are equivalent:

(i) a + ε ∈ Q for each ε > 0.
(ii) f (a) ≥ 0 for each Q-positive linear functional f on A.
(iii) f (a) ≥ 0 for each Q-positive pure state f of A.
(iv) π(a) ≥ 0 for each ∗-representation π ∈ RepQA.
(v) π(a) ≥ 0 for each closed irreducible ∗-representation π ∈ RepQA.

Proof The implications (i)→(ii)→(iii) and (iv)→(v) are obvious.

(ii)→(iv): Ifπ ∈ RepQA andϕ ∈ D(π), then 〈π(·)ϕ,ϕ〉 is a Q-positive functional
on A, so that 〈π(a)ϕ,ϕ〉 ≥ 0 by (ii). Thus, π(a) ≥ 0.

(iv)→(ii): If f is a Q-positive linear functional, then the GNS representations π f

is in RepQA by Corollary 4.37, so that f (a) = 〈π f (a)ϕ f ,ϕ f 〉 ≥ 0 by (iv).

(v)→(iii): If f is a Q-positive pure state, then the GNS representation π f is
Q-positive and irreducible by Corollaries 4.37 and 5.5. Therefore, by (v), we have
f (a) = 〈π f (a)ϕ f ,ϕ f 〉 ≥ 0.

(iii)→(i): Assume to the contrary that a + ε /∈ Q for some ε > 0. By
Lemma 10.13, there exists an extremal element f ∈ Q∧ such that f (1) = 1 and
f (a + ε) ≤ 0. Since f (1) = 1, f is a state. Lemma 10.19 implies that the
extremal element f is a pure state. Then f (a) ≤ − f (ε · 1) = −ε < 0, which con-
tradicts (iii). �
Proposition 10.21 For any a ∈ Aher the following are equivalent:

(i) There exist elements b1, . . . , bk ∈ A, k ∈ N, such that
∑k

j=1(b j )
+ab j belongs

to 1 + Q := {1 + c : c ∈ Q}.
(ii) For each ∗-representation π ∈ RepQA with domain D(π) �= {0} there exists a

vector η ∈ D(π) such that 〈π(a)η, η〉 > 0.

Proof (i)→(ii): Suppose
∑

j (b j )
+ab j = 1 + c with c ∈ Q. Let π ∈ RepQA and

suppose that D(π) �= {0}. Then π(1) = I (because π is nondegenerate) and there
exists a vector ϕ ∈ D(π), ϕ �= 0. Hence

∑
j 〈π(a)π(b j )ϕ,π(b j )ϕ〉 = ∑

j 〈π((b j )
+ab j )ϕ,ϕ〉

= 〈π(1 + c)ϕ,ϕ〉 ≥ 〈π(1)ϕ,ϕ〉 = ‖ϕ‖2 > 0.

Therefore, at least one summand 〈π(a)π(b j )ϕ,π(b j )ϕ〉 has to be positive.

(ii)→(i): Let C denote the finite sums of elements b+ab, where b ∈ A, and set
Q̃ := {α + c : α > 0, c ∈ Q}. Assume that (i) does not hold. Then, upon scaling the
elements b j , it follows that C and Q̃ are disjoint. Both sets C and Q̃ are convex.
Since Q is Archimedean, 1 is an order unit, hence an algebraically interior point,
of Q and so of Q̃. Thus, Proposition C.1 applies and there exists a linear functional
f : Aher �→ R, f �= 0, such that sup { f (c) : c ∈ C} ≤ inf { f (q) : q ∈ Q̃}. Since Q̃
is a cone, this infimum is zero. Therefore, f is Q-positive and f (c) ≤ 0 for c ∈ C.

We extend f to a C-linear functional, denoted also f , on A. Since
∑

A2 ⊆ Q, f is
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a positive functional on A. The GNS representation π f is in RepQA by Corollary
4.37 and we have 〈π f (a)π f (b)ϕ f ,π(b)ϕ f 〉 = f (b+ab) ≤ 0 for all b ∈ A. Clearly,
D(π f ) �= {0}, because f �= 0 and hence f (1) �= 0. Then, sinceD(π f ) = π f (A)ϕ f ,
the condition in (ii) is not fulfilled for π = π f . �

We illustrate Theorem 10.20 by proving that every strictly positive trigonometric
polynomial on the d-torus is a finite sum of hermitian squares. (This is also an
immediate consequence of the Archimedean Positivstellensatz ([Ms08, Theorem
5.4.4] or [Sch17, Theorem 12.35]) from real algebraic geometry.)

The additive group Zd , d ∈ N, is a ∗-semigroup with involution n+ = −n and the
map n = (n1, . . . , nd) �→ zn = zn11 · · · zndd is a ∗-isomorphism of the group ∗-algebra
C[Zd ] on the ∗-algebra of trigonometric polynomials in d variables. For notational
simplicity we identify C[Zd ] with the latter ∗-algebra, that is,

A := C[Zd ] = C[z1, z1, . . . , zd , zd | z1z1 = z1z1 = 1, . . . , zd zd = zd zd = 1].

Since 1 − (z j )+z j = 0 ∈ ∑
A2, the ∗-algebra A is bounded by Corollary 10.8. The

characters of A are precisely the point evaluations at points of the d-torus

T
d = {

z = (z1, . . . , zd) ∈ C
d : |z1| = · · · = |zd | = 1

}
.

Proposition 10.22 Suppose p = p+ ∈ C[Zd ]. If p(z) > 0 for all z ∈ T
d , then we

have p ∈ ∑
C[Zd ]2.

Proof Since T
d is compact, we have ε := inf{ p(z) : z ∈ T

d} > 0. We apply
Theorem 10.20 with Q = ∑

A2 and a := p − ε. Let f be an extremal state of A. By
Proposition 10.18, f is a character. Hence f is a point evaluation at some z ∈ T

d .
Then f (a) = p(z) − ε ≥ 0, so p = a + ε ∈ Q by Theorem 10.20, (iii)→(i). �

10.4 Application to Matrix Algebras of Polynomials

We begin with a general result which is of interest in its own. It gives a one-to-one
correspondence between ∗-representations of the matrix algebra Mn(A) and A.

Proposition 10.23 Let ρ be a nondegenerate ∗-representation of a complex unital
∗-algebra A and n ∈ N. Set D(ρn) = ⊕n

k=1D(ρ). For A = (ai j ) ∈ Mn(A) and ϕ =
(ϕ1, . . . ,ϕn) ∈ D(ρn), define

(ρn(A)ϕ)k =
n∑

j=1

ρ(akj )ϕ j , k = 1, . . . , n. (10.14)

Then ρn is a nondegenerate ∗-representation of the ∗-algebra Mn(A). Each nonde-
generate ∗-representation π of Mn(A) is, up to unitary equivalence, of this form.
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Further, ρn is irreducible if and only if ρ is irreducible.

Proof The first assertion follows by straightforward computations; we omit the
details. We carry out the proof of the second assertion.

Let π be a nondegenerate ∗-representation of Mn(A). Since A is unital, Mn(C)

is a ∗-subalgebra of Mn(A). It is well known that the restriction of π to Mn(C) is a
direct sum of identity representations. Hence D(π) is an n-fold direct sum of copies
of a vector space D such that for (ϕ1, . . . ,ϕn) ∈ D(π),ϕ j ∈ D, we have

(π(Λ)ϕ)i =
∑

j
λi jϕ j for Λ = (λi j ) ∈ Mn(C), i = 1, . . . , n. (10.15)

Let ei j denote the matrix with 1 in the (i, j)-position and zeros elsewhere.
Clearly, the operators Ei = π(eii ), i = 1, . . . , n, are pairwise orthogonal projections
such that E1 + · · · + En = I , since π is nondegenerate. ThusD(π) = ⊕n

i=1EiD(π).

From (10.15) we get EiD(π) = π(eii )D(π) = D. The map a �→ e11ae11 is a ∗-
homomorphism of A into Mn(A). Hence ρ(a) := π(e11ae11)�D defines a nonde-
generate ∗-representation ρ of A on D(ρ) := D = E1D(π). Let [a]i j ∈ Mn(A) be
thematrixwith (i, j)-entry a ∈ A and zeros elsewhere. Supposeϕ = (ϕ1, . . . ,ϕn) ∈
D(ρ). Using the relations ei j ekl = δ jkeil and (10.15) we compute for a ∈ A,

π([a]i j )ϕ = π(ei1[a]11e1 j )ϕ = π(ei1)π(e11ae11)π(e1 j )ϕ

= π(ei1)π(e11ae11)(ϕ j , 0, . . . , 0) = π(ei1)(ρ(a)ϕ j , 0, . . . , 0),

so that (π([a]i j )ϕ)k = δikρ(a)ϕ j . Hence π([a]i j ) = ρn([a]i j ) by (10.14). Since A =∑n
i, j=1[ai j ]i j for A = (ai j ) ∈ Mn(A), it follows that π(A) = ρn(A). Thus, π = ρn .

We prove the last assertion. By straightforward computations it follows that the
strong commutant ρn(Mn(A))′s consists of all diagonal operators (T, . . . , T ), with
T ∈ ρ(A)′s. Hence, by Proposition 4.26, ρn is irreducible if and only if so is ρ. �

Now we specialize to the case of the polynomial algebra A = Cd [x].
Let t ∈ R

d . Clearly, there is a ∗-representation πt of Mn(A) onD(πt ) = C
n given

by πt (a) = a(t), a ∈ Mn(A). The last assertion of Proposition 10.23 implies that πt

is irreducible. Obviously, πt is closed.
For Λ = Λ+ ∈ Mn(C) we write Λ � 0 if the matrix Λ is positive semi-definite.

Corollary 10.24 Suppose Q is an Archimedean quadratic module of Mn(A), where
A = Cd [x]. Then, up to unitary equivalence, the closed irreducible ∗-representations
π in RepQMn(A) are precisely the representations πt with t ∈ K (Q), where

K (Q) := {
t ∈ R

d : a(t) � 0 for all a ∈ Q
}
.

Proof Let π ∈ RepQ Mn(A) be irreducible. By Proposition 10.23, there exists an
irreducible ∗-representation ρ of A such that π = ρn . Since the operators π(a), a ∈
Mn(A), are bounded by Proposition 10.15, so are the operators ρ(b), b ∈ A. Then
ρ is a closed irreducible ∗-representation of the commutative ∗-algebra A = Cd [x]
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by bounded operators. Hence ρ acts on a one-dimensional space (this follows, for
instance, from Corollary 7.15) and, up to unitary equivalence, ρ is the evaluation at
some point t ∈ R

d . Then π = ρn is just the ∗-representation πt defined above.
Let t ∈ R

d . By definition, πt is Q-positive if and only if a(t) � 0 for all a ∈ Q,
that is, t ∈ K (Q). This gives the description stated in the corollary. �

Combining Corollary 10.24 and Theorem 10.20, (i)↔(v), we obtain the following
Positivstellensatz for matrix algebras of polynomials.

Theorem 10.25 Suppose Q is an Archimedean quadratic module of the matrix
∗-algebra Mn(Cd [x]). For any a = a+ ∈ Mn(Cd [x]) the following are equivalent:

(i) a + εI ∈ Q for all ε > 0.
(ii) a(t) � 0 for all t ∈ K (Q).

10.5 A Bounded ∗-Algebra Related to the Weyl Algebra

In this section and the next, we are concerned with the Weyl algebra

W := C〈a, a+| aa+ − a+a = 1〉,

N denotes the element N := a+a ∈ W, and α is a positive number such that α /∈ N.

Let us recall the Bargmann–Fock representation πC of W from Sect. 8.3. It acts
on the standard orthonormal basis {en : n ∈ N0} of the Hilbert space l2(N0) by

πC(a)en = √
n en−1, πC(a+)en = √

n + 1 en+1, πC(N )en = nen, (10.16)

where e−1 := 0. For notational simplicity we shall write x instead of πC(x) in what
follows. Then N is a self-adjoint operator on l2(N0) with spectrum N0. Define

u := a(N + α)−1, u∗ := a+(N + α + 1)−1,

v := a2(N + α)−1, v∗ := (a+)2(N + α + 1)−1,

yn := (N + α + n)−1, n ∈ Z, and y := y0 = (N + α)−1.

Using (10.16) we easily verify that these are bounded operators defined on l2(N0)

such that u∗ and v∗ are indeed the adjoints of u and v, respectively, yn is self-adjoint
and the following relations are satisfied:

uyn = yn+1u, u∗yn = yn−1u
∗, vy = u2(1 − y), v∗y1 = (u∗)2, (10.17)

yk − yn =(n − k)yk yn, (10.18)

u∗u = y − αy2, uu∗ = y1 − αy21 , (10.19)

v∗v = 1 − (2α−1)y + α(1+α)y2, vv∗ = 1 − (2α−1)y2 + α(1+α)y22 . (10.20)
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Let B be the unital ∗-subalgebra of B(l2(N0)) generated by u, v, and yn, n ∈ N0.

This auxiliary ∗-algebra and its ∗-representations (Proposition 10.30) are essentially
used in the proof of the Positivstellensatz (Theorem 10.33) given in the next section.

For b, c ∈ Bher we write b � c if b − c ∈ ∑
B2.

Lemma 10.26 The ∗-algebra B is bounded.

Proof Let Bb denote the bounded elements with respect to the quadratic module∑
B2. By (10.19), y = αy2 + u∗u and α−1 − y = α(α−1−y)2 + u∗u, so that

α−1 � y � 0. (10.21)

Thus, y ∈ Bb. Further, α−1 � y = αy2 + u∗u � u∗u implies that u ∈ Bb.

Let n ∈ N. We prove that yn ∈ Bb. From y = yn + nyn y (by (10.18)) and y � 0
we obtain yyn = y2n + nyn yyn � 0 and so y = yn + nyyn � yn. Further, from yn =
y(1 − nyn) and y � 0 it follows that yn − ny2n = (1 − nyn)y(1 − nyn) � 0. Hence
yn � ny2n � 0. Combined with y � yn and y ∈ Bb we get yn ∈ Bb.

Since the generators of B are in Bb and Bb is a ∗-algebra (by Theorem 10.5), we
have B = Bb. �

Since the ∗-algebra B is bounded, each nondegenerate ∗-representation π of B
acts by bounded operators (Proposition 10.15). For notational simplicity we write
U,U ∗, V, V ∗,Y,Yn for the images of u, u∗, v, v∗, y, yn under π. Clearly, these oper-
ators satisfy the corresponding relations of the generators stated above.

Lemma 10.27 There is no nondegenerate ∗-representation of B on a Hilbert space
H �= {0} such that ker Y = {0} and ker(Y − α−1 I ) = {0}.
Proof Assume to the contrary that there is a such representation of B on a Hilbert
spaceH �= {0}. Clearly, Eq. (10.21) implies thatα−1 I ≥ Y ≥ 0 onH. Henceσ(Y ) ⊆
[0,α−1]. Therefore, by the assumptions, there exists a λ0 ∈ (0,α−1) in σ(Y ). From
Y − Y1 = YY1 (by (10.18)) we obtain Y1 = Y (I + Y )−1. By the spectral map-
ping theorem, the map λ0 �→ λ0(1 + λ0)

−1 is a bijection of σ(Y ) on σ(Y1) and
λ0(1 + λ0)

−1 ∈ σ(Y1). We have 0 < supσ(Y1) < supσ(Y ), so there exists an inter-
val J ⊆ (0,α−1) such that J ∩ σ(Y1) = ∅ and J ⊆ σ(Y ). For the corresponding
spectral projections we have EY1(J ) = 0 and EY (J ) �= 0, since H �= {0}. The rela-
tionUY = Y1U (by (10.17)) impliesUg(Y ) = g(Y1)U for g ∈ L∞(R). In particular,
UEY (J ) = EY1(J )U = 0. Hence 0 = U ∗UEY (J ) = Y (I − αY )EY (J ) by (10.19).
Since EY (J ) �= 0 and 0,α−1 /∈ J , this is a contradiction. �

In the following two lemmaswe suppose thatπ is a nondegenerate∗-representation
of B on a Hilbert space H.

Lemma 10.28 H0 := ker Y is an invariant subspace for π. For the subrepresenta-
tion π0 := π�H0, we have π0(u) = π0(u∗) = π0(yn) = 0 and π0(v) is unitary.
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Proof From the relationsY − Yn = nYnY = nYYn wederiveH0 := ker Y = ker Yn.
Combined with the relations YU = Y1U and U ∗Y1 = YU ∗ it follows that H0 is
invariant under U and U ∗. From U ∗U = Y − αY 2 (by (10.19)) it follows that
|U |2 = U ∗U = 0 on H0. Therefore, |U | = 0 and hence U = 0 on H0 by the polar
decomposition of U . Taking the adjoints of the last two equations of (10.17) we
obtain YV ∗ = (I − Y )(U ∗)2 and Y1V = U 2. SinceU ∗ andU are zero onH0, these
relations imply that H0 is invariant under V ∗ and V . Thus we have shown that the
algebra generators of B leaves H0 invariant and so does the representation π.

Since Y = Y1 = 0 on H0, (10.20) implies that V �H0 is unitary onH0. �
Lemma 10.29 Suppose ϕ ∈ ker(Y−α−1 I ) and ‖ϕ‖ = 1. Then, for k, n ∈ N0,

ynϕ = (α + n)−1ϕ, (10.22)

Un(U ∗)nϕ = n!((α + 1)n)
−2, (10.23)

〈(U ∗)kϕ, (U ∗)nϕ〉 = δkn n!((α + 1)n)
−2. (10.24)

Here ( · )n denotes the Pochhammer symbol: (z)n := z(z + 1) · · · (z + n − 1) for
n ∈ N and (z)0 := 1.

Proof First we show that Uϕ = 0. Recall that, since α−1 � y � 0 by (10.21), the
operator Y satisfies α−1 ≥ Y ≥ 0 and so σ(Y ) ⊆ [0,α−1]. Next, by (10.18),

(I + Y )Uϕ = (I + Y )αYϕ = α(I + Y )Y1Uϕ = αYUϕ,

hence YUϕ = (α − 1)−1Uϕ. Since (α − 1)−1 /∈ [0,α−1], this implies Uϕ = 0.
Equation (10.22) follows from Y − Yn+1 = (n + 1)Yn+1Y by (10.18) and Yϕ =

α−1ϕ by the assumption ϕ ∈ ker(Y−α−1 I ).
Now we prove (10.23) by induction on n. The case n = 0 is clear. Suppose that

(10.23) holds for n ∈ N0. Using (10.22) we derive

Yn+1(I − αYn+1)ϕ = (α + n + 1)−1(1 − α(α + n + 1)−1)ϕ

= (α + n + 1)−2(n + 1)ϕ.

Therefore, by (10.19) and (10.18), we obtain

Un+1(U ∗)n+1ϕ = Un(UU ∗)(U ∗)nϕ = Un(Y1(I − αY1))(U
∗)nϕ

= Un(U ∗)nYn+1(I − αYn+1)ϕ = (α + n + 1)−2(n + 1)Un(U ∗)nϕ. (10.25)

Since (α + n + 1)(α + 1)n = (α + 1)n+1, by induction (10.25) yields (10.23) for
n + 1.

Finally, we verify (10.24). In the case n = k, (10.24) follows at once from (10.23).
To treat the case n �= k, we can assume without loss of generality that n > k.

Let k ∈ N. We use the relations (10.19), (10.18), and (10.17). By induction on
k we prove that uk(u∗)k = fk(y1, . . . , yk) for some polynomial fk . The elements
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y j pairwise commute by (10.18). Since Uϕ = 0 as shown above, using (10.17) we
derive

〈(U ∗)kϕ, (U ∗)nϕ〉 = 〈Un(U ∗)kϕ,ϕ〉 = 〈Un−k fk(Y1, . . . ,Yk)ϕ,ϕ〉 (10.26)

= 〈Un−k−1 fk(Y2, . . . ,Yk+1)Uϕ,ϕ〉 = 0. (10.27)

For k = 0, we have 〈ϕ, (U ∗)nϕ〉 = 〈Un−1Uϕ,ϕ〉 = 0. �
The main result of this section is the following proposition.

Proposition 10.30 Each nondegenerate ∗-representation π of B on H is a direct
sum of the subrepresentation π0 from Lemma 10.28 and possibly of representations
which are unitarily equivalent to the identity representation of B on l2(N0).

Proof Since π0 is a subrepresentation, the orthogonal complement H1=H � H0

is invariant under π and π1 := π�H1 is a ∗-representation of B. (Note that we are
dealing with bounded ∗-representations acting on the whole Hilbert space!) Consider
the closed subspace K := ker(Y − α−1 I ) of H1. If K = {0}, then Lemma 10.27,
applied to π1, implies that H1 = {0}, so π = π0 and the proof is finished.

Now assume thatK �= {0}. Take a unit vector ϕ ∈ K and letHϕ denote the closed
span of vectors (U ∗)nϕ, n ∈ N0.Obviously,Hϕ is invariant underU ∗. From (10.22)
and the commutation rules it follows thatHϕ is invariant underU andYn, n ∈ N0.The
last two equations of (10.17) imply that VYHϕ ⊆ Hϕ and V ∗Y1Hϕ ⊆ Hϕ. Since the
kernel of Y �H1 is trivial, YHϕ and Y1Hϕ are dense inHϕ. Therefore,Hϕ is invariant
under V and V ∗. Thus Hϕ is invariant under π1.

From Lemma 10.29 it follows therefore that the vectors

ϕn := (α + 1)n(n!)−1/2(U ∗)nϕ, n ∈ N0, (10.28)

form an orthonormal basis ofHϕ, and by definition, we have

U ∗ϕn = √
n + 1 (α + 1 + n)−1ϕn+1, n ∈ N0. (10.29)

Using (10.29) and (10.23) we conclude that the operators U ∗ and Yk act on the
orthonormal basis {ϕn : n ∈ N0} of Hϕ by the same formulas as the identity repre-
sentation of B does on the standard orthonormal basis of l2(N0). The same holds for
U , sinceU is the adjoint ofU ∗, and for V and V ∗, as it follows from the last formulas
of (10.17). Thus, the cyclic subrepresentation of B on Hϕ is unitarily equivalent to
the identity representation of B.

Now we consider the subrepresentation on H2 := H1 � Hϕ. If H2 �= {0}, we
repeat the same procedure with a unit vector ofK ∩ H2. We continue in this manner.
By Zorn’s lemma, we obtain a direct sum ⊕iπi on a subspace H̃1 of subrepre-
sentations πi all of which are equivalent to the identity representation such that
K ∩ (H̃1)

⊥ = {0}. Since ker Y ∩ H1 = {0}, it follows from Lemma 10.27, applied
to π�(H̃1)

⊥, that (H̃1)
⊥ = {0}. Hence π1 = ⊕iπi , which is the assertion. �
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10.6 A Positivstellensatz for the Weyl Algebra

From Proposition 8.2(i) we recall that the set {a j (a+)k : j, k ∈ N0} is a vector space
basis of the Weyl algebra W. Hence each element c ∈ W is of the form

c =
n∑

j,k=0

α jk a
j (a+)k, (10.30)

where α jk ∈ C are uniquely determined by c. For c �= 0 we define the degree m =
deg(c) := max { j + k : α jk �= 0} and the polynomial cm ∈ C[z, z] by

cm(z, z) =
∑

j+k=m

α jk z
j zk .

The Bargmann–Fock representation πC of W acts on the dense invariant domain

D∞(N ) = ∩∞
k=1D(Nk) = {(ϕn)n∈N0 ∈ l2(N0) : (nkϕn) ∈ l2(N0) for k ∈ N}

of l2(N0). The action of an element (10.30) is determined by the action of the gen-
erators a, a+ given by (10.16). Since (N + α + n)−1 leaves D∞(N ) invariant for
n ∈ N, so do all elements of the algebraB.Therefore, since the action ofW is faithful,
we can consider W and B as ∗-subalgebras of the larger ∗-algebra L+(D∞(N )).

Let D denote the set of all finite products of elements xn := N + α + n, n ∈ Z.
The following two lemmas are used in the proof of our main theorem.

Lemma 10.31 Let c ∈ W and deg(c) ≤ 4k, k ∈ N. Then bc := (y2k)kc(y2k)k ∈ B.

If π0 is a ∗-representation as in Lemma 10.28 and c = an(a+)m with n,m ∈ N0, then
π0(bc) = 0 if n + m < 4k and π0(bc) = π0(v

n(v∗)m) if n + m = 4k.

Proof It suffices to prove the assertions for elements c = an(a+)m . Let us write n =
2r + i,m = 2s + j with i, j ∈ {0, 1} and r, s ∈ N0, 2r + 2s + i + j ≤ 4k. Clearly,
(10.16) implies y ja = ay j−1 and y ja+ = a+y j+1. Hence

bc = yk2ka
n(a+)m yk2k = a2yi1 · · · a2yir x(a+)2yir+1 · · · (a+)2yir+s , (10.31)

where i1, . . . , ir+s ∈ N0 and x is an element of the form ai (a+) j yl1n1 y
l2
n2 with l1, l2,

n1, n2 ∈ N0, l1 + l2 + r + s = 2k. Since yl = y0(1 − lyl) = (1 − lyl)y0 and v =
a2y0, v∗ = a+y2, we derive a2yil = v(1 − il yil ) and (a+)2yil = (1 − il yil )v

∗.
First let n + m = 4k. Then x = 1 or x = aa+yl , so in any case x = 1 − αl yl for

some αl ∈ R. Since π0(yl) = 0 by Lemma 10.28, it follows from the preceding and
(10.31) that bc ∈ B and π0(bc) = π0(v

n(v∗)m).

Now assume that n + m < 4k. Then we have x = yl1n1 y
l2
n2 , x = ayl1n1 y

l2
n2 , x =

a+yl1n1 y
l2
n2 with l1 > 0 or x = aa+yl1n1 y

l2
n2 with l1 + l2 ≥ 2. In all these cases, x is

a product of elements yl , u, or u∗. Thus x ∈ B, hence bc ∈ B by the preceding, and
π0(bc) = 0, since π0(u) = π0(u∗) = π0(yl) = 0. �
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Lemma 10.32 For each b ∈ B there exists an element d ∈ D such that bd ∈ W.

Proof Suppose the assertion holds for b1, b2 ∈ B, say b1d1, b2d2 ∈ W. Thenwe have
d1d2 ∈ D and (b1 + b2)d1d2 = (b1d1d2 + b2d2d1) ∈ W, hence the assertion holds
for b1 + b2. The same reasoning is valid for finite sums.

Since u = ay, u∗ = ya+, v = a2y, v∗ = y(a+)2, each element of B is a finite
sum of products of elements a, a+, yn with n ∈ N0. Note that xn yn = ynxn = 1.
Using the relations yka = ayk−1 and yka+ = a+yk+1 for k ∈ Z, it follows that we
can multiply such a product by products of elements xk ∈ Dwith k ∈ Z (!) such that
all factors yn cancel and the corresponding element belongs to W. �

Now we are prepared to state and prove the following strict Positivstellensatz for
the Weyl algebra. It says that, under the positivity assumptions (i) and (ii), hermitian
elements, multiplied by certain “denominators”, are sums of hermitian squares.

Theorem 10.33 Suppose c is a hermitian element of the Weyl algebra W of degree
2n, n ∈ N, satisfying the following assumptions:

(i) There exists ε > 0 such that 〈πC(c − ε)ϕ,ϕ〉 ≥ 0 for ϕ ∈ D(πC) = D∞(N ).

(ii) c2n(z, z) > 0 for all z ∈ T.

If n is even, then there exists an element d ∈ D such that dcd ∈ ∑
W2. If n is odd,

then there is an element d ∈ D such that daca+d ∈ ∑
W2.

Proof First we suppose that n is even, say 2n = 4k.
By Lemma 10.32, bc = (y2k)kcyk2k ∈ B. First we prove that bc ∈ ∑

B2.
Assume the contrary. The ∗-algebra B is bounded by Lemma 10.26, so the

quadraticmodule
∑

B2 is Archimedean. Therefore, since bc /∈ ∑
B2, it follows from

Lemma 10.13 that there exists a positive functional f on B such that f (1) = 1 and
f (bc) ≤ 0. (We could even have f to be extremal, but this does not really simplify
the following proof.) From Proposition 10.30 it follows that the GNS representation
π f is a direct sum of a representation π0 as in Lemma 10.28 and possibly of repre-
sentation πi , i ∈ J, which are unitarily equivalent to the identity representation of B
on l2(N0). Then, for any b ∈ B, we have

f (b) = 〈π f (b)ϕ f ,ϕ f 〉 = 〈π0(b)ψ,ψ〉 +
∑

i
〈bψi ,ψi 〉, (10.32)

where ψ ∈ D(π0) and ψi ∈ l2(N), i ∈ J. Using assumption (i) we derive

〈bcψi ,ψi 〉 = 〈πC(c)yk2kψi , y
k
2kψi 〉 ≥ ε〈yk2kψi , y

k
2kψi 〉 = ε‖yk2kψi‖2 ≥ 0. (10.33)

The operator π0(v) is unitary by Lemma 10.28. Let π0(v) = ∫
T
zdE(z) be its

spectral decomposition and let c = ∑
i, j αi j ai (a+) j . Assumption (ii) implies that

δ := inf{c4n(z, z) : z ∈ T} > 0. Applying Lemma 10.31 we obtain
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〈π0(bc)ψ,ψ〉 =
∑

i+ j=4n

αi j 〈π0(v
i (v∗) j )ψ,ψ〉

=
∫

T

c4n(z, z) d〈E(z)ψ,ψ〉 ≥ δ〈E(T)ψ,ψ〉 ≥ 0. (10.34)

Now we apply (10.32) with b = bc. Since f (bc) ≤ 0, it follows from (10.33)
and (10.34) that all summands in (10.32) vanish. Therefore, since ker y2k = {0} on
l2(N0), (10.33) implies ψi = 0. Similarly, (10.34) leads to ψ = 0. Then, (10.32) for
b = 1 yields f (1) = 0, a contradiction. Thus we have shown that bc ∈ ∑

B2.
Since bc = yk2kcy

k
2k ∈ ∑

B2, there exist elements b1, . . . , bm ∈ B such that
yk2kcy

k
2k = ∑m

j=1(b j )
+b j .Let d ∈ D.Wemultiply this equation by dxk2k = xk2kd from

both sides. Since yk2k x
k
2k = xk2k y

k
2k = 1, we then obtain

dxk2k y
k
2kcy

k
2k x

k
2kd = dcd =

m∑

j=1

(b jdx
k
2k)

+b jdx
k
2k . (10.35)

From Lemma 10.32 we can find elements d j ∈ D such that b jd j ∈ W. We set d :=
d1 · · · dm ∈ D and a j := b jdxk2k = (b jd j ) d1 · · · d j−1d j+1 · · · dmxk2k . Then a j ∈ W
and (10.35) yields dcd = ∑

j (a j )
+a j . This proves the assertion for even n.

Now we suppose that n is odd, say n = 2k − 1. Put c̃ := aca+. Let ϕ ∈ D(πC).
Using assumption (i) we derive

〈πC(c̃)ϕ,ϕ〉 = 〈πC(c)πC(a+)ϕ,πC(a+)ϕ〉 ≥ ε〈πC(a+)ϕ,πC(a+)ϕ〉
= ε〈πC(aa+)ϕ,ϕ〉 = ε〈πC(N + 1)ϕ,ϕ〉 ≥ ε‖ϕ‖2.

Further, c̃4k(z, z) = c2n(z, z). Thus c̃ has degree 4k and satisfies both assumptions
(i) and (ii). Hence the assertion follows from the preceding result, applied to c̃. �

We illustrate the assertion of Theorem 10.33 with an example.

Example 10.34 cε := (N − 1)(N − 2) + ε, where ε > 0. Since the self-adjoint
operator N on l2(N0) has the spectrum N0, it follows that (N − 1)(N − 2) ≥ 0.
Clearly, cε has degree 4 and (cε)4(z, z) = (zz)2, so (cε)4 = 1 onT. Thus the assump-
tions (i) and (ii) of Theorem 10.33 are satisfied. Hence there exists an element d ∈ D
such that dcεd ∈ ∑

W2.
We determine such an element d explicitely. For α ∈ R we have the identity

(N + α)cε(N + α) =1

2
α2(N−1)2(N−2)2 + (

1 − 1

2
α2

)
N (N−1)(N−2)(N−3)

+ (2α + 3)N (N−1)(N−2) + ε(N + α)2.

Recall from (8.13) that (a+)kak = N (N − 1) · · · (N − (k − 1)) for k ∈ N.
Therefore, if α2 ≤ 2, the right-hand side belongs to

∑
W2 and we can take
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d = N + α. It can be shown that the element cε itself is not in
∑

W2 if 0 < ε < 1
4 ,

so in this case the “denominator" factor N + α is needed in order to get a sum of
hermitian squares. �

10.7 A Theorem About the Closedness of the Cone
∑

A2

The following theorem gives sufficient conditions on a ∗-algebra A which
ensure that the cone

∑
A2 is closed in the finest locally convex topology τst (see

Appendix C for the definition of the topology τst). It should be noted that we do not
assume in Theorem 10.35 that the ∗-algebra is unital.
Theorem 10.35 Let A be a complex ∗-algebra that has a faithful ∗-representation.
Suppose A is the union of a sequence of finite-dimensional subspaces En, n ∈ N,
such that En ⊆ En+1 for n ∈ N and for any n ∈ N there exists a number kn ∈ N such
that the following condition is satisfied:
(∗) Each element a ∈ En ∩ ∑

A2 is of the form a = ∑
j (a j )

+a j , with a j ∈ Ekn .

Then the cone
∑

A2 is closed in the finest locally convex topology τst of A.

Proof Since dim Ekn < ∞, there exists a number sn ∈ N such that u+v ∈ Esn for
u, v ∈ Ekn . We can assume without loss of generality that n ≤ kn ≤ sn for n ∈ N.
Set dn := dim Esn . We divide the proof into four steps.

The main content of the first statement is also known as the Carathéodory lemma.

Statement 1: Each a ∈ En ∩ ∑
A2 is a sum of dn squares (a j )

+a j , with a j ∈ Ekn .

Proof Let a ∈ En ∩ ∑
A2. By assumption (∗) we can write a = ∑m

j=1 (a j )
+a j ,

where a1, . . . , , am ∈ Ekn and m ∈ N. If m < dn , we add zeros.
Now supposem > dn . Then, since (a j )

+a j ∈ Esn and dn = dim Esn , the elements
(a j )

+a j , j = 1, . . . ,m, are linearly dependent, so there is a vector (λ1, . . . ,λm) �= 0
of Rm such that

∑m
j=1 λ j (a j )

+a j = 0. Without loss of generality we assume that
λm ≥ |λ j | for j = 1, . . . ,m − 1. Then λm �= 0. Setting ã j := (1 − λ jλ

−1
m )1/2a j for

j = 1, . . . ,m − 1, a simple computation yields a = ∑m−1
j=1 (̃a j )

+ã j . Continuing this
procedure we arrive at dn squares. �

Since A has a faithful ∗-representation, we can assume that A is a ∗-subalgebra
of L+(D) for some complex inner product space (D, 〈·, ·〉).
Statement 2: There exist sequences (ϕk)k∈N of unit vectors ϕk ∈ D and (rk)k∈N of
natural numbers such that

‖a‖n := max
{|〈a ϕl ,ϕl〉| : l = 1, . . . , rn

}
, a ∈ En,

defines a norm on the finite-dimensional vector space En .
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Proof Let S be the unit sphere of some norm on En . For any a ∈ S, we have a �= 0,
so there exists a unit vector ψa ∈ D such that 〈aψa,ψa〉 �= 0. Clearly, the sets Sa :=
{x ∈ S : 〈xψa,ψa〉 �= 0},a ∈ S, formanopen cover of the compact set S.Hence there
exists a finite subcover, say {Sa1 , · · · , Sap }. Then max { |〈· ψal ,ψal 〉| : l = 1, . . . , p}
is a norm on En . Wewrite the vectors ψal for the subspaces E1, E2, . . . as a sequence
(ϕk)k∈N. This sequence has the desired properties. �

The crucial step of the proof is the following result.

Statement 3: The set En ∩ ∑
A2 is closed in the normed space (En, ‖ · ‖n).

Proof Since each norm on a finite-dimensional normed space is continuous, there
is a constant cn > 0 such that ‖a‖kn ≤ cn‖a‖n for all a ∈ En ⊆ Ekn .

Let b ∈ En be in the closure of En ∩ ∑
A2. Then there is a sequence (bm)m∈N of

elements bm ∈ En ∩ ∑
A2 such that b = limm bm in En . By Statement 2 there exist

elements am1, . . . , amdn ∈ Ekn , m ∈ N, such that

bm =
dn∑

j=1

(amj )
+amj . (10.36)

Then, for l = 1, . . . , rkn , j = 1, . . . , dn , and m ∈ N, we obtain

|〈amjϕl ,ϕl〉|2 ≤ ‖amjϕl‖2 = 〈(amj )
+amjϕl ,ϕl〉 ≤ 〈bmϕl ,ϕl〉

and hence

‖amj‖2kn ≤ ‖bm‖kn ≤ cn supi∈N ‖bi‖n < ∞.

This shows that for each j = 1, . . . , dn the sequence (amj )m∈N is bounded in the
finite-dimensional normed space (Ekn , ‖ · ‖kn ). Therefore, by a diagonal procedure
it follows that there exist a sequence (mk)k∈N of natural numbers mk+1 > mk and
elements a j ∈ Ekn such that a j = limk amk , j in Ekn for j = 1, . . . , dn .

Recall that u+v ∈ Esn for u, v ∈ Ekn . Since bilinear mappings of finite-
dimensional normed spaces are continuous and the norm ‖ · ‖kn is ∗-invariant, there
is a constant γn > 0 such that ‖u+v‖sn ≤ γn‖u‖kn‖v‖kn for u, v ∈ Ekn . Then, for
x, y ∈ Ekn , we derive

‖x+x − y+y‖sn = ‖(x − y)+x + y+(x − y)‖sn ≤ γn‖x − y‖kn (‖x‖kn+‖y‖kn ).

Therefore, a j = limk amk , j in Ekn implies (a j )
+a j = limk (amk , j )

+amk , j in Esn for
j = 1, . . . , dn . Now we consider equation (10.36) for m = mk . Then, passing to the
limit k → ∞ we obtain b = ∑dn

j=1 (a j )
+a j ∈ En ∩ ∑

A2. �
Statement 4:

∑
A2 is closed in the locally convex space A[τst].

Proof In this proof we use some notions and advanced results from the theory of
locally convex spaces (all of them can be found in [Sh71]). The locally convex space



246 10 Archimedean Quadratic Modules and Positivstellensätze

E := A[τst] is the strong inductive limit of the family of normed spaces Ek , k ∈ N.
Hence its strong dual E ′ is a reflexive Frechet space. If U is a neighborhood of zero
in E ′, the polar U ◦ of U in E is bounded. Hence U ◦ is contained in some space
En . Since En ∩ ∑

A2 is closed in En by Statement 3 and U ◦ is closed in En , so is
U ◦ ∩ ∑

A2. Therefore, the Krein–Shmulian theorem [Sh71, Theorem 6.4], applied
to the Frechet space E ′, implies that

∑
A2 is closed in (E ′)′ = E = A[τst]. �

A longer, but completely elementary proof (without using the Krein–Shmulian
theorem) of the fact that Statement 3 implies Statement 4 is given in [Sch17, Theorem
A.28] and [Ms08, Theorem 3.6.1].

Now the proof of Theorem 10.35 is complete. �
Theorem 10.36 Let A be the polynomial ∗-algebra C[x1, . . . , xd ] or the Weyl
algebra W(d) or the free polynomial ∗-algebra C

〈
x1, . . . , xd |(x j )

+ = x j
〉
or the

enveloping algebra E(g) of a finite-dimensional real Lie algebra g, where d ∈ N.
Then the cone

∑
A2 is closed in the finest locally convex topology τst of A .

Proof The assertion will be derived from Theorem 10.35. Thus, it suffices to verify
that the assumptions of this theorem are satisfied for each of the four ∗-algebras.

First we note that each of these ∗-algebras has a faithful ∗-representation. For
the polynomial algebra C[x1, . . . , xd ] and the Weyl algebraW(d) this was stated in
Examples 4.21 and 3.11, respectively. For the free polynomial algebra we refer to
Corollary 6.13 and for the enveloping algebra to Statement 2 in Example 9.9.

Next we show that condition (∗) holds. We carry out this proof for A = E(g). The
proofs for the other three algebras follow by similar, even simpler reasonings.

We fix a basis {x1, . . . , xd} of the real vector space g. Put xk := xk11 · · · xkdd and
|k| := k1 + · · · + kd for k = (k1, . . . , kd) ∈ N

d
0 . By the Poincare–Birkhoff–Witt the-

orem (Sect. 9.1), the set {xk : k ∈ N
d
0} is a vector space basis of E(g). Set En :=

Lin {xk : |k| ≤ n}. Clearly, En ⊆ En+1 and E(g) = ∪∞
n=1En . For a ∈ E(g) let d(a)

denote the smallest number k ∈ N0 such that a ∈ Ek .
To prove condition (∗)we suppose a ∈ E2n ∩ ∑

A2. Then a = ∑
j (a j )

+a j with
a j ∈ A. We write a j as a linear combination a j = ∑

k α j,kxk of basis elements xk.
From the commutation rules of the Lie algebra g and the definition of the involu-
tion (x+ = −x for x ∈ g) it follows that there are numbers cn,k

l (depending on the
structure constants of the Lie algebra) such that

(xn)+xk = (−1)|n|xn+k +
∑

|l|<|n|+|k|
cn,k
l x l.

Inserting the preceding formulas we obtain

a =
∑

j

(a j )
+a j =

∑

j,k,n

α j,n α j,k(x
n)+xk

=
∑

j,k,n

α j,n α j,k

(

(−1)|n|xn+k +
∑

|l|<|n|+|k|
cn,k
l x l

)

. (10.37)
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We show that a j ∈ En for all j . Assume the contrary. Then d(a j ) > n for some j .
Let a j0 be an element a j with largest number k := d(a j0) > n. Further, let n0 be the
largest with respect to the lexicographic ordering among elements n ∈ N

d
0 for which

|n| = k and α j0,n �= 0. The coefficient of (−1)k x2n0 = (−1)|n0|x2n0 in (10.37) is

∑

d(a j )=k

|α j,n0 |2 ≥ |α j0,n0 |2 > 0.

Since |2n0| = 2k > 2n, this gives d(a) > 2n, which contradicts a ∈ E2n . �
The following results show that the closedness of the cone

∑
A2 can be used to

characterize its elements in terms of representations or states.

Theorem 10.37 Suppose A is a countably generated complex unital ∗-algebra such
that

∑
A2 is τst-closed in A. For any element a ∈ Aher the following are equivalent:

(i) a ∈ ∑
A2.

(ii) π(a) ≥ 0 for all nondegenerate ∗-representations π of A.
(iii) π(a) ≥ 0 for all irreducible nondegenerate ∗-representations π of A.
(iv) f (a) ≥ 0 for each state f of A.
(v) f (a) ≥ 0 for each pure state f of A.

(Recall that π(a) ≥ 0 means 〈π(a)ϕ,ϕ〉 ≥ 0 for all ϕ ∈ D(π).)

Proof (i)→(ii): Let a = ∑
j (a j )

+a j . Then, for ϕ ∈ D(π),

〈π(a)ϕ,ϕ〉 =
〈
π
( ∑

j
(a j )

+a j

)
ϕ,ϕ

〉
=

∑

j
〈π(a j )ϕ,π(a j )ϕ〉 ≥ 0.

(ii)→(iv): We apply (ii) to the GNS representation π f of the state f and obtain
f (a) = 〈π f (a)ϕ f ,ϕ f 〉 ≥ 0.

(iii)→(v): If the state f is pure, the GNS representation π f is irreducible by
Corollary 5.5, so the same reasoning yields (iii)→(v).

(iv)→(i): Assume to the contrary that a /∈ ∑
A2. By the assumption,

∑
A2 is

a closed (!) convex cone of the real locally convex space Aher[τst]. Hence, by the
separation of convex sets (Proposition C.2), applied to

∑
A2 and {a}, there exists an

R-linear functional g on Aher such that g(a) < inf {g(c) : c ∈ ∑
A2}. Since ∑

A2

is a cone, the infimum is zero. Therefore, g(a) < 0 and g(c) ≥ 0 for c ∈ ∑
A2. We

extend the R-linear functional g on Aher to a C-linear positive functional, denoted
again g, on A. Since g �= 0, we have g(1) > 0. Then f := g(1)−1g is a state such
that f (a) < 0, which contradicts (iv).

(v)→(iv): Since A is countably generated, it follows from Corollary 5.36 that
each state of A is an integral over pure states. This yields (v)→(iv).

(ii)→(iii) is trivial. By the preceding, the equivalence of (i)–(v) is proved. �
For the free polynomial ∗-algebra one can do even better and restrict to finite-

dimensional representations.
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Corollary 10.38 Let A = C
〈
x1, . . . , xd |(x j )

+ = x j
〉
, d ∈ N, be the free polynomial

∗-algebra and a ∈ Aher. If π(a) ≥ 0 for all finite-dimensional nondegenerate ∗-
representations π of A, then a ∈ ∑

A2.

Proof Let π be a nondegenerate ∗-representation of A and ϕ ∈ D(π). By Theorem
10.37, (ii)→(i), it suffices to show that there exists afinite-dimensionalnondegenerate
∗-representation ρ such that ϕ ∈ D(ρ) and 〈π(a)ϕ,ϕ〉 = 〈ρ(a)ϕ,ϕ〉. This follows
at once from Proposition 6.7 and formula (6.3). �

Combining Theorems 10.36 and 10.37 gives the following corollary.

Corollary 10.39 Suppose A is one of the four ∗-algebras from Theorem 10.36
and a ∈ Aher. Then, a ∈ ∑

A2 if and only if π(a) ≥ 0 for all nondegenerate ∗-
representations π of A, or equivalently, f (a) ≥ 0 for all states f of A.

This resultmight be surprising, at least at first glance, because there is nodifference
therein between the commutative polynomial ∗-algebra C[x1, . . . , xd ] and the free
polynomial ∗-algebra C 〈

x1, . . . , xd |(x j )
+ = x j

〉! The reason is that it is required in
Corollary 10.39 that π(a) ≥ 0 (or f (a) ≥ 0) for all nondegenerate ∗-representations
π (or all states f ).

If we allow only integrable representations (Definition 7.7) of C[x1, . . . , xd ],
the equivalence in Corollary 10.39 is no longer true. In fact, we have the following
result (see Exercise 7.7): Let p ∈ R[x1, . . . , xd ]. Then, π(p) ≥ 0 for all integrable
representations π of C[x1, . . . , xd ] if and only if p(x) is nonnegative on R

d .

10.8 Exercises

1. Decide whether or not the quadratic module
∑

A2 is Archimedean:

a. A = R[ 1
1+x2 ].

b. A = R[ 1
1+x2

x
1+x2 ].

2. Let A be the complex ∗-algebra of functions on R
d generated by the constants

and the functions (1 + x2j )
−1, x j (1 + x2j )

−1 for j = 1, . . . , d.

a. Show that A is bounded.
b. Describe the norm ‖ · ‖Q for theArchimedean quadraticmodule Q = ∑

A2.

3. Let p(x) = (x − a)(b − x), where a, b ∈ R, and let Q be the quadratic module
of C[x] of generated by p.

a. Is Q Archimedean?
b. What changes if p is replaced by (x − a)(x − b)?

4. (Strict Positivstellensatz for d-dimensional compact intervals)
Leta j , b j ∈ R,a j < b j , for j = 1, . . . , d and set J := [a1, b1] × · · · × [ad , bd ].
Let Q be the quadratic module of A := Cd [x] generated by the polynomials
f2 j−1 := b j − x j , f2 j := x j − a j , for j = 1, . . . , d.

a. Show that Q is Archimedean.
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b. Use Theorem 10.20 to prove that each polynomial p satisfying p(x) > 0
for x ∈ J belongs to Q.
(b. is a special case of the Archimedean Positivstellensatz of real algebraic
geometry; see, e.g., [Ms08, Theorem 5.4.4] or [Sch17, Theorem 12.37].)

5. Show that the Weyl algebra W has no Archimedean quadratic module.
6. Show that the bijection π �→ π̆ in Proposition 10.16 preserves irreducibility.
7. Generalize the assertion of Proposition 10.22 to the ∗-algebra Mn(C) ⊗ C[Zd ].

Hint: Describe the ∗-representations of Mn(C) ⊗ C[Zd ].
8. Show that each unital C∗-algebra is a bounded ∗-algebra.
9. Let A be the quotient ∗-algebra of C[x] by the ideal generated by x2. Show that

the cone
∑

A2 is not closed in A[τst]. Where does the proof of Theorem 10.35
fail in this case?

10. Show that the free ∗-algebraC 〈
x1, . . . , xd |(x j )

+ = x j
〉
satisfies condition (∗) in

Theorem 10.35.
Hint: Modify the reasoning for E(g) given in the proof of Theorem 10.36.

10.9 Notes

The results on the bounded ∗-algebra Ab(Q) are taken from [Sch05, C09, Po08];
we followed mainly [C09]. Bounded elements in topological ∗-algebras were inves-
tigated in [An67, AT02]. Theorem 10.20 was proved in [Sch09]. The “Nichtnega-
tivstellensatz" Proposition 10.21 was discovered by Cimprič [C08].

Theorem 10.33 is a special case of the main result in [Sch05]. Positivstellensätze
for the Weyl algebra with other sets of denominators can be found in [Sch10, Z13].

The three Theorems 10.35–10.37 are due to the author; Theorem10.36was proved
in [Sch84], Theorem 10.35 in [Sch90], and Theorem 10.37 in [Sch09]. Corollary
10.38 is due to Helton [H02]. The problem of whether a quadratic module is closed is
already difficult for the polynomial algebrasRd [x] andCd [x]; see [Sch17, Sect. 13.8]
for a study of this question.

An introduction to the world of noncommutative real algebraic geometry of given
in [Sch09]. There is an extensive literature on noncommutative Positivstellensätze
for free algebras by W.J. Helton, S. McCullough and their coworkers. This topic is
not treated in this book.



Chapter 11
The Operator Relation XX∗ = F(X∗X)

If a ∗-algebra is defined in terms of generators and relations, it is natural to study
∗-representations in terms of the corresponding operator relations. In this chapter we
restrict ourselves to a single important operator relation:

XX∗ = F(X∗X). (11.1)

Here F is a real-valued Borel (in most cases continuous) function on R and X is
a densely defined closed operator on a Hilbert space. Then X∗X is a positive self-
adjoint operator and F(X∗X) is a well-defined operator by the functional calculus.

If the involved operators are unbounded, one has to specify the rigorous meaning
of an operator relation. This is done for the relation AB = BF(A) in Sect. 11.2 and
for XX∗ = F(X∗X) in Sect. 11.3. Roughly speaking, the “good” representations of
these relations are characterized in terms of the spectral projections of the possibly
unbounded operators A and X∗X (Theorems 11.6 and 11.8), respectively.

Let X = UC be the polar decomposition of X . Then (11.1) is equivalent to
UC2U ∗ = F(C2). Let EC2 be the spectral measure of the self-adjoint operator C2.
For a “good” representation of (11.1) we require that kerU ∗ ⊆ ker F(C2) and

EC2(·)U ∗ = U ∗EC2(F−1(·)). (11.2)

The corresponding finite-dimensional representations are treated in Sect. 11.4, while
the infinite-dimensional representations are studied in Sect. 11.5.

Equation (11.2) and the representation theory of (11.1) are closely linked to prop-
erties of the dynamical system λ �→ F(λ). Finite-dimensional irreducible represen-
tations correspond to cycles of F (Theorems 11.13 and 11.15). Infinite-dimensional
irreducible representations with unitary, isometric, or co-isometric operators U are
related to orbits or semiorbits of F (Theorems 11.18, 11.19, and 11.21).
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The partial isometry U appearing in the polar decomposition of X is a power
partial isometry. Section11.1 gives a brief introduction into this class of operators.

In Sects. 11.6 and 11.7, we consider two applications which are of interest in
themselves. These are the Hermitian quantum plane (with F(λ) = qλ) and the
q-oscillator algebra (with F(λ) = qλ + 1), where q > 0, q �= 1.

The real quantum plane AB = qBA, with A, B self-adjoint operators and q �= 1
of modulus one, cannot be treated by this theory. In Sect. 11.8 we develop some
“good” representations of this relation.

Throughout this chapter, F is real Borel function on R and X is a densely
defined closed operator on a Hilbert spaceH with polar decomposition X = UC ;
see Proposition A.3. Further, ek = (δnk) is the kth basis vector of l2(N0) or l2(Z).

11.1 A Prelude: Power Partial Isometries

First we recall some standard facts on partial isometries
Suppose H is a Hilbert space and G and K are closed subspaces of H. A linear

operatorU : H �→ H is called a partial isometrywith initial space G and final space
K if U is an isometric mapping of G on K and Uϕ = 0 for ϕ ∈ G⊥. In this case,
U ∗U = PG and UU ∗ = PK, where PG and PK are the projections on G and K, and
the adjoint U ∗ is also a partial isometry with initial space K and final space G.

Let U be a bounded operator defined on H. Then U is a partial isometry if and
only if U ∗U is a projection, or equivalently, UU ∗ is a projection, or equivalently,
U = UU ∗U , or equivalently, U ∗ = U ∗UU ∗.

Definition 11.1 A linear operator U on a Hilbert space is called a power partial
isometry if each power Uk , k ∈ N, is a partial isometry.

Clearly, the adjoint of a power partial isometry is again a power partial isometry.

Lemma 11.2 If the product UV of partial isometries U and V is a partial isometry,
then the initial projection U ∗U of U and the final projection V V ∗ of V commute.

Proof We abbreviate a := (U ∗UVV ∗ − VV ∗U ∗U )V . By a straightforward calcu-
lation we verify that

a∗a = V ∗(VV ∗U ∗U −U ∗UVV ∗)(U ∗UVV ∗ − VV ∗U ∗U )V = 0.

Therefore, a = 0, so 0 = aV ∗ = U ∗UVV ∗VV ∗ − VV ∗UU ∗VV ∗. Hence, since
VV ∗ is a projection, U ∗UVV ∗ = VV ∗UU ∗VV ∗. The operator on the right is self-
adjoint, so is the operator on the left. This gives U ∗UVV ∗ = VV ∗U ∗U . �
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The converse direction in Lemma 11.2 is also valid, but we shall not need this.
Suppose U is a power partial isometry. Let Pk and P−k denote the projections on

the initial and final spaces of the partial isometry Uk , that is,

P0 := I, Pk := (U ∗)kUk, P−k := Uk(U ∗)k for k ∈ N. (11.3)

Because U and U ∗ are partial isometries and hence contractions, we conclude that

Pk ≥ Pk+1 and P−k ≥ P−k−1 for k ∈ N. (11.4)

Hence Pj Pk = Pk Pj and P− j P−k = P−k P− j for j, k ∈ N. Since U jUk = U j+k is
a partial isometry, Lemma 11.2 implies that Pj P−k = P−k Pj , j, k ∈ N. Thus, all
projections Pk, k ∈ Z, pairwise commute.

Let k ∈ N. Using the equation U = UU ∗U and the permutability relations
P−1Pk = Pk P−1 and P1P−(k−1) = P−(k−1)P1 we compute

PkU = (U ∗)kUkU = (U ∗)kUkUU ∗U = UU ∗(U ∗)kUkU

= U (U ∗)k+1Uk+1 = U Pk+1,

P−kU = Uk(U ∗)kU = UUk−1(U ∗)k−1U ∗U

= UU ∗UUk−1(U ∗)k−1 = UUk−1(U ∗)k−1 = U P−k+1.

Clearly, P0U = I ·U = U (U ∗U ) = U P1 and P−1U = (UU ∗)U = U · I = U P0.
Summarizing the preceding, we have proved the following proposition.

Proposition 11.3 Suppose that U is power partial isometry. Then the projections
Pk, k ∈ Z, defined by (11.3), pairwise commute and satisfy

PkU = U Pk+1 for k ∈ Z. (11.5)

Now we turn to the structure of power partial isometries.
Clearly, isometries and co-isometries, hence unitaries, are power partial isome-

tries. LetK be a Hilbert space and letKn, n ∈ N, denote the n-fold direct sumHilbert
space Kn = K ⊕ · · · ⊕ K. The operator U on Kn , given by

U (ϕ1, . . . ,ϕn) = (0,ϕ1, . . . ,ϕn−1), (ϕ1, . . . ,ϕn) ∈ Kn,

is called a truncated shift of index n. It is easily verified thatU is also a power partial
isometry and its adjoint is unitarily equivalent to a truncated shift of index n.

It can be shown that each power partial isometry is a direct sum of unitaries,
isometries, co-isometries, and truncated shifts; see [HW63] for a proof. The next
proposition clarifies the structure of irreducible power partial isometries.
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Proposition 11.4 Up to unitary equivalence, the irreducible power partial isome-
tries U are precisely the following operators:

(i) One-dimensional unitary on H = C: U = α, |α| = 1.
(ii) Unilateral shift on l2(N0): U (ϕ0,ϕ1, . . . ) = (0,ϕ0,ϕ1, . . . ).
(iii) Adjoint of the unilateral shift on l2(N0): U (ϕ0,ϕ1, . . . ) = (ϕ1,ϕ2, . . . ).
(iv) Truncated shift of index n onH = C

n: U (ϕ1, . . . ,ϕn) = (0,ϕ1, . . . ,ϕn−1).

Proof Clearly, each irreducible unitaryU is of the form given in (i). Now assume that
U is not unitary. Then kerU ∪ kerU ∗ �= {0}. We carry out the case when kerU �=
{0}; the case kerU ∗ �= {0} is treated in a similar manner.

We take a unit vector e ∈ kerU . Then there are two possible cases.

Case I Uk(U ∗)ke = e for all k ∈ N.
Then P−ke = e and Pke = 0 for k ∈ N, because Ue = 0. Hence f := e is a joint
unit eigenvector of the projections Pn, n ∈ Z, such that U f = 0.

Case II There is a number n ∈ N such thatUk(U ∗)ke = e for k = 0, . . . , n − 1 and
Un(U ∗)ne �= e.

Set f ′ := e −Un(U ∗)ne = (I − P−n)e and f = f ′‖ f ′‖−1. Since P−n is a pro-
jection, P−n f = 0 andU f = 0 by (11.5). Because the projections Pj pairwise com-
mute, f is again a joint unit eigenvector of Pj , j ∈ Z.

That is, in both cases, U f = 0 and f is an eigenvector of Pj for all j ∈ Z. Since
Pj is a projection, it follows that Pj f = f or Pj f = 0.

Let G denote the closed span of vectors (U ∗)k f, k ∈ N0.Obviously, G is invariant
underU ∗ andU f = 0 ∈ G. Since PjU ∗ = U ∗Pj−1 by (11.5), we deriveU (U ∗)k f =
P−1(U ∗)k−1 f = (U ∗)k−1P−1−(k−1) f ∈ G for k ∈ N. Thus, G is invariant under
U,U ∗ and hence equal toH, because U is irreducible.

Let k ∈ N0. Since P−k f = f or P−k f = 0, we have U P−k f = 0. For j > k,

〈(U ∗)k f, (U ∗) j f 〉 = 〈U j−kUk(U ∗)k f, f 〉 = 〈U j−k P−k f, f 〉 = 0.

Further, ‖(U ∗)k f ‖2 = 〈P−k f, f 〉 = ‖P−k f ‖2 is 1 or 0. Thus, the vectors (U ∗)k f,
k ∈ N0, are mutually orthogonal and either unit vectors or zero. From these facts it
follows that, up to unitary equivalence, U is the adjoint of a unilateral shift in Case
I and a truncated shift of index n in Case II. �

11.2 The Operator Relation AB = BF(A)

If all involved operators are bounded and defined on the whole Hilbert space, one
usually requires that an operator relation holds for all vectors of the space. However,
if some operators are unbounded, one has to explain how the relation is meant.

Let us discuss this in the simplest case of the relation
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AB = BA (11.6)

for self-adjoint operators A, B. An obvious candidate for a meaning of (11.6) is
to require that ABϕ = BAϕ for ϕ ∈ D(AB) ∩ D(BA). But, by a result of von
Neumann (see [Sch83a, Theorem 5.2]) there exist unbounded self-adjoint operators
A and B such that D(A) ∩ D(B) = {0}. Then, trivially, ABϕ = BAϕ for all ϕ ∈
D(AB) ∩ D(BA) = {0}, but it is absurd to say that (11.6) holds in this case.

The next natural meaning of (11.6) is to suppose that ABϕ = BAϕ for vectors
ϕ of a common core D for A and B. But even this does not exclude pathological
behavior, as the following example shows. We only sketch the main lines of proof;
more details concerning this example can be found in [Sch12, Example 5.5].

Example 11.5 Let S denote the unilateral shift on l2(N0) given by Sen = en+1,
where {en : n ∈ N0} is the canonical basis of l2(N0). Then X := S + S∗ and Y :=
−i(S − S∗) are bounded self-adjoint operators with trivial kernels. Therefore, A :=
X−1 and B := Y−1 are self-adjoint operators on l2(N0).

Let P be the rank projection e0 ⊗ e0. Set D := XY (I − P)l2(N0). One verifies
that XY (I − P) = Y X (I − P). Therefore, ABϕ = BAϕ for ϕ ∈ D.

It is easily checked that e0 /∈ ran X and e0 /∈ ran Y . From this it follows that
AD = Y (I − P)l2(N0) and BD = X (I − P)l2(N0) are dense in l2(N0). Hence D
is a core for A and B. Thus, A and B commute pointwise on the common core D.

But the inverses X = A−1 and Y = B−1 do not commute, since otherwise S and
S∗ would commute, a contradiction. �

The “correct” meaning of (11.6) is to require that the self-adjoint operators
strongly commute; that is, the spectral projections EA(M) and EB(N ) commute
for Borel sets M, N , or equivalently, their resolvents commute [Sch12, Section5.6].

For a general operator relation it can be difficult to find an appropriate rigorous
meaning and neither a unique nor a canonical way for this is known.

Now we will treat the operator relation

AB = BF(A). (11.7)

To be precise, we consider pairs of a self-adjoint operator A and a bounded operator
B on a Hilbert space H such that

BF(A) ⊆ AB. (11.8)

This is the rigorous operator-theoretic meaning of relation (11.7) for unbounded A
and bounded B. If the operators A and F(A) are also bounded, then (11.8) is just the
equation AB = BF(A).

The operator relation (11.7), with bounded operator B, is crucial for the study of
the relation XX∗ = F(X∗X) in Sect. 11.3; see Theorem 11.8 and (11.16).

Relation (11.8) says that for any vector ϕ ∈ D(F(A)) we have Bϕ ∈ D(A) and
BF(A)ϕ = ABϕ. The operator F(A) is defined by the functional calculus of self-
adjoint operators [Sch12, Chap. 4]: If EA is the spectral measure of A, then
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D(F(A)) :=
{
ϕ ∈ H :

∫

R

|F(λ)|2 d〈EA(λ)ϕ,ϕ〉 < ∞
}
,

F(A)ϕ :=
∫

R

F(λ) dEA(λ)ϕ, ϕ ∈ D(F(A)).

The following theorem collects a number of conditions that are equivalent to
(11.8). Note that (iii) and (iv) deal only with bounded operators and the spectral
measure EF(A) of the self-adjoint operator F(A) is given by EA(F−1(·)).
Theorem 11.6 Suppose A is a self-adjoint operator and B is a bounded operator
on a Hilbert spaceH withD(B) = H. Let B = U |B| be the polar decomposition of
B and P the projection on ker B = ker |B|. Then the following are equivalent:

(i) BF(A) ⊆ AB.
(ii) B∗A ⊆ F(A)B∗.
(iii) EA(M)B = BEA(F−1(M)) for each Borel subset M of R.
(iv) f (A)B = B f (F(A)) for all real bounded Borel functions f on R.
(v) |B|F(A) ⊆ F(A)|B| and U F(A)(I − P) ⊆ AU (I − P).

If one of these statements is true, then

ABϕ = BF(A)ϕ for ϕ ∈ D(F(A)) = D(AB) ∩ D(BF(A)). (11.9)

Proof (i)↔(ii): First suppose (i) holds. Applying the adjoint to BF(A) ⊆ AB
yields (AB)∗ ⊆ (BF(A))∗. Clearly, B∗A ⊆ (AB)∗. Since B is bounded (!), we have
(BF(A))∗ = F(A)B∗. Combining these relations we obtain (ii).

The converse implication (ii)→(i) follows by the same reasoning, now with
B, F(A), A replaced by B∗, A, F(A), respectively.

(i)↔(iii): Suppose B is a bounded operator and A,C are self-adjoint operators
on H. Then, by [Sch12, Proposition 5.15], BC ⊆ AB if and only if BEC(M) =
EA(M)B for all Borel sets M . We apply this result with C = F(A). Since F(A) has
the spectral measure EA(F−1(·)), this gives the equivalence of (i) and (iii).

(iii)→(iv): Since the function f is bounded onR, f (A) and f (F(A)) are bounded
self-adjoint operators by the functional calculus. Let S f (A) := ∑

j f (λ j )EA(Mj ) be
an integral sum for the spectral integral f (A) = ∫

f (λ) dEA(λ), where λ j ∈ Mj

and Mi ∩ Mj = ∅ for i �= j . Then S f (F(A)) := ∑
j f (λ j )EF(A)(Mj ) is an integral

sum for the spectral integral f (F(A)) = ∫
f (λ) dEF(A)(λ). Since EA(F−1(Mj )) =

EF(A)(Mj ), it follows from (iii) that S f (A)B = BS f (F(A)). Passing to the limit we
obtain f (A)B = B f (F(A)).

(iv)→(iii): Let f denote the characteristic function of M . Then (iv) means that
EA(M)B = BEA(F−1(M)).

(i)→(v): Since BF(A) ⊆ AB by (i) and B∗A ⊆ B∗F(A) by (i)→(ii), we have
B∗BF(A) ⊆ B∗AB ⊆ F(A)B∗B. Hence (B∗B)n F(A) ⊆ F(A)(B∗B)n by induc-
tion, so p(B∗B)F(A) ⊆ F(A)p(B∗B) for any polynomial p. Since the operator
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B∗B is bounded and positive, we can find a sequence (pn)n∈N of polynomials such
that limn pn(B∗B) = √

B∗B = |B| in the operator norm.
Let ϕ ∈ D(F(A)). As noted above, pn(B∗B)F(A)ϕ = F(A)pn(B∗B)ϕ.

Then, limn F(A)pn(B∗B)ϕ = limn pn(B∗B)F(A)ϕ = |B|F(A)ϕ and also
limn pn(B∗B)ϕ = |B|ϕ. Hence, since the operator F(A) is closed, we obtain
|B|ϕ ∈ D(F(A)) and |B|F(A)ϕ = F(A)|B|ϕ, which is the first relation of (v).

Next we turn to the second relation of (v). By (i) and the polar decomposition,
BF(A) = U |B|F(A) ⊆ AB = AU |B|. Let ϕ ∈ D(F(A)). Then, as shown in the
preceding paragraph, |B|ϕ ∈ D(F(A)) and |B|F(A)ϕ = F(A)|B|ϕ. Combining
these facts yields UF(A)|B|ϕ = AU |B|ϕ, that is,

UF(A)η = AUη for η ∈ |B|D(F(A)). (11.10)

Let |B| = ∫ ∞
0 λ dE(λ) be the spectral resolution of the positive self-adjoint oper-

ator |B|. Since |B|F(A) ⊆ F(A)|B| as shown above, all spectral projections and
bounded functions of |B| commute with F(A) and leave D(F(A)) invariant. We
abbreviate Pε := E([ε,+∞)) for ε > 0. Clearly, E({0}) = P and limε→+0 Pεξ =
E((0,∞))ξ = (I − P)ξ for ξ ∈ H.

Fix ϕ ∈ D(F(A)(I − P)). Then ψ := (I − P)ϕ and Pεψ are in D(F(A)). Set
Cε := ∫ ∞

ε λ−1E(λ). Since Cε is a function of |B|, we have CεPεψ ∈ D(F(A)) and
Pεψ = |B|CεPεψ ∈ |B|D(F(A)). Thus, (11.10) applies to η = Pεψ, so

UF(A)Pεψ = AU Pεψ for ε > 0. (11.11)

We have limε→+0 Pεψ = (I − P)ψ = (I − P)ϕ and

lim
ε→+0

F(A)Pεψ = lim
ε→+0

PεF(A)ψ = (I − P)F(A)ψ = F(A)(I − P)ϕ.

Hence, passing to the limit ε → +0 in (11.11) by using that the operator A is closed,
we get UF(A)(I − P)ϕ = AU (I − P)ϕ. This proves the second half of (v).

(v)→(i): Since ran |B|⊥ ker |B| = PH, we have |B| = (I − P)|B|, so by (v),

BF(A) = U |B|F(A) ⊆ UF(A)|B| = UF(A)(I − P)|B|
⊆ AU (I − P)|B| = AU |B| = AB.

This completes the proof of the equivalence of (i)–(v).
Finally, we prove the last assertion. Let ϕ ∈ D(F(A)). Then F(A)ϕ ∈ D(AB)

by (i). This implies the equality of domains D(F(A)) = D(AB) ∩ D(BF(A)).

For n ∈ Nwe define a bounded function fn by fn(λ) = λ if |λ| ≤ n and fn(λ) =
0 otherwise. Let ϕ ∈ D(AB) ∩ D(BF(A)). By (iv), we have

fn(A)Bϕ = B fn(F(A))ϕ. (11.12)
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Since lim fn(A)Bϕ = ABϕ by ϕ ∈ D(AB) and limn fn(F(A))ϕ = F(A)ϕ by ϕ ∈
D(F(A)), we pass to the limit in (11.12) and obtain ABϕ = BF(A)ϕ. �

11.3 Strong Solutions of the Relation XX∗ = F(X∗X)

In this section, we begin our study of the operator relation

XX∗ = F(X∗X) (11.13)

for a densely defined closed operator X on a Hilbert space H.
Let X = UC be the polar decomposition of X ; see Proposition A.3. Then X∗X =

C2, X∗ = CU ∗, and XX∗ = UC2U ∗, so (11.13) can be restated as

UC2U ∗ = F(C2). (11.14)

Suppose for a moment that the operator X is bounded and the function F is
continuous on R+. Then the operator F(XX∗) is also bounded. We multiply (11.14)
by U ∗ from the left. Since U ∗U is the projection on ranC , we obtain the relation

C2U ∗ = U ∗F(C2), (11.15)

which holds on thewholeHilbert spaceH. However, Eq. (11.15) alone does not imply
(11.14). (If X is the unilateral shift and F(t) = 1, then X = U , C = F(C2) = I , so
(11.15) is trivially true, but (11.14) and (11.13) do not hold.)

Further, multiplying (11.15) byU from the left and comparing with (11.14) yield
(I −UU ∗)F(C2) = 0, that is, ran F(C2) ⊆ UU ∗H, or equivalently, ker F(C2) ⊇
kerUU ∗ = kerU ∗. Conversely, from kerU ∗ ⊆ ker F(C2) and (11.15) we easily
derive Eq. (11.14) and therefore (11.13).

For general operators X we require the following rigorous meaning of (11.13).

Definition 11.7 We say that a densely defined closed operator X with polar decom-
position X = UC is a strong solution of the operator Eq. (11.13) if

U ∗F(C2) ⊆ C2U ∗ and kerU ∗ ⊆ ker F(C2). (11.16)

If the operator X is bounded and the function F is continuous on R+, then, by
the preceding discussion, X is a strong solution of (11.13) if and only if Eq. (11.13)
holds for all vectors of the Hilbert space. Another justification for Definition11.7 is
the fact that it implies relation (11.17) in Theorem 11.8.

Note that, by the theory of spectral integrals [Sch12, Corollary 4.14], the domain
D(F(C2)) is dense inH and a core for C2 = X∗X and C = |X |, hence for X .

The following theorem contains our main results about strong solutions of the
operator relation (11.13).
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Theorem 11.8 Suppose X is a densely defined closed operator, and let X = UC be
the polar decomposition of X. Then the following are equivalent:

(i) U ∗F(C2) ⊆ C2U ∗.
(ii) UC2 ⊆ F(C2)U.
(iii) EC2(M)U ∗ = U ∗EC2(F−1(M)) for any Borel subset M of R.
(iv) f (X∗X)U ∗ = U ∗ f (F(X∗X)) for all bounded Borel functions f on R.

If X is a strong solution of (11.13), then kerU ∗ = ker F(C2) and

X X∗ϕ = F(X∗X)ϕ for ϕ ∈ D(F(C2)) = D(XX∗) ∩ D(F(X∗X)). (11.17)

Proof The equivalence of (i)–(iv) is a special case of Theorem 11.6, applied with
B = U ∗, A = C2. It remains to prove the last assertions.

Since XX∗ = UC2U ∗ and F(X∗X) = F(C2), the domain equality on (11.17)
follows at once from the corresponding equality in (11.9) or directly from (i).

Let ϕ ∈ D(F(C2)). Then, by (i), U ∗ϕ ∈ D(C2) and C2U ∗ϕ = U ∗F(C2)ϕ.
HenceUC2U ∗ϕ = UU ∗F(C2)ϕ. SincekerU ∗ ⊆ ker F(C2)byassumption (11.16),
ran F(C2) ⊆ U ∗H = UU ∗H and therefore UU ∗F(C2)ϕ = F(C2)ϕ. Thus,
UC2U ∗ϕ = F(C2)ϕ, that is, XX∗ϕ = F(X∗X)ϕ, which proves (11.17).

Now let ψ ∈ ker F(C2). Then ψ ∈ EC2(F−1({0}))H. Hence EC2({0})U ∗ψ =
U ∗ψ by (iii), so that U ∗ψ ∈ kerC2 = kerC . But ranU ∗ = (kerC)⊥ by the polar
decomposition; see (A.2). Thus, U ∗ψ = 0. This proves that ker F(C2) ⊆ kerU ∗.
Since kerU ∗ ⊆ ker F(C2) by Definition 11.16, we have kerU ∗ = ker F(C2). �
Remark 11.9 The following weakening of Theorem 11.8(i) is often useful: Let D0

be a subset of D(F(C2)) such that D := LinD0 is a core for F(C2). Suppose for
ϕ ∈ D0 we have U ∗ϕ ∈ D(C2) and U ∗F(C2)ϕ = C2U ∗ϕ. Then condition (i) in
Theorem 11.8 is fulfilled. (Indeed, the relation U ∗F(C2)ϕ = C2U ∗ϕ extends by
linearity to vectors ϕ of D and then of D(F(C2)), because the operator F(C2) is
closed.) A similar weakening holds for condition (ii) in Theorem 11.8. �
Proposition 11.10 Suppose X = UC is a strong solution of (11.13). Then the phase
operator U is a power partial isometry and the projections Pk, k ∈ Z, defined by
(11.3), pairwise commute. For k ∈ Z and all Borel sets M of R, we have

Pk EC2(M) = EC2(M)Pk and PkU = U Pk+1. (11.18)

Proof In this proofwe abbreviate E := EC2 andwe use essentially Theorem11.8(iii)
and properties of the polar decomposition (Proposition A.3).

Define N := R\{0}. From spectral theory it is known that E(N ) is the projection
on ranC2 = ranC . Therefore, E(N ) = U ∗U = P1.

Set N1 = F−1(N ). By the same reason, with C2 replaced by F(C2), the pro-
jection on ran F(C2) is EF(C2)(N ) = E(F−1(N )) = E(N1). By Theorem 11.8,
kerUU ∗ = kerU ∗ = ker F(C2), so that ranUU ∗ = ran F(C2) = E(N1)H. Since
UU ∗ and E(N1) are projections with the same range, they coincide, so that
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P−1 = UU ∗ = E(N1). (11.19)

We show that there exist Borel sets Nk, k ∈ N, such that P−k = E(Nk). For k = 1
this is (11.19). If it holds for k, we set Nk+1 := N1 ∩ F−1(Nk) and derive

P−(k+1) = U P−kU
∗ = UU ∗E(F−1(Nk)) = E(N1)E(F−1(Nk)) = E(Nk+1),

which completes the induction proof.
Thus, P−k = Uk(U ∗)k is a projection for each k ∈ N. Therefore, (U ∗)k , hence

Uk , is a partial isometry. This means that U is a power partial isometry. Then, by
Proposition 11.3, the operators Pk, k ∈ Z, are pairwise commuting projections and
the second equality of (11.18) holds.

We prove the first equation of (11.18). Let k ∈ N. Then P−k = E(Nk), so P−k

commutes with E(M). To prove that Pk commutes with E(M), we proceed by
induction. For k = 1 this is true, since P1 = E(N ). Suppose that it holds for k.
From Theorem 11.8(iii), E(M)U ∗ = U ∗E(F−1(M)). Taking the adjoint we obtain
UE(M) = E(F−1(M))U . Therefore,

E(M)Pk+1 = E(M)U ∗PkU = U ∗E(F−1(M))PkU = U ∗Pk E(F−1(M))U

= U ∗PkU E(M) = Pk+1E(M),

which is the assertion for k + 1. Thus, PnE(M) = E(M)Pn for all n ∈ Z. �
We shall say that an operator on a Hilbert space is irreducible if it cannot be

written as a direct sum of two operators acting on nonzero Hilbert spaces. In our
irreducibility proofs below we will use the following simple lemma; we leave its
proof as an exercise to the reader. Note that the commutants in (ii) (by Lemma
3.16(ii)) and (iii) are von Neumann algebras.

Lemma 11.11 Let X = UC be the polar decomposition of the closed operator X
onH, and let EC denote the spectral measure of C. The following are equivalent:

(i) X is irreducible.
(ii) {T ∈ B(H) : T X ⊆ XT, T X∗ ⊆ X∗T }′ = C · I .
(iii) {U,U ∗, EC (M) : M Borel set of R}′ = C · I .
(iv) Any nonzero closed subspace of H which is invariant under U,U ∗, EC isH.

A spectral measure E is called ergodic with respect to F if for any Borel set
Δ ⊆ R such that F−1(Δ) = Δ we have E(Δ) = 0 or E(R\Δ) = 0.

Corollary 11.12 If X = UC is an irreducible strong solution of relation (11.13),
then the spectral measure EC2 is ergodic with respect to F.

Proof Suppose Δ is a Borel set of R such that F−1(Δ) = Δ. Then, by Theorem
11.8(iii), EC2(Δ)U ∗ = U ∗EC2(Δ). By taking the adjoint, UEC2(Δ) = EC2(Δ)U .
Hence the decomposition H = EC2(Δ)H ⊕ EC2(R\Δ)H reduces U and U ∗. It
obviously reduces the spectral measure of C2 and hence of C . Therefore, it reduces
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the operator X = UC . Hence, since X is irreducible, EC2(Δ) = 0 or EC2(R\Δ) = 0,
so EC2 is ergodic. �

We will see in the subsequent sections that it is useful to interpret the function
λ �→ F(λ) as a one-dimensional dynamical system. Thus, it is convenient to adopt
some notions on dynamical systems (even if F is not necessarily continuous).

For λ ∈ R we define

F◦k(λ) := F(F◦(k−1)(λ)) for k ∈ N, F◦0(λ) := λ, (11.20)

O
+(λ) := {

F◦k(λ) : k ∈ N0
}
. (11.21)

The set O+(λ) is called the positive semiorbit of λ.
A number λ ∈ R is said to be a periodic point of F if F◦n(λ) = λ for some n ∈ N.

Then the smallest n ∈ N such that F◦n(λ) = λ is called the period of λ and the set
{λ, F(λ), . . . , F◦(n−1)(λ)} is called a cycle of period n.

For a Borel subset M of R we define inductively F−1(F◦(−k)(M)) by

F◦(−k−1)(M) := F−1(F◦(−k)(M)) for k ∈ N0, F◦0(M) := M.

If F : R �→ R is bijective, we set F◦(−k−1)(λ) := F−1(F◦(−k)(λ)) for λ ∈ R and
k ∈ N0, so that F◦n(λ) is defined for all n ∈ Z. Then the orbit of λ is the set

O(λ) := {
F◦k(λ) : k ∈ Z

}
. (11.22)

The iterates F◦k play a crucial role in describing the spectrum of C2. To
explain this let X be a strong solution of (11.13). Let e ∈ D(C2) and assume that
C2e = λe, where λ ∈ R. Then e ∈ D(F(C2)) and F(C2)e = F(λ)e. Hence, by
Theorem 11.8(i), U ∗F(C2)e = F(λ)U ∗e = C2U ∗e. Proceeding by induction we
obtain

C2(U ∗)ke = F◦k(λ)(U ∗)ke, k ∈ N. (11.23)

Thus, if (U ∗)ke �= 0, then (U ∗)ke is an eigenvector of C2 with eigenvalue F◦k(λ).
This simple reasoning indicates how representations of (11.13) could look like.

11.4 Finite-Dimensional Representations

Throughout this section, we assume that F : R+ �→ R+ is a continuous map.
As noted after Definition 11.7, a bounded operator X on H is a strong solution

of (11.13) if and only if XX∗ϕ = F(X∗X)ϕ for all ϕ ∈ H. In particular, this holds
for operators acting on finite-dimensional Hilbert spaces.

Theorem 11.13 Suppose that λ ≥ 0 is a periodic point of period n of F such that
F◦ j (λ) > 0 for j = 1, . . . , n − 1. Let θ ∈ [0, 2π). Then the operator
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Xλ,θ :=

⎛
⎜⎜⎜⎝

0 F(λ)1/2 . . . 0
...

...
. . .

...

0 0 . . . F◦(n−1)(λ)1/2

eiθλ 0 . . . 0

⎞
⎟⎟⎟⎠ (11.24)

on the Hilbert space Cn is irreducible and fulfills (11.13).
Each irreducible operator X on a finite-dimensional Hilbert space H satisfying

(11.13) is unitarily equivalent to an operator Xλ,θ in (11.24).

Clearly, the operator Xλ,θ has the polar decomposition Xλ,θ = Uλ,θCλ,θ with

Uλ,θ :=

⎛
⎜⎜⎜⎝

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
cλ,θ 0 · · · 0

⎞
⎟⎟⎟⎠ , Cλ,θ :=

⎛
⎜⎜⎜⎝

λ1/2 0 · · · 0
0 F(λ)1/2 · · · 0
...

...
. . .

...

0 0 · · · F◦(n−1)(λ)1/2

⎞
⎟⎟⎟⎠ ,

where cλ,θ := eiθ if λ �= 0 and c0,θ := 0.
If λ > 0, then Eq. (11.24) gives a one-parameter family Xλ,θ, θ ∈ [0, 2π), of

inequivalent representations with unitary operatorUλ,θ. If λ = 0, then (11.24) yields
a single representation X0,0 and U0,0 is a truncated shift of index n. Note that if
F(0) = 0, then λ = 0, n = 1 gives the trivial representation X0,0 = 0 on C.

Proof of Theorem 11.13 A direct computation shows that Xλ,θ satisfies (11.13). We
prove that Xλ,θ is irreducible. Let T be an operator commuting with Uλ,θ and the
spectral projections of Cλ,θ. Then T commutes with Cλ,θ. Since λ has period n,
the diagonal entries of Cλ,θ are pairwise different. Hence T is diagonal. Since T
commutes with Uλ,θ, T = c · I with c ∈ C. By Lemma 11.11, Xλ,θ is irreducible.

Conversely, let X = UC be an irreducible operator onH such that (11.13) holds.
We denote the spectral measure of C2 by E .

Case I U is unitary.
Consider an eigenvalue t with eigenvector et of the self-adjoint operator C2. Then
C2(U ∗) j et = F◦ j (t)(U ∗) j et by (11.23). SinceU is unitary, (U ∗) j et �= 0, so (U ∗) j et
is an eigenvector with eigenvalue F◦ j (t) of C2 for j ∈ N. Since H has finite
dimension, C2 has only finitely many eigenvalues. Hence there exist an eigen-
value λ with unit eigenvector e of C2 and a number n ∈ N such that F◦n(λ) = λ.
We choose the smallest such n; then λ is a periodic point with period n. Since
U is unitary, kerC = {0} and therefore λ �= 0. The linear span H0 of eigenvec-
tors ek := (U ∗)ke, k ∈ N0, for C2 is invariant under U ∗ and C2, hence under C
as well. Since U is unitary and H0 has finite dimension, we have U ∗H0 = H0, so
UH0 = (U ∗)−1H0 = H0. Since X is irreducible andH0 is invariant underU,U ∗,C ,
it follows that H0 = H by Lemma 11.11.

The operator Un commutes with C (by F◦n(λ) = λ) and obviously with U,U ∗.
Hence, by the irreducibility of X , we have Un = eiθ I for some θ ∈ [0, 2π). Then
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it follows that Uek = ek−1 for k = 1, . . . , n − 1, Ue0 = eiθe0, {e0, . . . , en−1} is an
orthonormal basis ofH, and the operator X is given by the matrix (11.24).

Case II U is not unitary.
Then, sinceU is a partial isometry andH has finite dimension, kerU = kerC �= {0}.
Take a unit vector e ∈ kerC , and set ek := (U ∗)ke, k ∈ N0. By Proposition 11.10,
U is power partial isometry. Therefore, if n > k, using (11.5) we derive

〈en, ek〉 = 〈(U ∗)ne, (U ∗)ke〉 = 〈e,Un−k P−ke〉 = 〈e, P−k−(n−k)U
n−ke〉 = 0.

Thus, the vectors e j , j ∈ N0, are mutually orthogonal, so there is a smallest n ∈ N

such that en = 0. Then, ek = (U ∗)ke �= 0 for k = 0, . . . , n − 1. Since C2e = 0, ek
is an eigenvector of C2 with eigenvalue F◦k(0) by (11.23). Hence F◦k(0) ≥ 0 and
Cek = F◦k(0)1/2ek . Let H0 = Lin {ek : k = 0, . . . , n − 1}. Clearly, H0 is invariant
under U ∗ and C , hence under E . Further, by (11.19), Uek+1 = UU ∗(U ∗)ke =
E(N1)ek for k ∈ N. Since Ue = 0 and E(N1) leaves H0 invariant, so does U .
Therefore, H0 = H by the irreducibility of X (Lemma 11.11). By construction,
kerU ∗ = C · en−1. Hence U ∗ is isometric on (en−1)

⊥, so that ‖ek‖ = ‖U ∗ek−1‖ =
‖ek−1‖ = · · · = ‖e‖ = 1 for 0 ≤ k ≤ n − 1. Putting the preceding together we have
shown that X is of the form (11.24) with λ = 0.

Finally, we prove that 0 is a periodic point with period n. By (11.24), XX∗
and X∗X are diagonal matrices with diagonal entries F(0), . . . , F◦n−1(0), 0 and
0, F(0), . . . , F◦n−1(0), respectively. Hence F(X∗X) has the diagonal entries
F(0), . . . , F◦n(0). Since XX∗ = F(X∗X), F◦n(0) = 0. Further, F◦k(0) > 0 for
k = 0, . . . , n − 1. Indeed, F◦k(0) = 0 implies that the vectors (x0, . . . , xk, 0, . . . , 0)
form a nontrivial invariant subspace for X and X∗. This subspace is reducing. This
is a contradiction, because X is irreducible. Thus, 0 is periodic with period n. �

Theorem 11.13 allows one to apply results on periods from the theory of dynam-
ical systems to the existence of finite-dimensional irreducible representations of the
operator relation (11.13). Before we do this we introduce the Sharkovsky ordering
“≺” of the positive integers:

1 ≺ 22 ≺ 23 ≺ · · · ≺ 2n ≺ · · · ≺ 2m(2k + 1) ≺ · · · ≺ 2m7 ≺ 2m5 ≺ 2m3 ≺ · · ·
≺ 2(2k + 1) ≺ · · · ≺ 2 · 7 ≺ 2 · 5 ≺ 2 · 3 ≺ · · · ≺ (2k + 1) ≺ · · · ≺ 7 ≺ 5 ≺ 3.

Let us explain this ordering of the setN and denote byO the odd positive integers
greater than 1. Then, from the right to the left, we first take the set O in increasing
order, then 2 · O in increasing order, then 22 · O in increasing order, etc., and at the
end the powers 2n of 2 in decreasing order. Note that n ≺ m if and only if 2n ≺ 2m.

Recall that a number n ∈ N is called a period of F if F has a periodic point λ of
period n, that is, F◦n(λ) = λ and F◦k(λ) �= λ for 0 < k < n.

Then following fundamental result about periods is Sharkovsky’s theorem.

Proposition 11.14 Suppose F is a continuous map of a closed interval J into itself.
If m ∈ N is a period of F and n ≺ m, then n is also a period of F.
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Further, for any m ∈ N there exists a continuous mapping F : J �→ J such that
m is a period of F, but no n such that m ≺ n is a period of F.

Proof [Sh64, Sh65], see [BH11]. The first assertion is usually called Sharkovsky
theorem and proved in most books on dynamical systems; see, e.g., [BV13]. �

An immediate consequence of Proposition 11.14 and the Sharkovsky ordering is
the following: If 3 is a period of F , then all numbers n ∈ N are periods of F .

Combining Theorem 11.13 and Proposition 11.14, applied to J = R+, gives the
following theorem. Recall that we assumed that F : R+ �→ R+ is continuous.

Theorem 11.15 Let m ∈ N. If there exists an irreducible operator on Cm such that
(11.13) holds, then for any n ∈ N such that n ≺ m there exists an irreducible operator
on Cn satisfying (11.13).

This theorem has the following really surprising corollary.

Corollary 11.16 If there exists an irreducible operator on C
3 satisfying (11.13),

then for any n ∈ N there is an irreducible operator on C
n such that (11.13) holds.

Proof Since n ≺ 3 for all n �= 3, the assertion follows from Theorem 11.15. �
The following example illustrates that quadratic polynomials F can lead to rela-

tions with an interesting finite-dimensional representation theory.

Example 11.17 (Quadratic polynomial F(λ) = (λ − q)2, q ∈ R)
The function G(λ) = αλ(1 − λ), with α ∈ R, is a well-studied dynamical system.
In order to obtain a function which leaves R+ invariant, we use F(λ) = (λ − q)2.
(By a linear change of variables F and G can be transformed into each other.) All
results on the existence of periods used in this example can be found in texts on
dynamical systems [SKSF, HK03]. We only restate them here and follow [OS99].

We are looking for the existence of an irreducible operator X on a finite-
dimensional Hilbert space satisfying the relation

XX∗ = (X∗X − q I )2.

The existence of such an operator X depends on the value of the parameter q ∈ R.
q = − 1

4 : In this case F has the fix point 1
4 and no other cycles. This leads to the

one-dimensional representations X = 1
2e

iθ, θ ∈ [0, 2π).
− 1

4 < q < 3
4 : Then F has two fix points 2q + 1 ± 1

2

√
4q + 1 and no other

cycles. Thus we get two one-parameter families of one-dimensional representations
and there are no other finite-dimensional irreducible representations.

3
4 < q < q1 ≈ 1.4: There are cycles of all periods 2n for n ∈ N and hence irre-

ducible representations on C
2n for any n ∈ N.

q = q1 ≈ 1.4: There exist cycles of period 2n for all n ∈ N and no other cycles.
Hence for each n ∈ N there is an irreducible representation on C

2n and there is no
other irreducible finite-dimensional representation.

q > q2 ≈ 1.75: There are cycles of period 3 and hence cycles of each order
n ∈ N. Thus, for any n ∈ N there exists an irreducible representation on C

n . �
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11.5 Infinite-Dimensional Representations

For the classification of irreducible strong solutions of (11.13)we use formula (11.23)
as a model for building the operator X . The corresponding irreducible representation
operators are weighted shifts. First we briefly discuss these operators.

Suppose (λn)n∈N0 is a complex sequence. There is a closed linear operator X on
l2(N0) defined by X (ϕn) := (λn+1ϕn+1) for (ϕn) in the domain

D(X) := {
(ϕn)n∈N0 ∈ l2(N0) : (λn+1ϕn+1)n∈N0 ∈ l2(N0)

}
.

The adjoint operator X∗ acts by X∗(ϕn) = (λnϕn−1) and has the domain

D(X∗) = {
(ϕn)n∈N0 ∈ l2(N0) : (λnϕn−1)n∈N0 ∈ l2(N0)

}
,

where ϕ−1 := 0. In particular, for the base vector ek := (δnk)n∈N0 this yields

Xek = λkek−1, k ∈ N, Xe0 = 0, and X∗ek = λk+1ek+1, k ∈ N0. (11.25)

Conversely, since X and X∗ are linear and closed, from (11.25) we derive

X (ϕn)n∈N0 = X
( ∑

n
ϕnen

)
=

∑
n
ϕn Xen =

∑
n
ϕnλnen−1

=
∑

n
ϕn+1λn+1en = (λn+1ϕn+1)n∈N0

and similarly for X∗. Hence Lin {ek : k ∈ N0} is a core for X and X∗ and both opera-
tors are uniquely determinedby their actions (11.25) on thebase vectors ek . Therefore,
since 〈Xek, en〉 = λk〈ek−1, en〉 = λkδk−1,n = λn+1δk,n+1 = 〈ek, X∗en〉 for k, n ∈ N0

by (11.25), we conclude that X∗ is indeed the adjoint operator of X .
Other types of weighted shift operators are defined and treated similarly.
The type of the power partial isometry U (Proposition 11.4) plays a crucial role

in the infinite-dimensional irreducible representations. We distinguish three cases.

Case I kerU �= {0}.
Suppose that F◦k(0) ≥ 0 for all k ∈ N. We define a closed linear operator X0 and its
adjoint X∗

0 on the Hilbert space l2(N0) by their actions on the standard basis:

X0ek = F◦k(0)1/2 ek−1, X∗
0ek = F◦(k+1)(0)1/2 ek+1, k ∈ N0, (11.26)

where e−1 := 0. Let X0 = U0C0 be the polar decomposition of X0.
Note that X0e0 = 0. If F◦k(0) > 0 for all k ∈ N, then X0 is called the Fock rep-

resentation of (11.13) . This is justified by the following theorem.

Theorem 11.18 (Fock representation) The closed operator X0 defined by (11.26) is
irreducible if and only if 0 is not a period of F, or equivalently, F◦k(0) > 0 for all
k ∈ N. In this case, X0 = U0C0 is a strong solution of (11.13) and kerU0 �= {0}. Each
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irreducible strong solution X = UC of (11.13) acting on an infinite-dimensional
Hilbert space H such that kerU �= {0} is unitarily equivalent to the Fock represen-
tation operator X0.

Proof If F◦n(0) = 0 for some n ∈ N, then Lin {e j : j = 0, . . . , n} is a reducing
subspace of X0, so X0 is not irreducible.

Now suppose that F◦k(0) > 0 for k ∈ N. Let C0 be the diagonal operator with
C0ek = F◦k(0)1/2 ek, k ∈ N0, and let U0 denote the adjoint of the unilateral shift.
Then X0 = U0C0 is the polar decomposition of X0. Obviously, kerU0 �= {0}. Since
C2
0ek = F◦k(0)ek , we have F(C2

0 )ek = F◦(k+1)(0)ek and therefore U ∗
0 F(C2

0 )ek =
F◦(k+1)(0)ek+1 = C2

0U
∗
0 ek for all k ∈ N0. Further, ker U ∗

0 = {0}. Hence, since the
span of vectors ek, k ∈ N0, is a core for F(C2

0 ), it follows from Remark 11.9 that
(11.16) holds. Thus, X0 is a strong solution of (11.13).

We show that X0 is irreducible. Let T be a bounded operator which commutes
with X0 and X∗

0 . Since X0X∗
0ek = F◦(k+1)(0)ek and F◦(k+1)(0) > 0 for k ∈ N0,

ran X0X∗
0 = ran |X∗

0 | is dense. Therefore, since T commutes with X0X∗
0 , hence with|X∗

0 |, and with X∗ = U ∗
0 |X∗

0 |, it follows that T commutes with U ∗
0 . It is well known

thatU0 andU ∗
0 are irreducible, so T is a scalar multiple of I . Then, by Lemma 11.11,

X0 is irreducible.
Next we prove the last assertion. Let X = UC be as in the theorem. Set E :=

EC2 . Since kerU �= {0}, we can find a unit vector e ∈ kerU . Let H0 be the closed
span of vectors ek :=(U ∗)ke, k ∈ N0. Since kerC = kerU , we have e = E({0})e,
so E(M)e = e if 0 ∈ M and E(M)e = 0 if 0 /∈ M . Hence, by Theorem 11.8(iii),
E(M)(U ∗)ke = (U ∗)k E(F◦(−k)(M))e ∈ H0 for any k ∈ N0. From (11.19) we recall
that UU ∗ = E(N1). Therefore, Uen = UU ∗(U ∗)n−1e = E(N1)(U ∗)n−1e ∈ H0 for
n ∈ N. Obviously,Ue = 0 ∈ H0 andH0 is invariant underU ∗. Thus we have shown
thatH0 is invariant under U,U ∗, and E(·). Hence, again by Lemma 11.11, we have
H0 = H, because X is irreducible.

Now we mimic the proof of Proposition 11.4. Assume for a moment that we
would have Case II therein. Then the corresponding finite-dimensional subspace is
also invariant under E (because the spectral projections E(M) commute with Pk by
(11.18)) and hence equal to H by the irreducibility of X . This is impossible, since
H has infinite dimension. Thus Case I occurs, so U is (unitarily equivalent to) the
adjoint of the unilateral shift and ek = (U ∗)ke has norm one.

FromUe = 0 we getC2e = 0. Hence C2ek = C2(U ∗)ke = F◦k(0)ek by (11.23).
Since the operator C2 is positive and ek �= 0, we have F◦k(0) ≥ 0 and Xek =
UCek = UF◦k(0)1/2ek = F◦k(0)1/2ek−1 for k ∈ N0. This shows that X is unitar-
ily equivalent to X0. Since X is irreducible, F◦k(0) > 0 for all k ∈ N, as shown
above. Thus, X0 is indeed the Fock representation operator. �
Case II kerU ∗ �= {0}.
Suppose (λk)k∈N is a sequence such that λk = F(λk+1) ∈ R+ for k ∈ N0 and
F(λ0) = 0. We define a closed linear operator X1 on l2(N0) and its adjoint X∗

1
by

X1ek = λ
1/2
k ek+1 and X∗

1ek = λ
1/2
k−1ek−1, k ∈ N0, (11.27)
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where we set e−1 := 0. Let X1 = U1C1 be the polar decomposition of X1. If λk > 0
for all k ∈ N0, then X1 is called an anti-Fock representation of (11.13).

If F is a bijection of R, then λk = F◦(−k−1)(0) for k ∈ N0, so that

X1ek = F◦(−k−1)(0)1/2 ek+1, X∗
1ek = F◦(−k)(0)1/2 ek−1, k ∈ N0. (11.28)

Theorem 11.19 (Anti-Fock representations) The operator X1 defined by (11.27)
is irreducible if and only if λk > 0 for all k ∈ N0. In this case, X1 = U1C1 is an
irreducible strong solution of the relation (11.13) and we have kerU ∗

1 �= {0}.
Suppose F is a bijection of R. If X = UC is an irreducible strong solution of

(11.13) acting on an infinite-dimensional Hilbert space such that kerU ∗ �= {0},
then X is unitarily equivalent to the operator X1 defined by (11.28).

Proof Interchanging X,U,C2 and X∗,U ∗, F(C2) this proof is similar to the proof
of Theorem 11.18. We do not carry out the details. �
Case III kerU ∗ = {0} and kerU ∗ = {0}.
Then the phase operatorU is unitary . By the polar decomposition (Proposition A.3),
Case III holds if and only if we have ker X = {0} and ran X = H.

We begin with a simple preliminary lemma.

Lemma 11.20 Suppose B is a self-adjoint operator on a Hilbert space H such
that its spectrum consists of k distinct eigenvalues with eigenspaces H1, . . . ,Hk .
Let U be a unitary operator on H such that UH j = H j+1 for j = 1, . . . , k, where
Hk+1 := H1. If the operator U B is irreducible, then dimH j = 1 for all j .

Proof Clearly, Uj := U � H j �→ H j+1 is a unitary operator of H j on H j+1 and
U := U1 · · ·Uk is a unitary operator of H1. Assume to the contrary that we have
dimH j ≥ 2 for some j . Then dimH1 ≥ 2. Hence there is a projection T1 �= 0, I of
the Hilbert spaceH1 which commutes withU . We define Tj+1 = UjTjU

−1
j for j =

1, . . . , k − 1. Let T be the diagonal operator onH = H1 ⊕ · · · ⊕ Hk with diagonal
entries T1, . . . , Tk . By a straightforward computation we verify that T commutes
with U,U ∗, B and hence with UB and (UB)∗. Therefore, since T is a nontrivial
projection, UB is not irreducible, a contradiction. �

Suppose that F is bijective on R. Then F◦k(λ) is well defined for all k ∈ Z and
O(λ) := {F◦k(λ) : k ∈ Z} is the orbit of λ ∈ R.

Let λ0 ∈ R+ and suppose that F◦k(λ0) ≥ 0 for all k ∈ Z. Let X2 denote the closed
linear operator on l2(Z) and X∗

2 its adjoint given by

X2ek = F◦k(λ0)
1/2ek−1 and X∗

2ek = F◦(k+1)(λ0)
1/2ek+1, k ∈ Z. (11.29)

Let X2 = U2C2 be the polar decomposition of X2. Then, for k ∈ Z we obtain

C2
2ek = X∗

2X2ek = F◦k(λ0)ek, |X∗
2 |2ek = X2X

∗
2ek = F◦(k+1)(λ0)ek .
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From the first equality it follows that the set σp(C2
2 ) of eigenvalues of the self-adjoint

operator C2
2 is just the orbit O(λ0). By Proposition A.3, U2 is unitary if and only if

kerC2 = ker |X∗
2 | = {0}. Therefore, U2 is unitary if and only if F◦k(λ0) > 0 for all

k ∈ Z. Clearly, in this case, U2ek = ek−1 for k ∈ Z.

Theorem 11.21 Suppose F is abijectionof R. Letλ0 ∈ R+ besuch that F◦k(λ0) > 0
for k ∈ Z. Then the operator X2 = U2C2 on l2(Z) given by (11.29) is a strong solu-
tion of (11.13) such that U2 is unitary and σp(C2

2 ) = O(λ0). The operator X2 is
irreducible if and only if λ0 is not a periodic point of F, that is,

F◦ j (λ0) �= F◦k(λ0) for j �= k, j, k ∈ Z. (11.30)

Conversely, if X = UC is an irreducible strong solution of (11.13) on an infinite-
dimensional Hilbert space such that U is unitary and C2 has at least one eigenvalue,
then X is unitarily equivalent to an operator X2 defined by (11.29).

Proof Clearly, U ∗
2 F(C2

2 )ek = F◦(k+1)(λ0)ek+1 = C2
2U

∗
2 ek for k ∈ Z and kerU ∗

2 =
{0}. Therefore, by Remark 11.9, (11.16) holds, so X0 is a strong solution of (11.13).
Next we prove the assertion about the irreducibility.

First suppose (11.30) holds. Let P be the projection on a reducing subspace of
X2. Then P commutes with X2 and X∗

2 , hence withC
2
2 = X∗

2X2. From this we obtain
C2
2 Pek = PC2

2ek = F◦k(λ0)Pek . Combined with (11.30) we conclude that for each
k ∈ Z there exists a number αk ∈ C such that Pek = αkek . Then

X2(Pek − αk−1ek) = (P − αk−1)X2ek = (P − αk−1)F
◦k(λ0)ek−1 = 0.

Therefore, sinceU2 is unitary and hence ker X2 = {0}, we get Pek − αk−1ek = 0, so
that Pek = αkek = αk−1ek for k ∈ Z. Hence αk is constant, say αk = α for k ∈ Z.
Then P = αI , so either P = 0 or P = I . Hence X2 is irreducible.

To prove the reverse direction we assume the contrary. Then F◦k(λ0) = F◦n(λ0)

for some k > n. Upon replacing λ0 by F◦n(λ0) we can assume that n = 0. There
is a smallest k ∈ N such that F◦k(λ0) = λ0. Since X2 is irreducible, Lemma 11.20,
applied with B := C2

2 , implies that l2(Z) has finite dimension, a contradiction.
Finally, we prove the last assertion. Let X = UC be as stated in the theorem. Then

C2 has an eigenvalue, so there exist a λ0 ∈ R+ and a unit vector e such that C2
2e =

λ0e. From (11.23) we obtain C2U−ke = F◦k(λ0)U−ke for k ∈ N. Theorem 11.8(ii)
gives UC2e = λUe = F(C2)Ue. Then, by induction we derive U jC2e = λU je =
F◦ j (C2)U je for j ∈ N. Hence U je is an eigenvector of F◦ j (C2) with eigenvalue
λ, so it is an eigenvector of F◦(− j)(F◦ j (C2)) = C2 with eigenvalue F◦(− j)(λ0) for
j ∈ N. Set ek := U−ke for k ∈ Z. Since U is unitary, ‖ek‖ = 1. Then, Uek = ek−1,
and by the preceding, C2ek = F◦k(λ0)ek for all k ∈ Z. Hence F◦k(λ0) ≥ 0, Cek =
F◦k(λ0)

1/2ek , and Xek = UCek = F◦k(λ0)
1/2ek−1. Clearly, the closed span H0 of

vectors ek, k ∈ Z, is invariant under U,U ∗, EC . Therefore, since X is irreducible,
Lemma 11.11 yields H0 = H.
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Next we note that (11.30) holds. Indeed, if (11.30) would fail, then, by arguing as
in the paragraph before last, C2 has a finite spectrum and Lemma 11.20 implies that
H has finite dimension. This contradicts the assumption.

For k �= n, Uke and Une are eigenvectors of C2 with different eigenvalues by
condition (11.30), so thatUke⊥Une. Therefore, {ek : k ∈ Z} is an orthonormal basis
ofH. SinceU is unitary, F◦k(λ0) > 0 for k ∈ Z. Putting all things together, we have
shown that X is unitarily equivalent to an operator X2. �

Now we suppose that X = UC is an irreducible strong solution of (11.13) acting
on an infinite-dimensional Hilbert space. We summarize Theorems 11.18, 11.19,
11.21 and the outcomes in all three cases.

Case I kerU �= {0}.
Then we have a unique irreducible representation, called the Fock representation: U
is the adjoint of the unilateral shift on l2(N0), hence kerU ∗ = {0}, and C acts as a
diagonal operator by Cek = λ

1/2
k ek , so Xek = λ

1/2
k ek−1, for k ∈ N0. The sequence

(λk)k∈N0 is defined inductively by λ0 = 0,λk+1 = F(λk) and λk+1 > 0 for k ∈ N0.

Thus, λk = F◦k(0) for k ∈ N0. The set σp(C2) of eigenvalues of C2 is the positive
semiorbit O+(0).

Case II kerU ∗ �= {0}.
Thenwe have a class of irreducible representations, called anti-Fock representations:
U is the unilateral shift on l2(N0), hence kerU = {0}, and the operators C and X
act by Cek = λ

1/2
k ek and Xek = λ

1/2
k ek+1, k ∈ N0. The sequence (λk)k∈N0 satisfies

λk = F(λk+1) > 0 for k ∈ N0 and F(λ0) = 0.

Case III kerU = kerU ∗ = {0}, that is, U is unitary.
Suppose F : R �→ R is a bijection. There are infinite-dimensional irreducible repre-
sentations corresponding to numbers λ0 ∈ R+ such that λk := F◦k(λ0) > 0 for all
k ∈ Z and condition (11.30) is satisfied:U is the adjoint of the bilateral shift on l2(Z)

and Cek = λ
1/2
k ek , Xek = λ

1/2
k ek−1 for k ∈ Z. The set σp(C2) of eigenvalues of C2

is the orbit O(λ0). Condition (11.30) means that the orbit has no periodic point.
One easily verifies that if λ0,λ

′
0 ∈ R+ belong to the same orbit, the corresponding

representations are unitarily equivalent.
It should be emphasized that it may happen that there is no infinite-dimensional

irreducible representation for some of the Cases I–III. For the relation (11.31) in
Sect. 11.6 only Case III occurs, while for the relation (11.41) in Sect. 11.7 we have
Cases I and III. An example for Case II is given in Exercise 11.

As we have seen, the nonunitary phase operators of irreducible strong solutions
of (11.13) are precisely the three nonunitary irreducible power partial isometries
from Proposition 11.4. This is not accidental as shown in [OS99, Theorem 19, p.
98]. The case of unitary phase operators can be very complicated. It is possible that
the corresponding dynamical system has no measurable section and that nontype I
representations occur; see, e.g., [VS94, Section3.3].
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11.6 The Hermitian Quantum Plane

In this section, q is a positive real number. Our aim is to study the operator relation

XX∗ = qX∗X. (11.31)

This is one of the simplest relations (11.13) with F(λ) = qλ, and the theory from
Sect. 11.3 can be applied.

Definition 11.22 A densely defined closed operator X on a Hilbert space is called
q-normal if D(XX∗) = D(X∗X) and XX∗ϕ = qX∗Xϕ for ϕ ∈ D(XX∗).

Clearly, a q-normal operator with q = 1 is normal.
The next proposition collects various characterizations of q-normal operators. It

shows that q-normal operators are precisely the strong solutions of relation (11.31).

Proposition 11.23 Let X = UC be the polar decomposition of a densely defined
closed operator X and EC the spectral measure of C. The following are equivalent:

(i) X is q-normal.
(ii) UC2U ∗ = qC2.

(iii) UCU ∗ = q1/2C.

(iv) X is a strong solution of the relation (11.31) according to Definition 11.7.

If one of these statements holds, then the closed linear subspace

H0 := kerU = kerU ∗ = kerC = ker X = ker X∗ (11.32)

is reducing for the operators U,U ∗,C, X, X∗ and U is unitary on H � H0.
If U is unitary on H, then each of these statements is also equivalent to

(v) UEC(M)U ∗ = EC(q−1/2M) for each Borel set M of R.

Proof (i)↔(ii) follows from the relations X∗X = C2 and XX∗ = UC2U ∗.
By the formulas (A.2) and (A.3) for the polar decomposition (Proposition A.3),

we have H0 := kerU = kerC = ker X and ker X∗ = kerU ∗. Therefore, to prove
(11.32) it suffices to verify that H0 = kerU ∗. First we show that each of the condi-
tions (ii)–(iv) implies H0 = kerU ∗.

First assume (ii). Then, for f ∈ D(C2), we have U ∗ f ∈ D(C2) ⊆ D(C) and

q‖C f ‖2 = q〈C2 f, f 〉 = 〈UC2U ∗ f, f 〉 = 〈CU ∗ f,CU ∗ f 〉 = ‖CU ∗ f ‖2.
(11.33)

Hence kerU ∗ ⊆ kerC = H0. Conversely, if f ∈ kerC , it follows from (11.33) that
U ∗ f ∈ kerC = kerU , so UU ∗ f = 0 and hence U ∗ f = 0. Thus, kerU ∗ = H0.

Since kerC = kerC2, the same reasoning, with C2 replaced by C , is valid if we
assume (iii) instead of (ii). If (iv) holds, then kerU ∗ = ker F(C2) = ker (qC)2 by
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Theorem 11.8 and hence kerU ∗ = H0, because kerC = ker(qC2). Thus, in all three
Cases (ii)–(iv), the proof of (11.32) is complete.

By (11.32), H0 is reducing for U,U ∗,C, X and these operators are zero onH0.
Hence the equivalence of (ii)–(iv) holds trivially on H0.

On the subspace H � H0, U andU ∗ have trivial kernels, soU is unitary. Thus it
remains to prove the equivalence of (ii)–(v) in the case when U is unitary.

First we note that for unitary U it follows from Theorem 11.8 that (iv) is equiva-
lent to EC2(M)U ∗ = U ∗EC2(q−1M) and so to UEC2(M)U ∗ = EC2(q−1M). From
operator theory we know that square roots and spectral projections are preserved
under unitary equivalence. HenceUC2U ∗ = qC2 is equivalent to UCU ∗ = q1/2C ,
to UEC2U ∗ = EqC2 , and to UECU ∗ = Eq1/2C . Since EqC2(M) = EC2(q−1M) and
Eq1/2C(M) = EC(q−1/2M) for all Borel sets M , this gives the equivalence of condi-
tions (ii)–(v) in the unitary case. �

From now on in this section we assume that q �= 1. Next we construct a basic
example of a q-normal operator. Let us abbreviate

Δq := [1, q1/2) if q > 1 and Δq := [q1/2, 1) if q < 1. (11.34)

Suppose that μ is a Radon measure on R+ = [0,+∞) such that

μ(M) = μ(q1/2M) for all Borel subsets M ⊆ R+. (11.35)

Since (0,+∞) = ∪k∈Zqk/2Δq , such a measure μ is uniquely defined by its restric-
tions toΔq and {0}.Moreover, given aRadonmeasureμ0 onΔq and a number c0 ≥ 0,
there is a uniqueRadonmeasureμ onR+ satisfying (11.35) such thatμ(M) = μ0(M)

for all Borel sets M ⊆ Δq and μ({0}) = c0.
Now we define an operator Xμ on the Hilbert space H := L2(R+;μ) by

(Xμϕ)(t) := q1/2tϕ(q1/2t), D(Xμ) = {ϕ(t) ∈ H : tϕ(t) ∈ H}. (11.36)

Set H0 = { f ∈ H : f = 0, μ-a.e. on (0,+∞)}. Obviously, μ({0}) = 0 if and only
if H0 = {0}.
Proposition 11.24 Suppose q �= 1. The operator Xμ defined by (14.43) is q-normal
with ker Xμ = H0, and its adjoint operator acts by

(X∗
μϕ)(t) = tϕ(q−1/2t) for ϕ ∈ D(X∗

μ) = D(Xμ).

Proof We define operators Uμ,Cμ on H by

(Cμψ)(t) := tψ(t), (Uμϕ)(t) :=
{

ϕ(q1/2t) for t �= 0
0 for t = 0

}
, (11.37)

where ϕ ∈ H,ψ ∈ D(Cμ) := D(Xμ). Using (11.35) we verify that Uμ is a partial
isometry on H. Further, Xμ = UμCμ, kerCμ = kerUμ = H0, and Cμ is a positive
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self-adjoint operator. It follows that Xμ = UμCμ is the polar decomposition of Xμ.

Since Uμ is bounded, X∗
μ = CμU ∗

μ . This implies that X∗
μ has the form stated above.

Further, it is easily checked that UC2
μU

∗ = qC2
μ; that is, Xμ is q-normal. �

Let μi , i ∈ I, be a family of Radon measures on R+ satisfying (11.35). Since
the operators Xμi are q-normal by Proposition 11.24, so is their orthogonal direct
sum. It can be shown [CSS14, Theorem 1] that each q-normal operator is unitarily
equivalent to a direct sum of such operators Xμi .

For irreducible q-normal operators there is the following description.

Proposition 11.25 Suppose q �= 1. A densely defined closed operator X onH is an
irreducible q-normal operator if and only if either X = 0 on dimH = 1 or there
exist a λ ∈ Δq and an orthonormal basis {ek : k ∈ Z} of H such that

Xek = λqk/2ek−1, X∗ek = λq(k+1)/2ek+1, k ∈ Z. (11.38)

If λ,λ′ ∈ Δq and λ �= λ′, the corresponding operators are not unitarily equivalent.

Proof Obviously, X = 0 is q-normal. One easily verifies that the operator X in
(11.38) is q-normal and irreducible. Since σp(C) = {λqk/2 : k ∈ Z}, it follows that
the operators in (11.38) for different λ,λ′ ∈ Δq are not unitarily equivalent.

Conversely, suppose X = UC is an irreducible q-normal operator on H. Then
the spectral measure EC2 is ergodic with respect to F by Corollary 11.12 and hence
supported on an orbit. The dynamical system F(λ) = qλ on R+ has precisely the
following orbits: O(0) = {0} and O(λ2) = {F◦k(λ) = qkλ2 : k ∈ Z} for λ ∈ Δq .
Since kerC is reducing by Proposition 11.23 and X is irreducible,O(0) = {0} yields
X = 0 and dimH = 1.

Now suppose λ ∈ Δq . Since EC2 is supported onO(λ2), EC2({λ2}) �= 0, so λ2 is
an eigenvalue of C2. Hence there is a unit vector e0 ∈ H such that C2e0 = λ2e0, so
Ce0 = λe0. Since kerC = {0},U is unitary by (11.32). Set ek := (U ∗)ke0 for k ∈ Z.
Since U is unitary, Proposition 11.23(v) implies that Cek = λqk/2ek . Hence ek⊥en
if k �= n. Moreover, Uek = ek−1. Thus, the closed span H0 of vectors ek, k ∈ Z, is
invariant under U,U ∗, and EC . Therefore, H0 = H by Lemma 11.11, because X
is irreducible. Then {ek : k ∈ Z} is an orthonormal basis of H, and we have Xek =
UCek = λqk/2ek−1 for k ∈ Z. Hence X is of the form (11.38) and so is X∗. (Note
that the preceding mimics the proof of Theorem 11.21 for F(λ) = qλ and (11.29)
gives (11.38) in this special case.) �
Proposition 11.26 Let X = UC be a q-normal operator on a Hilbert space H.
Then D(X∗m Xn) = D(Cm+n) for m, n ∈ N0. The domain

D∞(X) := ⋂
n,m∈N0

D(X∗m Xn) = ⋂
k∈N0

D(Ck) (11.39)

is dense inH and an invariant core for all operators X∗m Xn, m, n ∈ N0.
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Proof By Proposition 11.23 we can assume that U is unitary. Then, we conclude
from Proposition 11.23(iii) that UC = q1/2CU and U ∗C = q−1/2CU ∗, so

X∗m Xn = (CU ∗)m(UC)n = q
m(m+1)

4 − n(n−1)
4 U ∗mCmUnCn

= q(m2+m−n2+n−2mn)/4Un−mCm+n . (11.40)

SinceUn−m is unitary, (11.40) impliesD(X∗m Xn) = D(Cm+n) and so (11.39). From
(11.31) it follows at once that D∞(X) is invariant under X and X∗.

LetD0 := ∪n∈NEC([0, n])H. From the spectral theorywe easily derive that D0 ⊆
∩k∈N0D(Ck) and thatD0 is a core for each power Ck . By (11.40),D0, henceD∞(X),
is a core for all operators X∗m Xn as well. �

Let A = C〈x, x+|xx+ = qx+x〉 be the unital ∗-algebra with a single generator
x and defining relation xx+ = qx+x . In quantum group theory, A is considered as
the coordinate algebra of the Hermitian quantum plane. From Proposition 11.26 it
follows that each q-normal operator X gives rise to a unique ∗-representation π of
A on the domain D(π) := D∞(X) defined by π(x) := X�D∞(X).

11.7 The q-Oscillator Algebra

In this section, q is a fixed positive number and we treat the operator relation

XX∗ = qX∗X + I. (11.41)

This is relation (11.13) for the function F(λ) := qλ + 1. Note that F is a bijection
of R. The special case q = 1 was studied in detail in Sect. 8.2.

In terms of the polar decomposition X = UC relation (11.41) reads as

UC2U ∗ = qC2 + I. (11.42)

The following theorem collects a number of slight variations and sharpenings of
Theorem 11.8 in the special case F(λ) = qλ + 1.

Theorem 11.27 Let X = UC be the polar decomposition of a densely defined closed
operator X on a Hilbert space. Then the following statements are equivalent:

(i) X is a strong solution of X X∗ = qX∗X + I according to Definition 11.7.
(ii) D(XX∗) = D(X∗X) and X X∗ϕ = qX∗Xϕ + ϕ for ϕ ∈ D(XX∗).
(iii) D(UC2U ∗) = D(C2) and UC2U ∗ϕ = qC2ϕ + ϕ for ϕ ∈ D(C2).
(iv) kerU ∗ = {0} and U ∗(qC2 + I ) ⊆ C2U ∗.
(v) kerU ∗ = {0} and UC2 ⊆ (qC2 + I )U.
(vi) kerU ∗ = {0} and EC2(M)U ∗ = U ∗EC2(q−1(M−1)) for all Borel sets M.
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If one of these conditions holds, we have UU ∗ = I and ker X∗ = {0}. Moreover, if
q �= 1 and we set B := (q − 1)C2 + I , then (v) is equivalent to

(vii) kerU ∗ = {0} and U B ⊆ qBU.

Proof It is clear that ker F(C2) = ker(qC2 + I ) = {0}. Hence the condition
kerU ∗ ⊆ ker F(C2) in Definition 11.7 is equivalent to kerU ∗ = {0} and
Theorem 11.8 yields the equivalence of (i), (iv), (v), (vi). Further, since X∗X = C2

and XX∗ = UC2U ∗, (ii) and (iii) are equivalent.

(iii)→(iv): Letϕ ∈ kerU ∗. Then, obviously,ϕ ∈ D(UC2U ∗), soϕ ∈ D(C2) and
0 = UC2U ∗ϕ = qC2ϕ + ϕ by (iii). Hence 0 = q〈Cϕ,Cϕ〉 + ‖ϕ‖2 which implies
ϕ = 0. Thus, kerU ∗ = {0}.

Now let ϕ ∈ D(qC2 + I ). Then, ϕ ∈ D(C2). Hence qC2ϕ + ϕ = UC2U ∗ϕ by
(iii). Applying U ∗ yields U ∗(qC2 + I )ϕ = U ∗UC2U ∗ϕ. Since U ∗U is the pro-
jection on ranC by (A.2), we have U ∗UCψ = Cψ for ψ ∈ D(C). Therefore,
U ∗(qC2 + I )ϕ = C2U ∗ϕ. This proves that U ∗(qC2 + I ) ⊆ C2U ∗.

(iv)→(iii): Suppose ϕ ∈ D(C2) = D(qC2 + I ). Then, it follows from (iv) that
U ∗(qC2 + I )ϕ = C2U ∗ϕ and hence UU ∗(qC2 + I )ϕ = UC2U ∗ϕ. Further, since
kerU ∗ = {0} by (iv) and U is a partial isometry, UU ∗ = I . Therefore, (qC2 +
I )ϕ = UC2U ∗ϕ. By the preceding we have shown that qC2 + I ⊆ UC2U ∗. Since
the symmetric operatorUC2U ∗ is an extension of the self-adjoint operator qC2 + I ,
we conclude that qC2 + I = UC2U ∗, which is condition (iii).

This completes the proof of the equivalence of (i)–(vi). If kerU ∗ = {0}, then the
partial isometry U satisfies UU ∗ = I and ker X∗ = kerU ∗ = {0}.

A straightforward computation shows that (q − 1)UC2 ⊆ (q − 1)(qC2 + I )U is
equivalent to UB ⊆ qBU . Thus, if q �= 1, then (v) and (vii) are equivalent. �

From now on assume that q �= 1. Since F(λ) = qλ + 1, F−1(λ) = (λ − 1)q−1.
A simple induction argument shows that

F◦n(λ) = λqn + (1 − qn)(1 − q)−1, n ∈ Z, λ ∈ R. (11.43)

Obviously, the dynamical system F on R has a fix point λ0 = (1 − q)−1. For λ �=
(1 − q)−1 we easily derive from (11.43) that F◦k(λ) �= F◦n(λ) for k �= n; that is, λ
is not a periodic point of F .

The next theorem describes all irreducible strong solutions of the relation (11.41).

Theorem 11.28 Suppose that q > 0, q �= 1. An irreducible densely defined closed
operator X is a strong solution of (11.41) if and only if, up to unitary equivalence,
X is one of the following operators:

(i) Fock representation XF for any q > 0:

XFek =
√

1− qk

1−q ek−1, k ∈ N0, on H = l2(N0), where e−1 := 0.
(ii) Non-Fock representation Xγ for q < 1:

Xγek =
√

1+qkγ
1−q ek−1, k ∈ Z, on H = l2(Z), where γ ∈ [q, 1).
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(iii) Degenerate representation for q < 1:
Xθ = eiθ(1 − q)−1/2 on H = C, where θ ∈ [0, 2π).

Proof By straightforward computations we verify that all operators X stated above
satisfy condition (ii) of Theorem 11.27 and are irreducible.

Now let X be an irreducible operator satisfying the conditions in Theorem 11.27.
First suppose that the operator U is unitary. Then, since UC2U ∗ = qC2 + 1

by Theorem 11.27(iii) and the spectrum is invariant under unitary transformations,
σ(C2) is invariant under F and hence under all mappings F◦n , n ∈ Z.

If σ(C2) consists of one point λ0, this is the fix point λ0 = (1 − q)−1 ∈ σ(C2).
Hence q < 1 and C = (1 − q)−1/2 I . Then U and C commute, so dimH = 1, and
X is as in (iii). (This is the case of a cycle of period n = 1 in Theorem 11.13.)

Assume that σ(C2) is not a singleton. Then there is a λ �= (1 − q)−1 in σ(C2).
If we would have q > 1, then (11.43) yields limn→∞ F◦(−n)(λ) = (1 − q)−1 < 0.
Since F◦(−n)(λ) ∈ σ(C2), this is a contradiction. Therefore, q < 1.

By (11.43), F◦n(λ) = qn(λ − (1 − q)−1) + (1 − q)−1. If λ < (1 − q)−1, then
limn→∞ F◦(−n)(λ) = −∞, which is a contradiction. Thus λ > (1 − q)−1 and there-
fore limn→∞ F◦(−n)(λ) = +∞, so σ(C2) is unbounded. Since σ(C2) is also closed,
there is a smallest λ0 ∈ σ(C2) such that λ0 ≥ (1 + q)(1 − q)−1. We verify that
λ0 < 2(1 − q)−1. Assume to the contrary that λ0 ≥ 2(1 − q)−1. Then we derive
(λ0q + 1)(1 − q) ≥ 1 + q, so F(λ0) ≥ (1 + q)(1 − q)−1. But, by λ0 > (1 − q)−1,
we have F(λ0) < λ0 and F(λ0) ∈ σ(C2). This contradicts the choice of λ0 and
proves our claim.

Consider the function g(λ) = (1 + λ)(1 − q)−1. As shown in the preceding para-
graph, (1 + q)(1 − q)−1 ≤ λ0 < 2(1 − q)−1. Hence there exists a unique number
γ ∈ [q, 1) such that λ0 = g(γ). Further,

F(g(λ)) = (1 + λ)(1 − q)−1q + 1 = (1 + λq)(1 − q)−1 = g(λq).

Hence F◦n(g(λ)) = g(qnλ) for n ∈ Z and λ ∈ R, so since λ0 = g(γ) ∈ σ(C2),

λn := F◦n(λ0) = F◦n(g(γ)) = g(qnγ) = (1 + qnγ)(1 − q)−1 ∈ σ(C2).

Therefore, λ1/2
n ∈ σ(C) for n ∈ Z.

Because X is irreducible, the spectral measure EC2 is ergodic (Corollary 11.12)
and hence supported on the orbit O(λ0) = {λn : n ∈ Z}. Since this orbit is discrete,
its points are eigenvalues of C2. We choose a unit vector e0 such that C2e0 = λ0e0.
Recall that UC2 ⊆ F(C2)U and U ∗F(C2) ⊆ C2U ∗ by Theorem 11.27. The first
relation implies UF−1(C2) ⊆ C2U . From this and the second relation we derive by
induction that U ∗n F◦n(C2) ⊆ C2U ∗n for all n ∈ Z. Hence

U ∗n F◦n(C2)e0 = U ∗n F◦n(λ0)e0 = λnU
∗ne0 = C2U ∗ne0,

so C2en = λnen for en := U ∗ne0, n ∈ Z. Then Uen = en−1, because U is unitary,
and Cen = λ

1/2
n en . From λk �= λn for k �= n we obtain ek⊥en . The closed span H0
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of vectors en, n ∈ Z, is invariant under U,U ∗, EC . Hence, since X is irreducible,
we haveH0 = H again by Lemma 11.11. Thus {en : n ∈ Z} is an orthonormal basis
of H. Now Xek = UCen = λ

1/2
n en−1 for n ∈ Z, so X is unitarily equivalent to the

operator Xγ in (ii). (Except for the explicit formula for F◦n(λ0) this is just a special
case of Theorem 11.21.)

Now supposeU is not unitary. Then ker U �= {0}, since ker U ∗ = {0} byTheorem
11.27. Therefore, it follows from Theorem 11.18 that X is unitarily equivalent to
the Fock representation (11.26). Since F◦k(0) = (1 − qk)(1 − q)−1 by (11.43), X is
unitarily equivalent to the Fock operator XF in (i). �

Theorem 11.28 shows that the representation theory of the operator relation
(11.41) depends essentially on the values of the parameter q > 0.

Case q < 1: The Fock operator XF is bounded with norm ‖XF‖ = (1 − q)−1/2,
and all operators Xγ, γ ∈ [q, 1), are unbounded. It can be shown [BK91] that the
symmetric operator Xγ + (Xγ)

∗ is not self-adjoint and has deficiency indices (1, 1).
Case q > 1: Then (11.41) has no bounded representation. The Fock representation

XF is unbounded, and it is the only irreducible strong solution of (11.41).
It is instructive to look at these representations from the perspective of the opera-

tor B = (q − 1)C2 + I . By (11.41) we have B = XX∗ − X∗X . The corresponding
operators BF , Bγ , Bθ for XF , Xγ , Xθ, respectively, are self-adjoint and act by

BFe j = q j e j , j ∈ N0, Bγek = −qkγek, k ∈ Z, and Bθ = 0.

In particular, BF ≥ 0, ker BF = {0}, and Bγ ≤ 0, ker Bγ = {0}.
In the quantum group literature, the q-oscillator relation appears often in the form

YY ∗ − q2Y ∗Y = (1 − q2)I. (11.44)

For instance, the generator a of the coordinate algebra of the quantum group SUq(2)
satisfies (11.44); see, e.g., [KS97, p. 102, formula (22)]. In fact, both operator rela-
tions (11.44) and (11.41) are equivalent; see Exercise 10.

11.8 The Real Quantum Plane

Throughout this section, q is a complex number of modulus one such that q2 �= 1.
Our aim is to study the operator relation

AB = qBA (11.45)

for self-adjoint operators A and B on a Hilbert space H.
The relation (11.45) is of the form (11.7) with F(λ) = qλ, But, since q is not

real, F does not map R into itself, so the method of Sect. 11.2 does not apply here.
Nevertheless we will develop some “good” representations of relation (11.45).
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Recall that P = −i d
dx and Q = x are self-adjoint operators on the Hilbert space

L2(R). Therefore, by the functional calculus, eαQ and eβP are positive self-adjoint
operators for any α,β ∈ R. In our construction of representations of (11.45) the
operator e−βP plays a crucial role. The following lemma is based on the classical
Paley–Wiener theorem and describes the operator e−βP for β > 0.

Lemma 11.29 (i) Suppose that f (z) is a holomorphic function on the strip Iβ :=
{z ∈ C : 0 < Imz < β} such that

sup
0<y<β

∫ +∞

−∞
| f (x + iy)|2 dx < ∞. (11.46)

Set fy(x) := f (x + iy) for 0 < y < β. Then the limits f0 := limy↓0 fy and
fβ := limy↑β fy exist in L2(R) and we have f0 ∈ D(e−βP) and e−βP f0 = fβ .

(ii) For each function f0 ∈ D(e−βP) there exists a unique function f as in (i) such
that f0 := limy↓0 fy in L2(R) and e−βP f0 = fβ .

Proof Recall that the Fourier transform (Fϕ)(x) = (2π)−1/2
∫
R
e−ixtϕ(t)dt is a uni-

tary operator on L2(R) such that FQF−1 = −P . Hence Fϕ(Q)F−1 = ϕ(−P) for
any Borel function ϕ on R. For notational simplicity we set β = 2.

(i): By the assumptions, f1(x) := f (x + i) satisfies the assumptions of the Paley–
Wiener theorem [Kz68, p. 174].HenceF−1 f1 ∈ D(e|Q|) = D(eQ) ∩ D(e−Q)by
this theorem. From Fe±QF−1 = e∓P we obtain f1 ∈ D(e−P) ∩ D(eP). Setting
g = e−P f1 and f = eP f1, we have e−2P f = g. Since F−1 f1 ∈ D(e|Q|),

(2π)−1/2
∫

e−it z(F−1 f1)(t) dt = (F(eyQF−1 f1))(z), z = x + iy,

and f (z + i) = fy+1(x) are holomorphic functions for |Im z| < 1. For y = 0,
both functions are equal to f1.Hence they coincide on the strip |Im z| < 1.There-
fore, fy+1 = FeyQF−1 f1 = e−yP f1 for |y| < 1, that is, fy = Fe(y−1)QF−1 f1
for y ∈ (0, 2). By definition, f = eP f1 = Fe−QF−1 f1. Then

‖ f − fy‖ = ‖Fe−QF−1 f1 − Fe(y−1)QF−1 f1‖ = ‖(e−Q − e(y−1)Q)F−1 f1‖.

Now we pass to the limit y ↓ 0. Since F−1 f1 ∈ D(e|Q|), Lebesgue’s dominated
convergence theorem applies and yields f − fy → 0. Similarly, g − fy → 0 as
y ↑ 2. Thus, f0 = f and f2 = g = e−2P f , so that e−2P f0 = f2.

(ii): Since f0 ∈ D(e−2P), we have f1 := eP f0 ∈ D(eP) ∩ D(e−P) and therefore
F−1 f1 ∈ D(e|Q|). Then the assertion follows from the converse direction of
the Paley–Wiener theorem [Kz68]. �

If f is as in Lemma 11.29(i), we shall write simply f (x) for f0(x) and f (x + iβ)

for fβ(x). Then Lemma 11.29 says that the operator e−βP acts by
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(e−βP f )(x) = f (x + iβ) for f ∈ D(e−βP). (11.47)

The case β < 0 is treated in a similar manner, and (11.47) remains valid in this case.
For β = 0 it is trivial. Hence formula (11.47) holds for all real numbers β.

Corollary 11.30 Suppose α,β ∈ R. We define self-adjoint operators A := eαQ and
B := e−βP on the Hilbert space L2(R). For f ∈ D(AB) ∩ D(BA), we have

AB f = e−iαβBA f. (11.48)

Proof We apply formula (11.47) twice, first to eαx f and then to f , and obtain

e−iαβ(BA f )(x) = e−iαβB(eαx f ) = e−iαβeα(x+iβ) f (x + iβ) = (AB f )(x). �
Let A = eαQ and B = e−βP be as in Corollary 11.30. Then the linear space

D0 = Lin {e−εx2+γx : ε > 0, γ ∈ C} (11.49)

is contained in D(AB) ∩ D(BA). It is invariant under A, B and under the Fourier
transform and its inverse. It can be also shown that D0 is a core for A and B.

Note that if αβ = 2πk for some k ∈ Z, then AB f = BA f for f ∈ D0 by (11.48).
That is, the self-adjoint operators A and B commute pointwise on the common
invariant core D0 for A and B. But they do not commute strongly (because their
functions log A = αQ and log B = βP do not commute strongly)! In particular, for
any α ∈ R,α �= 0, the operators A := eαQ and B := eα−12πP form another couple
of Nelson type, as constructed in Example 11.5.

Next we turn to representations of the relation (11.45). If A = 0 and B is arbitrary
self-adjoint or if A is arbitrary self-adjoint and B = 0, then (11.45) holds trivially.
We call such representations trivial and omit them in the following discussion.

Now we use Corollary 11.30 to construct representations of the operator relation
(11.45) such that ker A = ker B = {0}. First we fix an argument of the number q,
q2 �= 1, of modulus one and define real numbers θ0, θ1 by

q = e−iθ0 , with 0 < |θ0| < π, (11.50)

θ1 := θ0 − π if θ0 > 0, θ1 := θ0 + π if θ0 < 0. (11.51)

Then −q = e−iθ1 and 0 < |θ1| < π. Further, we choose α,β,α1,β1 ∈ R such that
αβ = θ0 and α1β1 = θ1. Let K be an auxiliary Hilbert space.

Let u and v be commuting self-adjoint unitaries on K. We define self-adjoint
operators A, B on the Hilbert space K ⊗ L2(R) by

A = u ⊗ eαQ, B = v ⊗ e−βP , (11.52)

and on the Hilbert space (K ⊕ K) ⊗ L2(R) by the operator matrices
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A =
(
I ⊗ eα1Q 0

0 −I ⊗ eα1Q

)
, B =

(
0 I ⊗ e−β1P

I ⊗ e−β1P 0

)
. (11.53)

Let A := C〈a, b|a = a+, b = b+, ab = qba〉 be the unital ∗-algebra with hermi-
tian generators a, b and defining relation ab = qba. In quantum group theory, this
∗-algebra is the coordinate algebra of the real quantum plane. The relation ab = qba
appears also in the definition of the quantum group SLq(R); see, e.g., [Sch94].

Now let {A, B} be one of the pairs (11.52) or (11.53). From Corollary 11.30
we easily derive the relation AB f = qBA f for f ∈ D(AB) ∩ D(BA). The cor-
responding dense domains D1 = K ⊗ D0 and D1 = (K ⊕ K) ⊗ D0, where D0 is
given by (11.49), are invariant under A and B and cores for both operators.
Then there exists a unique ∗-representation π of the ∗-algebra A on the domain
D(π) := D1 such that π(1) = I , π(a) = A � D1, π(b) = B � D1. Note that we also
have ker A = ker B = {0}, AD1 = D1, and BD1 = D1.

Next we are looking for operator-theoretic characterizations of these pairs {A, B}.
Let A = UA|A| and B = UB |B|be the polar decompositions of A and B. It is straight-
forward to verify that for the pair {A, B} from (11.52) we have

|A|it B ⊆ eθ0t B|A|it , t ∈ R, and UAB ⊆ BUA, (11.54)

and that the pair {A, B} from (11.53) satisfies the relations

|A|it B ⊆ eθ1t B|A|it , t ∈ R, and UAB ⊆ −BUA. (11.55)

Further, the relation UAB ⊆ ±BUA holds if and only if UA|B| ⊆ |B|UA and
UAUB = ±UBUA.

The above formulas can be taken as the definition of well-behaved representations
of the operator relation (11.45). That is, if A and B are self-adjoint operators on a
Hilbert space such that ker A = ker B = {0} and conditions (11.54) or (11.55) hold,
we call the pair {A, B} a well-behaved representation of relation (11.45). Thus, the
pairs (11.52) and (11.53) are well-behaved representations of (11.45).

Clearly, the pairs (11.52) and (11.53) are irreducible if and only if the space
K has dimension one, that is, K = C. In this case, u = ε1, v = ε2, where ε1, ε2 ∈
{1,−1}. Ifwe assume that ker A = ker B = {0}, then, up to unitary equivalence, there
are precisely five such well-behaved irreducible representations of relation (11.45).
These are the four pairs {A = ε1eαQ, B = ε2e−βP}, ε1, ε2 ∈ {1,−1}, on L2(R) and
the pair (11.53) onC2 ⊗ L2(R). A characterization of these representations in terms
of resolvents is given in [OS14].

Note that the phase operators for the pair (11.53), K = C, are the Pauli matrices

UA =
(
1 0
0 −1

)
, UB =

(
0 1
1 0

)
.



280 11 The Operator Relation XX* = F(X*X)

Finally, it should be mentioned that the relation (11.45) leads to interesting and
surprising operator-theoretic phenomena. For instance, if a pair {A, B} of self-adjoint
operators satisfies (11.45) on an invariant core and ker A = ker B = {0}, then there
is no dense set of common analytic vectors for A and B.

11.9 Exercises

1. Show that two self-adjoint operators A and B on a Hilbert space commute
strongly if and only if EA(M)B ⊆ BEA(M) for all Borel sets M of R.
Hint: Verify EA(M)(B + iI )−1 = (B + iI )−1EA(M), and apply Theorem 11.6.

2. Prove Lemma 11.11.
3. Suppose F is a bounded Borel function on R and X is a bounded operator on a

Hilbert space satisfying the relation XX∗ = F(X∗X). Show that any two of the
operators (X∗) j X j and Xk(X∗)k for j, k ∈ N commute. (An operator X obeying
this property is called centered.)

4. Suppose F is continuous on R+ and X = UC is a strong solution of (11.13)
such that kerU ∗ = {0}. Prove that F maps the spectrum of C2 into itself.

5. Treat the operator relation XX∗ = X∗X + I with the methods of Sects. 11.3
and 11.5, and compare the outcome with the results of Sect. 8.2.

6. Let q ∈ (0, 1). Let U be a unitary and A a self-adjoint operator on a Hilbert
space H such that A ≥ 0, ker A = {0}. Suppose that U A ⊆ q AU . Show that,
up to unitary equivalence, the pair {U, A} is of the following form:
There is a self-adjoint operator B on a Hilbert space K such that σ(B) ⊆ [q, 1],
ker(B − q I ) = {0}, H = ⊕n∈ZK, and U (ϕn) = (ϕn−1), A(ηn) = (qn Bηn) for
(ϕn) ∈ H and (ηn) ∈ D(A).

7. Suppose q > 0. Show that a densely defined closed operator X is q-normal if
and only if D(X) = D(X∗) and ‖X∗ f ‖ = q1/2‖X f ‖ for f ∈ D(X).

8. Let Xμ be the q-normal operator defined by (11.36), and let ϕ0 denote the
characteristic function of the set Δq . Show that if μ({0}) = 0, then the linear
span of {(X∗

μ)
m Xn

μϕ0 : m, n ∈ N0} is dense inHμ.

9. Write the q-normal operator X in (11.38) as an operator Xμ of the form (11.36).
10. Show that the relations (11.41) and (11.44) for q > 0, q �= 1, are equivalent.

Hint: Transform Y = αX + β I or Y = αX∗ + β I and q if necessary.
11. Show the operator relation XX∗ = q−1(X∗X − I ), where q > 0, q �= 1, has an

anti-Fock representation as in Theorem 11.19.
12. Supposeq > 0, q �= 1.Use the operator B = (q − 1)C2 + I andTheorem11.27

to derive the classification of irreducible representations of Theorem 11.28.
13. Suppose q ∈ (0, 1). Let S be the unilateral shift operator on l2(N0). Show that:

a. T := ∑∞
n=1 q

n−1SnS∗n is a bounded positive self-adjoint operator on l2(N0).

b. S∗T S = I + qT and T e0 = 0, T ek = 1−qk

1−q ek for k ∈ N.

c. X := S∗T 1/2 is the polar decomposition of X and XX∗ = qX∗X + I .
d. X is the Fock operator XF from Theorem 11.28(i).
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e. TheC∗-algebra generated by the Fock operator XF is equal to theC∗-algebra
generated by the shift operator S; that is, it is the Toeplitz algebra (cf. [Dv96,
Theorem V.1.5]).

14. Suppose q ∈ C, |q| = 1, q2 �= 1, and fix a square root q1/2 of q. Let a, b be
hermitian elements of a unital complex ∗-algebra A such that a is invertible.
Define c := (q−1/2b + 1)a−1. Show that the following are equivalent:

(i) ab = qba.
(ii) ac − qca = 1 − q.
(iii) c = c+.

15. Suppose q is as in Exercise 14. Use the operator pairs {A, B} from (11.52) and
(11.53) to construct symmetric operators A,C satisfying the operator relation
AC − qC A = (1 − q)I . Find a dense domain D ⊆ D(AC) ∩ D(CA) such that
D is invariant under A,C and ACϕ − qC Aϕ = (1 − q)ϕ for ϕ ∈ D. (Further
results on these operators can be found in [Sch94].)

11.10 Notes

The representation theory of finitely many operator relations with finitely many
operators was developed by the Kiev School, notably by Yu.S. Samoilenko, V.L.
Ostrovskyi, and E. Ye. Vaisleb. Important pioneering papers include [OS88, OS89,
VS90, VS94, O96, STS96]. This theory is treated extensively in the monograph
[OS99] by Ostrovskyi and Samoilenko, which contains detailed lists of representa-
tions for many relations and also an excellent bibliography. Further, for some basic
relations operator-theoretic models are developed.We have given only a glimpse into
this theory by treating a single but important relation.

For power partial isometries we refer to [HW63] and for centered operators to
[MM74]. The hermitian q-plane and q-normal operatorswere studied in [O02, OS04,
OS07, CSS14], the q-oscillator algebra in [CGP], and the real quantum plane in
[Sch94, OS14].

An interesting related topic is the so-called q-deformed commutation relations.
They are not treated in this book, but they are studied in many research papers; see,
e.g., [BS94, JSW95, OPT08, Pr08, BLW17].



Chapter 12
Induced ∗-Representations

Induced representations are a fundamental tool in representation theory of groups and
algebras. They were first defined and investigated for finite groups by G. Frobenius
(1898), for algebras by D.G. Higman (1955), and for C∗-algebras by M. Rieffel and
J.M.G. Fell. In this chapter, we develop this method for general ∗-algebras.

If B is a subalgebra of an algebra A and V is a left B-module, the induced module
of V is the left A-module A ⊗B V , where the left action is given by the formula
a
( ∑

j a j ⊗ v j
) = ∑

j aa j ⊗ v j . If B is a ∗-subalgebra of a ∗-algebra A and the left
module V stems from a ∗-representation of B, we shall try to make the induced
module into a ∗-representation of A. This requires additional technical tools.

Conditional expectations are used to define inner products on induced modules,
but they are also of interest in themselves. In Sect. 12.1, we investigate this con-
cept and develop a number of examples, and all of them are coming from groups.
In Sect. 12.2, we define induced representations. Section12.3 is concerned with
G-graded ∗-algebras A = ∑

g∈G Ag for which B := Ae is commutative. We study
induced representations from characters of B that are nonnegative on B ∩ ∑

A2.

In this chapter, B is a unital ∗-subalgebra of a unital complex ∗-algebra A. The
unit elements of B and A are denoted by 1B and 1A, respectively.

To shorten formulas we often write a+
j instead of (a j )

+ and a+
g instead of (ag)

+.

12.1 Conditional Expectations

The following definition collects a number of basic notions for this chapter.

Definition 12.1 A B-bimodule projection of A on B is a linear map Φ : A �→ B
such that for a ∈ A and b1, b2 ∈ B,
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Φ(1A) = 1B, Φ(a+) = Φ(a)+, Φ(b1ab2) = b1Φ(a)b2. (12.1)

A B-bimodule projection Φ is faithful if Φ(a+a) = 0 for a ∈ A implies a = 0.
A B-bimodule projection Φ of A on B is called a conditional expectation if

Φ
( ∑

A2
)

⊆
∑

A2 (12.2)

and a strong conditional expectation if

Φ
( ∑

A2
)

⊆
∑

B2. (12.3)

Let Φ : A �→ B be a linear map satisfying (12.1). Then, for b ∈ B, we have
Φ(b) = Φ(b1A1B) = b1B1B = b; that is, Φ is indeed a projection of A on B.

The next lemma characterizes B-bimodule projections in terms of their kernels.

Lemma 12.2 There exists a B-bimodule projection of A on B if and only if there
exists a ∗-invariant subspace T of A such that A = B ⊕ T and

BT B ⊆ T . (12.4)

If this is true, the B-bimodule projection Φ is uniquely defined by the requirement
kerΦ = T and we have

Φ
( ∑

A2
)

=
∑

B2 + Φ
( ∑

T 2
)
. (12.5)

Proof Let Φ be a B-bimodule projection of A on B and put T = kerΦ. For t ∈ T
and b1, b2 ∈ B, we haveΦ(b1tb2) = b1Φ(t)b2 = 0 andΦ(t+) = Φ(t)+ = 0. Hence
the space T satisfies (12.4) and it is ∗-invariant. For a ∈ A, we have Φ(a) ∈ B
and Φ(a − Φ(a)) = Φ(a) − Φ(Φ(a)) = 0, so a − Φ(a) ∈ T . If b ∈ B ∩ T , then
0 = Φ(b) = b. This shows that A = B ⊕ T . Further, for a = b + t with b ∈ B and
t ∈ T , we obtain

Φ(a+a) = Φ((b + t)+(b + t)) = Φ(b+b) + Φ(b+t) + Φ(t+b) + Φ(t+t)
= b+b + b+Φ(t) + Φ(t)+b + Φ(t+t) = b+b + Φ(t+t),

which proves (12.5).
Conversely, if T is given as above, one easily checks that the linear mapΦ defined

by Φ(b) = b, b ∈ B, and Φ(t) = 0, t ∈ T , is a B-bimodule projection. �
Example 12.3 (Weyl algebra)
Let A := C〈p, q|p = p+, q = q+, pq − qp = −i〉 be the Weyl algebra (Example
2.12). We show that there is no B-bimodule projection of A on B := C[p].

Assume to the contrary that there is such a projection Φ and let T be its kernel.
Then, since A = B ⊕ T , there exists a polynomial f such that q + f (p) ∈ T . By
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(12.4) we have p(q + f (p))1B ∈ T and 1B(q + f (p))p ∈ T which implies that
pq − qp = −i 1A ∈ T . Hence 1A ∈ T , so that Φ = 0, which is a contradiction.

In Example 12.8 below we will see that there exists a unique B-bimodule projec-
tion of A on B := C[N ], where N = a+a. �
Example 12.4 (States as conditional expectations)
Let f be a hermitian functional on A such that f (1) = 1. Then Φ(a) := f (a) · 1,
a ∈ A, is a B-bimodule projection of A on B := C · 1. Clearly, Φ is a conditional
expectation if and only if f (a+a) ≥ 0 for a ∈ A; that is, f is a state on A. �

In the remaining part of this section we develop various methods for constructing
conditional expectations.

Example 12.5 (Group graded ∗-algebras)
Suppose A = ⊕

g∈G Ag is a unital G-graded ∗-algebra (Definition 2.19) and H is
a subgroup of G. Then it follows from (2.20) that AH := ⊕

h∈H Ah is a unital ∗-
subalgebra ofA. LetΦH denote the canonical projection ofA onAH , that is,ΦH (a) =∑

h∈H ah for a = ∑
g∈G ag ∈ A, where ag ∈ Ag for g ∈ G.

For a subset X of G, let AX denote the vector space
∑

g∈X Ag .

Proposition 12.6 The map ΦH is a conditional expectation of A on AH .

Proof The three conditions of (12.1) follow at once from (2.20). We prove (12.2).
We choose one element ki ∈ G, i ∈ G/H, in each left coset of H in G. Let

a ∈ A. We can write a = ∑
i∈G/H bi , where bi ∈ Aki H . If i, j ∈ G/H , then b+

j bi ∈
AHk−1

j ki H , hence ΦH (b+
i bi ) = b+

i bi and ΦH (b+
j bi ) = 0 if i = j. Using these facts

we derive

ΦH (a+a) = ΦH

( ∑

j∈G/H

∑

i∈G/H

b+
j bi

)
=

∑

i∈G/H

b+
i bi ∈

∑
A2. (12.6)

Thus, ΦH (
∑

A2) ⊆ ∑
A2, so ΦH is a conditional expectation. �

Corollary 12.7 An element x ∈ AH belongs to
∑

A2 if and only if x is a finite sum∑
b+
i bi , where each bi belongs to some vector space AgH for gH ∈ G/H.

Proof The if part is trivial. We prove the only if part. Suppose x ∈ AH ∩ ∑
A2.

Then x = ∑
k a+

k ak , where ak ∈ A. Since x = ΦH (x) = ∑
k Φ(a+

k ak), it follows
from (12.6), applied with a = ak , that x is of the described form. �

From Eq. (12.6) it follows that ΦH is faithful when
∑n

i=1 b
+
i bi = 0 for elements

b1, . . . , bn ∈ A implies that b1 = · · · = bn = 0. This holds if A has a faithful ∗-
representation (Corollary 4.45) and in particular if A is an O∗-algebra. Thus, if A is
an O∗-algebra, the conditional expectation ΦH is faithful.

An important special case is H = {e}. Then themapΦ := ΦH is called the canon-
ical conditional expectation of the G-graded ∗-algebra A on B = Ae.
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In this case, Corollary 12.7 says that an element x is in B ∩ ∑
A2 if and only if

x is of the form x = ∑
i b

+
i bi , where bi ∈ Agi for all i . In other words, if x ∈ ∑

A2

belongs to B, then x can be represented as a finite sum of hermitian squares b+
i bi of

homogeneous elements bi . �
We illustrate the preceding for our guiding example.

Example 12.8 (Weyl algebra )
In this example we use the Weyl algebra in the form A = C〈a, a+|aa+ − a+a = 1〉.
Recall from Example 2.23 that A isZ-graded with Z-grading determined by a ∈ A1,
a+ ∈ A−1 and we have B = A0 = C[N ], where N = a+a.

Then the canonical conditional expectation Φ : A �→ B acts by

Φ
(
p0(N ) +

∑

k≥1

(
ak pk(N ) + (ak)+ p−k(N )

)) = p0(N ), (12.7)

where p j (N ) ∈ C[N ] for j ∈ Z.
We want to apply Corollary 12.7 to describe the cone B ∩ ∑

A2. Let k ∈ N0.
Then ak ∈ Ak is of the form ak = ak pk , where pk ∈ C[N ], and by (8.13),

a+
k ak = p+

k (a+)kak pk = N (N − 1) · · · (N − k + 1)p+
k pk .

Each a−k ∈ A−k is of the form a−k = (a+)k p−k , with p−k ∈ C[N ], so by (8.14),

(a−k)
+a−k = (p−k)

+ak(a+)k p−k = (N + 1)(N + 2) · · · (N + k)(p−k)
+ p−k .

By induction on k one can show that each product (N + 1)(N + 2) · · · (N + k)
belongs to

∑
B2 + N

∑
B2, so that (a−k)

+a−k ∈ ∑
B2 + N

∑
B2. Therefore, it

follows from the preceding and Corollary 12.7, applied in the case H = {e}, that

B ∩
∑

A2 =
∑

B2 + N
∑

B2 + N (N − 1)
∑

B2 + · · · (12.8)

It is clear that the element N = a+a ∈ B ∩ ∑
A2 does not belong to

∑
B2.

Hence, B ∩ ∑
A2 = ∑

B2 and the canonical conditional expectations Φ : A �→ B
are not strong. �
Example 12.9 (Group algebras)
Suppose G is a group and H is a subgroup of G. Let A = C[G] and B = C[H ]
be the corresponding group algebras (Definition 2.11), and let Φ be the canonical
projection of C[G] on C[H ] defined byΦ(g) = g if g ∈ H andΦ(g) = 0 if g /∈ H .

Proposition 12.10 Φ is a strong conditional expectation of C[G] on C[H ].
Proof It is clear that Φ is a C[H ]-bimodule projection.

We prove that Φ(
∑

C[G]2) ⊆ ∑
C[H ]2. We fix precisely one element ki ∈ G

in each left coset i ∈ G/H. Let a = ∑
g∈G αgg, αg ∈ C, be an element of the
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group algebra C[G]. Then there exist elements ai ∈ C[H ], i ∈ G/H, such that
a = ∑

g∈G αgg = ∑
i∈G/H kiai . If i, j ∈ G/H and i = j , then k−1

i k j /∈ H and hence

Φ(k−1
i k j ) = 0. Obviously, Φ(k−1

i ki ) = e. Therefore,

Φ(a+a) = Φ

(( ∑

i∈G/H

kiai
)+( ∑

j∈G/H

k ja j

))
= Φ

( ∑

i, j∈G/H

a+
i k

−1
i k j a j

)

=
∑

i, j∈G/H

Φ(a+
i k

−1
i k j a j ) =

∑

i, j∈G/H

a+
i Φ(k−1

i k j )a j =
∑

i∈G/H

a+
i ai .

Thus, Φ(a+a) ∈ ∑
C[H ]2 and Φ is a strong conditional expectation. ��

Example 12.11 (Conditional expectations from groups of ∗-automorphisms)
SupposeG is a compact group which acts as a group of ∗-automorphisms θg, g ∈ G,

on A. We assume in addition that the action is locally finite-dimensional; that is,
for every a ∈ A there exists a finite-dimensional linear subspace V ⊂ A such that
a ∈ V , θg(V ) ⊆ V for all g ∈ G, and the map g �→ θg(a) of G into V is continuous.
Let μ denote the Haar measure of G. Then the mapping Φ given by

Φ(a) =
∫

G
θg(a) dμ(g), a ∈ A, (12.9)

is well defined. One easily verifies that Φ is a B-bimodule projection of A on the
∗-subalgebra B := {a ∈ A : θg(a) = a for all g ∈ G} of stable elements.

Using the representation theory of compact groups it can be shown [SS13] that
Φ(

∑
A2) ⊆ ∑

A2. Therefore, Φ is a conditional expectation of A on B. �
Example 12.12 (Crossed product algebras)
Let B be a unital complex ∗-algebra and G a discrete group which acts as a group of
∗-automorphisms g �→ θg on B. Then, as developed in Sect. 2.2, the crossed product
∗-algebra A := B ×θ G is defined.As a vector space,A is the complex tensor product
B ⊗ C[G]. The product and involution of A (see (2.16)) are given by

(a ⊗ g)(b ⊗ h) = aθg(b) ⊗ gh and (a ⊗ g)+ = θg−1(a+) ⊗ g−1. (12.10)

Then, A is a G-graded ∗-algebra with Ag := A ⊗ g, g ∈ G, and the canonical
conditional expectation Φ on Ae = B ⊗ e ∼= B is defined by Φ(a ⊗ e) = a ⊗ e
and Φ(a ⊗ g) = 0 if g = e.

Proposition 12.13 The conditional expectation Φ : A �→ B is strong.

Proof Let x = ∑
g∈G ag ⊗ g ∈ A. Using the formulas (12.10) we compute
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Φ(xx+) = Φ

( ∑

g,h∈G
(ag ⊗ g)(ah ⊗ h)+

)
= Φ

( ∑

g,h∈G
agθgh−1(a+

h ) ⊗ gh−1

)

=
∑

g∈G
aga

+
g ⊗ e =

∑

g∈G
(ag ⊗ e)(ag ⊗ e)+ ∈

∑
B2. ��

12.2 Induced ∗-Representations

For the moment, let B be a subalgebra of an algebra A and V a left B-module. Then
there is a leftA-action on the tensor productA ⊗B V given by a0(a ⊗ v) := a0a ⊗ v.
The corresponding left A-module A ⊗B V is called the induced module of V . If in
additionB is a ∗-subalgebra of a ∗-algebraA and V is a complex inner product space
onwhichB acts as a ∗-representation, wewant to define an inner product on A ⊗B V ,
or on some quotient space, such that the left action of A becomes a ∗-representation.
This is where a conditional expectation of A on B is used.

Throughout this section, we suppose that Φ is a conditional expectation of the
unital complex ∗-algebra A on its unital ∗-subalgebra B.

For a∗-representationρ ofB, we denote byA ⊗B D(ρ) the quotient of the complex
tensor product A ⊗ D(ρ) by the subspace

Nρ=
{

r∑

k=1

xkbk ⊗ ϕk−
r∑

k=1

xk ⊗ ρ(bk)ϕk : xk ∈ A, bk ∈ B,ϕk ∈ D(ρ), r ∈ N

}

.

Lemma 12.14 Let ρ be an arbitrary ∗-representation of B on (D(ρ), 〈·, ·〉). Then:

(i)
〈∑

k
xk ⊗ ϕk,

∑

l
yl ⊗ ψl

〉

0
:=

∑

k,l
〈ρ(Φ(y+

l xk))ϕk,ψl〉, (12.11)

where xk, yl ∈ A and ϕk,ψl ∈ D(ρ), gives a well-defined hermitian sesquilinear
form 〈·, ·〉0 on the complex vector space A ⊗B D(ρ).

(ii) There is a well-defined algebra homomorphism π0 : A → L(A ⊗B D(ρ)),

π0(a)
( ∑

k
xk ⊗ ϕk

)
=

∑

k
axk ⊗ ϕk, (12.12)

where a ∈ A, xk ∈ A, ϕk ∈ D(ρ), satisfying

〈π0(a)ζ, η〉0 = 〈ζ,π0(a
+)η〉0 for a ∈ A, ζ, η ∈ A ⊗B D(ρ). (12.13)

Proof (i): Obviously, 〈·, ·〉0 defines a sesquilinear form on the complex tensor
product A ⊗ D(ρ). To prove that 〈·, ·〉0 is also well defined on the quotient
space A ⊗B D(ρ) = (A ⊗ D(ρ))/Nρ it suffices to show that 〈ζ, η〉0 = 0 and
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〈η, ζ〉0 = 0 for arbitrary vectors

η =
∑

j
y j ⊗ ψ j ∈ A ⊗ D(ρ), ζ =

∑

k
xkbk ⊗ ϕk −

∑

k
xk ⊗ ρ(bk)ϕk ∈ Nρ.

Using that Φ(y+
l xkbk) = Φ(y+

l xk)bk by condition (12.1) we obtain

∑

k,l
〈ρ(Φ(y+

l xkbk))ϕk,ψl〉 =
∑

k,l
〈ρ(Φ(y+

l xk))ρ(bk)ϕk,ψl〉.

By (12.11), this implies 〈ζ, η〉0 = 0. Similarly, 〈η, ζ〉0 = 0.
Nowlet η := ∑

k xk ⊗ ϕk and ξ := ∑
l yl ⊗ ψl bevectors of A ⊗B D(ρ).Using

the relation Φ(a)+ = Φ(a+), a ∈ A, we compute

〈η, ξ〉0 =
∑

k,l
〈ρ(Φ(y+

l xk))ϕk,ψl〉 =
∑

k,l
〈ϕk, ρ(Φ(y+

l xk)
+)ψl〉

=
∑

k,l
〈ϕk, ρ(Φ(x+

k yl))ψl〉 =
∑

k,l
〈ρ(Φ(x+

k yl))ψl,ϕk〉 = 〈ξ, η〉0 ,

which proves that the sesquilinear form 〈·, ·〉0 on A ⊗B D(ρ) is hermitian.

(ii): For
∑

k xkbk ⊗ ϕk ∈ A ⊗B D(ρ) and a ∈ A, we have

π0(a)
( ∑

k
xkbk ⊗ ϕk

)
=

∑

k

a(xkbk) ⊗ ϕk =
∑

k
(axk)bk ⊗ ϕk

=
∑

k
axk ⊗ ρ(bk)ϕk = π0(a)

(∑

k
xk ⊗ ρ(bk)ϕk

)
.

Therefore, the operator π0(a) is well defined on the quotient space A ⊗B D(ρ).
It is obvious that π0 is a homomorphism of the algebra A into the algebra of
linear operators on the vector space A ⊗B D(ρ). For a, x ∈ A and ϕ,ψ ∈ D(ρ),

〈π0(a)(x ⊗ ϕ), y ⊗ ψ〉0 = 〈ax ⊗ ϕ, y ⊗ ψ〉0 = 〈ρ(Φ(y+ax))ϕ,ψ〉
= 〈ϕ, ρ(Φ(y+ax)+)ψ〉 = 〈ρ(Φ(x+(a+y)))ψ,ϕ〉
= 〈a+y ⊗ ψ, x ⊗ ϕ〉0 = 〈x ⊗ ϕ,π0(a

+)(y ⊗ ψ)〉0.

By linearity this yields (12.13). �
Note that in Lemma 12.14 neither the positivity of the inner product of D(ρ) nor

the positivity condition (12.2) was used. Now we turn to the case when the form
〈·, ·〉0 is positive semi-definite.

Lemma 12.15 Suppose ρ is a ∗-representation of B such that the sesquilinear
form 〈·, ·〉0 on A ⊗B D(ρ), defined by Eq. (12.11), is positive semi-definite, that
is, 〈η, η〉0 ≥ 0 for η ∈ A ⊗B D(ρ). Let 〈·, ·〉 denote the inner product on the quo-
tient vector spaceD(π0) := (A ⊗B D(ρ))/Kρ defined by 〈[η], [ζ]〉 = 〈η, ζ〉0, where
Kρ := {η : 〈η, η〉0 = 0} and [η] denotes the equivalence class [η] := η + Kρ. Then,
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π0(a)[η] = [π0(a)η], a ∈ A, η ∈ A ⊗B D(ρ),

defines a ∗-representation π0 of A on the unitary space (D(π0), 〈·, ·〉). Let π denote
the closure of π0.

Proof Because of Lemma 12.14 it suffices to check that π0(a) is well defined on
D(π0), that is, π0(a)Kρ ⊆ Kρ. Let η ∈ Kρ. Using (12.13) and the Cauchy–Schwarz
inequality for the positive semi-definite sesquilinear form 〈·, ·〉0 we obtain

〈π0(a)η,π0(a)η〉0 = 〈η,π0(a
+)π0(a)η〉0 = 〈η,π0(a

+a)η〉0
≤ 〈η, η〉1/20 〈π0(a

+a)η,π0(a
+a)η〉1/20 = 0,

so that π0(a)η ∈ Kρ. �
Definition 12.16 A ∗-representation ρ of B is called inducible (from B to A with
respect to the conditional expectationΦ) if the form (12.11) is positive semi-definite.
In this case, we say the closed ∗-representation π of A in Lemma 12.15 is induced
from the ∗-representation ρ and denote π by IndB↑A ρ or simply by Ind ρ.

The next proposition describes a class of inducible representations.
Let Rep+

c B denote the family of ∗-representations of B that are direct sums
of cyclic ∗-representations ρi with cyclic vectors ξi such that 〈ρi (c)ξi , ξi 〉 ≥ 0 for
c ∈ B ∩ ∑

A2.

Proposition 12.17 Each ∗-representation ρ of Rep+
c B is inducible.

Proof By Lemma 12.15 and Definition 12.16 it suffices to prove that the form 〈·, ·〉0
is positive semi-definite for ρ in Rep+

c B.
Assume first ρ is cyclic with cyclic vector ξ. Let η = ∑n

k=1 xk ⊗ ϕk ∈ A ⊗B D(ρ)

and fix ε > 0.That ξ is cyclicmeans that ρ(B)ξ is dense inD(ρ) in the graph topology
of ρ. Hence there are elements b1, . . . , bn ∈ B such that ‖ρ(bk)ξ − ϕk‖ < ε and
‖ρ(Φ(x+

l xk))(ρ(bk)ξ − ϕk)‖ < ε for all k, l = 1, . . . , n. Then

|〈ρ(Φ(x+
l xk))ϕk,ϕl〉 − 〈ρ(Φ(x+

l xk))ρ(bk)ξ, ρ(bl)ξ〉|
= |〈ρ(Φ(x+

l xk))ϕk,ϕl − ρ(bl)ξ〉 − 〈ρ(Φ(x+
l xk))(ρ(bk)ξ − ϕk), ρ(bl)ξ〉|

≤ ‖ρ(Φ(x+
l xk))ϕk‖ ε + ‖ρ(bl)ξ‖ ε ≤ ‖ρ(Φ(x+

l xk))ϕk‖ ε + ‖ϕl‖ ε + ε2.

Now we set a := ∑
k xkbk ∈ A. From the preceding inequality we conclude that

〈η, η〉0 = ∑n
k,l=1〈ρ(Φ(x+

l xk))ϕk,ϕl〉 can be approximated as small as we want by

n∑

k,l=1

〈ρ(Φ(x+
l xk))ρ(bk)ξ, ρ(bl)ξ〉 =

n∑

k,l=1

〈ρ(b+
l Φ(x+

l xk)bk)ξ, ξ〉

=
n∑

k,l=1

〈ρ(Φ((xlbl)
+xkbk))ξ, ξ〉 = 〈ρ(Φ(a+a))ξ, ξ〉.
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Since a+a ∈ ∑
A2 and hence Φ(a+a) ∈ B ∩ ∑

A2 by condition (12.2), we have
〈ρ(Φ(a+a))ξ, ξ〉 ≥ 0 by the positivity assumption on ρ. Therefore, 〈η, η〉0 ≥ 0.

The case when ρ is a direct sum of cyclic representations ρi from Rep+
c B is

easily reduced to the cyclic case, using that A ⊗B D(ρ) ⊆ ⊕i (A ⊗B D(ρi )). �
Let us summarize the preceding considerations. Suppose ρ is a ∗-representation

of the ∗-algebra B of the class Rep+
c B.

Then Eq. (12.11) defines a positive semi-definite hermitian sesquilinear form
〈·, ·〉0 onA ⊗B D(ρ). LetKρ := {η ∈ A ⊗B D(ρ) : 〈η, η〉0 = 0} be its kernel, and let
〈·, ·〉 denote the inner product on the quotient spaceD0 := (A ⊗B D(ρ))/Kρ defined
by 〈[η], [ζ]〉 = 〈η, ζ〉0, where [η] := η + Kρ.

The induced ∗-representation Ind ρ of A acts on the complex inner product space
(D0, 〈·, ·〉) by

(Ind ρ)(a)
[ ∑

k
xk ⊗ ϕk

]
=

[∑

k
axk ⊗ ϕk

]
, a ∈ A, (12.14)

where xk ∈ A, ϕk ∈ D(ρ). The domain D0 is a core for Ind ρ.

Remark 12.18 The following slight reformulation of this construction is sometimes
convenient: We define first the positive semi-definite sesquilinear form 〈·, ·〉0 on the
complex tensor productA ⊗ D(ρ) by (12.11) and then directly the induced represen-
tation Ind ρ by (12.14) on the quotient inner product space ((A ⊗ D(ρ))/Gρ, 〈·, ·〉)
of A ⊗ D(ρ) by the kernel Gρ := {ζ ∈ A ⊗ D(ρ) : 〈ζ, ζ〉0 = 0} of the form 〈·, ·〉0.�

The next result is often useful to detect inducible and induced ∗-representations.
Proposition 12.19 Let ρ be a ∗-representation of B. Suppose there exist a unitary
space (D1, 〈·, ·〉1) and a (well-defined!) linear map Ψ of A ⊗ D(ρ) on D1 such that

〈Ψ (x ⊗ ϕ), Ψ (y ⊗ ψ)〉1 = 〈ρ(Φ(y+x))ϕ,ψ〉, x, y ∈ A,ϕ,ψ ∈ D(ρ). (12.15)

Then ρ is inducible (from B to A with respect to the conditional expectation Φ) and
Ind ρ is unitarily equivalent to the closure of the ∗-representation π1 of A on D1:

π1(a)
(
Ψ

( ∑

k
xk ⊗ ϕk

))
:= Ψ

(∑

k
axk ⊗ ϕk

)
, a, xk ∈ A, ϕk ∈ D(ρ).

Proof In this proof we use the reformulation given in Remark 12.18. We define a
linear mapping U of A ⊗ D(ρ) on D1 by

U
(∑

k
xk ⊗ ϕk

)
= Ψ

( ∑

k
xk ⊗ ϕk

)
, xk ∈ A, ϕk ∈ D(ρ).

Now we use twice the fact that the inner product 〈·, ·〉1 is positive definite. First,
comparing (12.11) and (12.15) it follows that the sesquilinear form 〈·, ·〉0, defined on
the complex tensor product A ⊗ D(ρ) by (12.11), is positive semi-definite. Hence ρ



292 12 Induced *-Representations

is inducible. Next, by assumption (12.15) it implies that
∑

k xk ⊗ ϕk ∈ Gρ if and only
if Ψ (

∑
k xk ⊗ ϕk) = 0. Therefore,U passes to an isometric linear mapping, denoted

again U , of the quotient inner product space D0 := ((A ⊗ D(ρ))/Gρ, 〈·, ·〉) on the
inner product space (D1, 〈·, ·〉1) and hence to a unitary operator of the corresponding
Hilbert space completions. By construction, π1(a)η = U (Ind ρ)(a)U−1η for any
a ∈ A, η ∈ D1. Thus, since (Ind ρ) � D0 is a ∗-representation of A, so is π1. Since
D0 is a core for Ind ρ and D1 is a core for π1, we conclude π1 = U (Ind ρ)U−1. �
Example 12.20 (States—Example 12.4 continued)
Suppose f is a state on A and let Φ denote the conditional expectation of A on
B := C · 1 defined by Φ(a) = f (a) · 1, a ∈ A; see Example 12.4. If ρ is the identity
representation of B onC (i.e., ρ(λ · 1) = λ for λ ∈ C), it follows from the preceding
construction (and also from Proposition 12.19) that the ∗-representation Ind ρ of A
is just the GNS representation π f associated with the state f . Thus, the induction
procedure can be viewed as a generalization of the GNS construction. �

12.3 Induced Representations of Group Graded ∗-Algebras
from Hermitian Characters

Throughout this section, A = ⊕
g∈G Ag is a G-graded unital complex ∗-algebra and

we assume that the ∗-subalgebra B := Ae is commutative.
For the study of induced representationswe need condition (12.20) below. First we

derive this condition. For a ∗-algebra X, set R(X) := {x ∈ X : x+x = 0}. Clearly,
R(X) is a right ideal of X and contained in the ∗-radical Rad X by Corollary 4.45.
Hence R(X) is annihilated by all ∗-representations of X.
Lemma 12.21 Let g ∈ G and c, d ∈ Ag . Then

c+cd+d − c+dd+c ∈ R(B). (12.16)

For arbitrary ∗-representations ρ of B and π of A we have

ρ(c+d)ρ(d+c) = ρ(c+c)ρ(d+d) , π(c)π(d+d) = π(dd+)π(c). (12.17)

Proof In this proof we set a := cd+d − dd+c and b := c+a = c+cd+d − c+dd+c.
Note that for arbitrary x, y ∈ {c, d} the elements x+y and xy+ are inB, and hence

they commute. Using this fact several times we compute

cd+dc+cd+d = cd+(dc+)cd+d = (dc+)cd+cd+d
= dc+c(d+c)d+d = d(d+c)c+cd+d = dd+cc+cd+d, (12.18)

c+cd+dc+dd+c = (c+c)d+dc+dd+c = d+dc+dd+c(c+c)
= d+d(c+d)d+cc+c = (c+d)d+dd+cc+c
= c+dd+dd+(cc+)c = c+dd+(cc+)dd+c = c+dd+cc+dd+c. (12.19)
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Since c+cd+d = d+dc+c by the commutativity of B, we have b+ = b. Therefore,

b+b = b2 = (c+cd+d − c+dd+c)(c+cd+d − c+dd+c)
= c+[cd+dc+cd+d − dd+cc+cd+d] + [c+dd+cc+dd+c − c+cd+dc+dd+c] = 0.

Here the two expressions in squared brackets vanish by (12.18) and (12.19). Hence,
since b ∈ B, we have b ∈ R(B), which proves (12.16). Since ρ annihilates R(B),
ρ(b) = 0. Inserting the definition of b this yields the first equality of (12.17).

Further, using once again the commutativity of B we derive

a+a = (d+dc+ − c+dd+)(cd+d − dd+c)
= [d+d(c+c) − c+dd+c]d+d + c+d(d+d)d+c − d+dc+dd+c
= [(c+c)d+d − c+dd+c]d+d + (d+d)c+dd+c − d+dc+dd+c = bd+d.

Since b ∈ R(B), we have π(b) = 0, so π(a)+π(a) = π(a+a) = π(b)π(d+d) = 0.
Hence π(a) = 0. By the definition of a this gives the second equality of (12.17). �

Recall that B̂ denotes the set of hermitian characters of B. Since hermitian char-
acters are one-dimensional ∗-representations, the first equation of (12.17) yields

χ(c+d)χ(d+c) = χ(c+c)χ(d+d) for all χ ∈ B̂, c, d ∈ Ag, g ∈ G. (12.20)

The following notions play a crucial role in what follows.

Definition 12.22 B̂+ := {
χ ∈ B̂ : χ(a) ≥ 0 for a ∈ B ∩ ∑

A2
}
.

Definition 12.23 Let χ ∈ B̂+ and g ∈ G. We say that χg is defined if there exists an
element ag ∈ Ag such that χ(a+

g ag) = 0. In this case, we set

χg(b) := χ(a+
g bag)

χ(a+
g ag)

for b ∈ B. (12.21)

For χ ∈ B̂+, let Gχ denote the set of elements g ∈ G for which χg is defined.

The next proposition collects a number of basic properties of the map χ �→ χg.

Proposition 12.24 Suppose that χ ∈ B̂+ and g, h ∈ G.

(i) If χg is defined, then χg ∈ B̂+ and χg does not depend on the choice of ag .
(ii) If χg and (χg)h are defined, then χhg is defined and equal to (χg)h .

(iii) If χg is defined, then (χg)g
−1
is defined and equal to χ.

(iv) χe is defined and equal to χ.

(v) If ag ∈ Ag and χ(a+
g ag) = 0, then χg(aga+

g ) = χ(a+
g ag).

(vi) If ag, cg ∈ Ag and χ(a+
g cg) = 0, then χg is defined and
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χg(b) = χ(a+
g bcg)

χ(a+
g cg)

, b ∈ B. (12.22)

Proof (i): Let c, d ∈ Ag be such that χ(d+d) = 0 and χ(c+c) = 0. Since cd+ ∈ B
and B is commutative, bcd+ = cd+b for b ∈ B and therefore

χ(c+bc)χ(d+d) = χ(c+bcd+d) = χ(c+cd+bd) = χ(c+c)χ(d+bd),

so that

χ(c+bc)
χ(c+c)

= χ(d+bd)

χ(d+d)
.

This shows that χg(b) in (12.21) does not depend on the particular choice of ag .
We prove that χg is a character of B̂+. Let b1, b2 ∈ B. Since B is commutative,
aga

+
g b1 = b1aga

+
g . Using that χ is a character on B and a+

g ag ∈ B, we derive

χg(b1b2) = χ(a+
g b1b2ag)

χ(a+
g ag)

= χ(a+
g ag)χ(a+

g b1b2ag)

χ(a+
g ag)χ(a+

g ag)
= χ(a+

g aga
+
g b1b2ag)

χ(a+
g ag)χ(a+

g ag)

= χ(a+
g b1aga

+
g b2ag)

χ(a+
g ag)χ(a+

g ag)
= χ(a+

g b1ag)χ(a+
g b2ag)

χ(a+
g ag)χ(a+

g ag)
= χg(b1)χ

g(b2).

The character χ is hermitian and so is χg.
Let b ∈ B ∩ ∑

A2. Then a+
g bag and a+

g ag belong to B ∩ ∑
A2. Hence, since

χ ∈ B̂+,wehaveχ(a+
g bag) ≥ 0 andχ(a+

g ag) ≥ 0, soχg(b) ≥ 0.Thus,χg ∈ B̂+.

(ii): That χg and (χg)h are defined means that there exist elements ag ∈ Ag and
ah ∈ Ah such that χ(a+

g ag) = 0 and χg(a+
h ah) = χ(a+

g a
+
h ahag)χ(a+

g ag)
−1 = 0.

Thus, χ((ahag)
+ahag) = 0. Therefore, since ahag ∈ Ahg, χhg is defined. It is

easily verified that (χg)h = χhg.

(iii): There exists an ag ∈ Ag such that χ(a+
g ag) = 0. Since a+

g ∈ Ag−1 and

χg(aga
+
g ) = χ(a+

g aga+
g ag)

χ(a+
g ag)

= χ(a+
g ag)χ(a+

g ag)

χ(a+
g ag)

= χ(a+
g ag) = 0, (12.23)

(χg)g
−1
is defined. It is straightforward to check that (χg)g

−1 = χ.

(vi): Sinceχ(a+
g cg) = 0,wehaveχ(c+

g ag) =χ(a+
g cg) = 0.Therefore, (12.20) implies

that χ(a+
g ag) = 0, so χg is defined. Now (12.22) follows by combining (12.21)

and the equality

χ(a+
g bag)χ(a+

g cg) =χ(a+
g b(aga

+
g )cg) =χ(a+

g (aga
+
g )bcg) =χ(a+

g ag)χ(a+
g bcg).

(iv) is trivial, and (v) follows from (12.23). �
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For g ∈ G, let Dg denote the set of characters χ ∈ B̂+ such that χg is defined.
From Proposition 12.24 it follows that for g ∈ G the mapping χ �→ αg(χ) := χg

defines a bijection αg : Dg �→ Dg−1 obeying the following properties:

(i) αe(χ) = χ for χ ∈ De = B̂+.
(ii) αh(αg(χ)) = αhg(χ) for χ ∈ Dg,χ

g ∈ Dh , and g, h ∈ G.

We call this family of mappings g �→ αg a partial action of the group G on B̂+.
Example 12.26 below shows that χg is not always defined, so in general the map

g �→ αg is not an action of the group G on B̂+. We illustrate this with two examples.

Example 12.25 (Crossed product ∗-algebras—Example12.12 continued)
Suppose B is a commutative unital ∗-algebra, and let A = B ×θ G be the crossed
product algebra considered in Example 12.12. By Proposition 12.13, the correspond-
ing conditional expectation of A on B is strong. Hence

∑
A2 ∩ B = ∑

B2, so that
B̂+ = B̂. Then 1 ⊗ g ∈ Ag and χ((1 ⊗ g)+(1 ⊗ g)) = χ(1 ⊗ e) = 1 for χ ∈ B̂+.
Thus χg is defined for all χ ∈ B̂+ and g ∈ G. Since θg(b) = gbg−1 (by (2.17)) in the
algebra A = B ×θ G, we obtain χg(b) = χ(θg−1(b)). This formula implies that the

map g �→ αg is an action of the group G on the set B̂+. �
Example 12.26 (Weyl algebra—Example12.8 continued)
Let A = C〈a, a+|aa+ − a+a = 1〉 be the Weyl algebra. We retain the notation of
Example 12.8. Recall that A is Z-graded with a ∈ A1 and B = A0 = C[N ]. From
(12.8) it follows easily that a characterχ ∈ B̂ is nonnegative on B ∩ ∑

A2 if and only
if χ(N ) ∈ N0. For k ∈ N0, let χk denote the character of B̂+ defined by χk(N ) = k.

Let n ∈ N0. Any element of An is of the form an p(N ) with p ∈ C[N ]. Clearly,
χk((a

n p(N ))+an p(N )) = 0 implies that χk(a
+nan) = 0. Thus, αn(χk) is defined

if and only if χk(a
+nan) = 0. By (8.13) and (8.12), we have

χk(a
+nan) = χk(N (N − 1) · · · (N − n + 1)) = k(k − 1) · · · (k − n + 1),

χk(a
+nNan) = χk(a

+nan(N − n)) = χk(a
+nan)(k − n).

Hence αn(χk) is defined if and only if k ≥ n. In this case, αn(χk) = χk−n.

Similarly, using (8.14) and (8.12) we obtain

χk(a
na+n) = χk((N + 1)(N + 2) · · · (N + n)) = (k + 1)(k + 2) · · · (k + n),

χk(a
nNa+n) = χk(a

na+n(N + n)) = χk(a
na+n)(k + n),

so α−n(χk) is defined for all n ∈ N and we have α−n(χk) = χk+n.

Thus, Gχk = {n ∈ Z : n ≤ k} and Dn = {χ j : n ≤ j} for k ∈ N0, n ∈ Z. �
Now we are ready to describe the induced representations.
The characters of B̂+ are nonnegative on B ∩ ∑

A2, so they are one-dimensional
representations of Rep+

c B and hence inducible by Proposition 12.17. The next propo-
sition contains explicit formulas for the corresponding ∗-representations.
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Proposition 12.27 Suppose that χ ∈ B̂+ and let π = Ind χ. For each g ∈ Gχ we
choose an element ag ∈ Ag such that χ(a+

g ag) = 0. Then the vectors

eg := [ag ⊗ 1]
√

χ(a+
g ag)

, g ∈ Gχ, (12.24)

form an orthonormal basis of the Hilbert space H(π). For h, g ∈ G and ch ∈ Ah,

π(ch)eg = χ(a+
hgchag)√

χ(a+
hgahg)χ(a+

g ag)
ehg if hg ∈ Gχ (12.25)

and π(ch)eg = 0 otherwise. In particular, π(b)eg = χg(b)eg for b ∈ B.

Proof Werecall the construction of the representationπ = Indχ fromLemmas 12.14
and 12.15. In the special case ρ = χ the Hilbert space H(π) is the closed span of
vectors [a ⊗ 1], where a ∈ A. By (12.11), the inner product is given by

〈[a ⊗ 1], [c ⊗ 1]〉 = χ(Φ(c+a)), a, c ∈ A.

If a ∈ Ag and c ∈ Ah , then Φ(c+a) = 0 if g = h and Φ(c+a) = c+a if g = h.
First suppose g /∈ Gχ. Then ‖[cg ⊗ 1]‖2 = χ(c+

g cg) = 0. Hence the Hilbert space
H(π) is the closed span of vectors [cg ⊗ 1], where cg ∈ Ag and g ∈ Gχ.

Let g ∈ Gχ. Then we have 〈[ag ⊗ 1], [ag ⊗ 1]〉 = χ(a+
g ag) > 0, so the vector eg

has norm one. Now suppose that g, h ∈ Gχ, g = h. Therefore, Φ(a+
h ag) = 0 and

〈[ag ⊗ 1], [ah ⊗ 1]〉 = χ(Φ(a+
h ag)) = 0.

Now let cg ∈ Ag . Using (12.20), with d := ag, c := cg ∈ Ag , we obtain

∣∣〈[ag ⊗ 1], [cg ⊗ 1]〉∣∣2 = |χ(Φ(c+
g ag))|2 = χ(c+

g ag)χ(c+
g ag)

= χ(c+
g ag)χ(a+

g cg) = χ(a+
g ag)χ(c+

g cg) = ‖[ag ⊗ 1]‖2 ‖[cg ⊗ 1]‖2.

That is, we have equality in the Cauchy–Schwarz inequality. Therefore, [cg ⊗ 1] is
a complex multiple of [ag ⊗ 1] and hence of eg. Putting the preceding together, we
have proved that the vectors eg, g ∈ Gχ, form an orthonormal basis ofH(π).

Next we prove formula (12.25). Suppose hg ∈ Gχ. Note that chag ∈ Ahg. Hence,
as shown in the preceding paragraph, [chag ⊗ 1] is a multiple of [ahg ⊗ 1] and so of
the unit vector ehg . Therefore, using (12.24) we derive

[chag ⊗ 1] = 〈[chag ⊗ 1], ehg〉 ehg = χ(a+
hgahg)

−1/2〈[chag ⊗ 1], [ahg ⊗ 1]〉 ehg

= χ(a+
hgahg)

−1/2χ(a+
hgchag) ehg. (12.26)

Further, by (12.24) and the definition of π(ch),
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π(ch)eg = χ(a+
g ag)

−1/2π(ch)[ag ⊗ 1] = χ(a+
g ag)

−1/2[chag ⊗ 1]. (12.27)

Inserting (12.26) into (12.27) yields (12.25).
Let ch = b ∈ B = Ae. We apply (12.25) with h = e and get

π(b)eg = χ(a+
g bag)χ(a+

g ag)
−1 eg = χg(b) eg.

Finally, suppose hg /∈ Gχ. Then χhg is not defined, so it follows from Propo-
sition 12.24(vi) that 0 = χ(a+

hgchag) = 〈[chag ⊗ 1], [ahg ⊗ 1]〉. Hence, by (12.27)
and (12.26), 〈π(ch)eg, ehg〉 = 0. If k ∈ G, k = hg, then Φ(e+

k chag) = 0 and hence
〈π(ch)eg, ek〉 = 0. Thus, π(ch)eg⊥ek for all k ∈ G, so that π(ch)eg = 0. �
Example 12.28 (Weyl algebra—Example 12.26 continued)
Fix k ∈ N0. Recall from Example 12.26 that χk is the character on B = C[N ] given
by χk(p(N )) = p(k), p ∈ C[N ]. Further, G = Z and Gχk = {m ∈ Z : m ≤ k}.

We use Proposition 12.27 to describe the induced representation π := Indχ0

of the character χ0. For −n ∈ Gχ0 = −N0 we choose a−n := (a+)n ∈ A−n . As
shown in Example 12.26, we have χ0((a−n)

+a−n) = χ0(an(a+)n) = n!, so that
e−n = n!−1/2[(a+)n ⊗ 1]. The vectors e−n, n ∈ N0, form an orthonormal basis of
H(π) by Proposition 12.27.

Next we determine the action of π(a). Set h = 1, c1 = a, g = −n. If n = 0,
then hg = 1 + 0 /∈ Gχ0 , so π(a)e0 = 0. Suppose now n ∈ N. Then 1 − n ∈ Gχ0 ,
ahg = a−(n−1) = (a+)n−1 and chag = a(a+)n . We insert all this in Eq. (12.25) and
compute

π(a)e−n = χ0(an−1a(a+)n)
√

χ0(an−1(a+)n−1)χ0(an(a+)n))
e−(n−1)

= n!√
(n − 1)! n! e−(n−1) = √

n e−(n−1).

Similarly, setting c−1 = a+ in (12.25), we obtain π(a+)e−n = √
n + 1 e−(n+1) for

n ∈ N0. (This follows also from the relation 〈π(a)e−k, e−n〉 = 〈e−k,π(a+)e−n〉.)
Comparing these actions with (8.22) we conclude that π = Indχ0 is unitarily equiv-
alent to the Bargmann–Fock representation of the Weyl algebra. This shows the
usefulness of unbounded induced representations for general ∗-algebras. �

12.4 Exercises

1. Let p1, . . . , pn ∈ A be a decomposition of the unit of the ∗-algebra A, that is,
p1 + · · · + pn = 1 and p j = p2j = p+

j for j = 1, . . . , n. Show the following:

a. p j pk = 0 for all j = k.
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b. The map Φ : a �→ p1ap1 + · · · + pnapn is a conditional expectation of A
on B = {b ∈ A : b = Φ(b)}.

c. If A is a unital O∗-algebra, then Φ is faithful.

The following Exercises 2–4 show that A satisfies the assumptions of Sect. 12.3;
details can be found in [SS13].

2. Let f ∈ R[x] and A := C〈x, x+ | xx+ = f (x+x)〉. Prove the following:
a. The ∗-algebra A is Z-graded with grading defined by x ∈ A1, x+ ∈ A−1.
b. B := A0 is commutative.
c. B spanned by (x+)k1xn1 · · · (x+)kr xnr , where ki , ni ∈ N0,

∑
i ki=

∑
i ni .

d. An = B · xn and A−n = (x+)n · B for n ∈ N.

3. (Enveloping algebras E(su(2)) and E(su(1, 1)))
The enveloping algebras E(su(2)) and E(su(1, 1)) are the complex unital ∗-
algebras with generators e, f, h, defining relations

he − eh = 2e, h f − f h = −2 f, e f − f e = h,

and involution e+ = f, h+ = h for su(2), e+ = − f, h+ = h for su(1, 1). Let
A be E(su(2)) or E(su(1, 1)). Prove that:

a. A is Z-graded with grading determined by e ∈ A1, f ∈ A−1, h ∈ A0.
b. B := A0 is commutative and equal to C[e f, h].
c. An = en · B and A−n = f n · B for n ∈ N0.

4. (Coordinate algebra of the quantum group SUq(2), see, e.g., [KS97, 4.1.4])
Suppose q > 0. Let A be the unital complex ∗-algebras with generators a, c and
defining relations

ac = qca, ac+ = qc+a, c+c = cc+, a+a + c+c = 1, aa+ + q2c+c = 1.

Prove the following assertions:

a. A is algebraically bounded.
b. A is Z-graded with grading given by a ∈ A1, a+ ∈ A−1, c ∈ A0.
c. B := A0 is commutative and equal to C[c, c+, N ], where N := a+a.
d. An = an · B and A−n = (a+)n · B for n ∈ N0.

5. Let q > 0, q = 1. Develop the theory of Sect. 12.3 for the Z-graded ∗-algebra
A = C〈x, x+|xx+ = qx+x〉with grading given by x ∈ A1, x+ ∈ A−1. Compare
the outcome with the ∗-representations of A obtained in Sect. 11.6.

In Exercises 6–10, A denotes the Weyl algebra C〈a, a+|aa+ − a+a = 1〉.
6. Show that for each z ∈ T there is a ∗-automorphismαz ofA such thatαz(a) = za

and αz(a+) = z a+. Show that the action z �→ αz of T defines a conditional
expectation by Example 12.11. What is the ∗-algebra B of stable elements?
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7. Decide whether the following polynomials of N := a+a are in
∑

A2.

a. (N − 1)(N + 1).
b. (N + 1)(N + 3

2 ).
c. (N − 1)(N − 3

2 ).
d. (N − k)(N − (k + 1)), where k ∈ Z.

8. Let p(N ) = (N − k0) · · · (N − kn), where n ∈ N0, k0, k1, . . . , kn ∈ Z, and
0 ≤ k0 < k1 < · · · < kn . Show that p(N ) ∈ ∑

A2 if and only if we have
k0 = 0, k1 = 1, . . . , kn = n.

9. Show that there exists a positive linear functional f on A that is not of the form
f (·) = Tr tπC(·) for some trace class operator t ∈ B1(πC(A))+, where πC is the
Bargmann–Fock representation.
Hint: Use (N − 1)(N − 2) /∈ ∑

A2 and a separation argument (Theorem10.36).
10. Show that for each k ∈ N0 the induced representation Indχk of A in Example

12.28 is unitarily equivalent to the Bargmann–Fock representation.

12.5 Notes

Induced representations of C∗-algebras were invented by M. Rieffel [Rf74a] and
J.M.G. Fell [F72]. A detailed and very readable treatment of this theory is presented
in the monograph [FD88]; see also [RW98].

Induced representations for general ∗-algebras were introduced and first studied
in the joint paper [SS13] of the author with Y. Savchuk. In this chapter we have given
a glimpse into this subject. The paper [SS13] contains an extensive treatment includ-
ing various imprimitivity theorems and many examples. Induced representations for
the ∗-algebras in Exercises 2 and 3 are developed in [SS13]. Further examples are
elaborated in [Dy15] and [DS13]. Exercise 8 is taken from [FS89].



Chapter 13
Well-Behaved Representations

In contrast to single operators, the self-adjointness of a representation is not enough
to rule out pathological behavior. For instance, as shown inExample 7.6, there exists a
self-adjoint irreducible representation of the commutative ∗-algebraC[x1, x2] acting
on an infinite-dimensional Hilbert space. It is natural to look for additional condi-
tions to select classes of “well-behaved” representations that exclude pathological
phenomena. For commutative ∗-algebras the integrable representations defined in
Sect. 7.2 are such a class. For the Weyl algebra and enveloping algebras there are
also self-adjoint representations with pathological behavior, but it is not difficult to
“guess” how to define well-behaved representations. For the Weyl algebra one takes
self-adjoint representations forwhich the closures of the images of the generators p, q
are self-adjoint and satisfy the Weyl relation (8.44). Then the Stone–von Neumann
theorem implies that, up to unitary equivalence, the well-behaved representations are
precisely the direct sums of Schrödinger representations. For an enveloping algebra
one requires that the representation is integrable with respect to the corresponding
connected and simply connected Lie group.

No general or canonical method is known to select well-behaved representations
of an arbitrary ∗-algebra A. In this chapter we develop three possible approaches
to this problem. In Sect. 13.1, we consider group graded ∗-algebras A for which
the base ∗-algebras Ae are commutative and finitely generated. In this case we
define well-behaved representations by requiring that their restrictions to Ae are
integrable. Section13.2 deals with representations which are associated with torsion-
free bounded representations of certain ∗-algebras of fractions (Theorem 13.12). In
Sect. 13.4, we consider an auxiliary ∗-algebra X on which A acts and derive repre-
sentations of A from those of X (Theorem 13.20). In Sects. 13.3 and 13.5, we apply
the methods from Sects. 13.2 and 13.4 to the Weyl algebra and to enveloping alge-
bras, respectively, and show that in both cases the natural classes of well-behaved
representations are obtained (Theorems 13.17 and 13.22).
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Throughout this chapter,A denotes a unital complex ∗-algebra, and all ∗-algebras
are complex.

13.1 Well-Behaved Representations of Some Group
Graded ∗-Algebras

In this section, we suppose that A = ⊕g∈G Ag is a G-graded unital ∗-algebra such
that the ∗-algebra B := Ae is commutative and finitely generated.

Our aim is to propose a concept of well-behaved representations for such
∗-algebras. The corresponding definition is the following.

Definition 13.1 A nondegenerate ∗-representation π of A is called well-behaved if
its restriction π�B to the commutative ∗-algebra B is integrable according to Defini-
tion 7.7.

The following proposition holds without any assumption on the ∗-subalgebra B.
Proposition 13.2 Suppose that π is a ∗-representation of the G-graded ∗-algebra
A = ⊕

g∈G Ag and let B := Ae. Then the graph topologies of π and π�B coincide.
In particular, π is closed if and only if π�B is closed.

Proof Since B is a subalgebra of A, the graph topology of π�B is obviously weaker
than that of π. For ag ∈ Ag and ϕ ∈ D(π),

‖π(ag)ϕ‖2 = 〈π((ag)
+ag)ϕ,ϕ〉 ≤ (‖π((ag)

+ag)ϕ‖ + ‖ϕ‖)2.

Since (ag)
+ag ∈ B, this implies that the graph topology of π is weaker than that of

π�B. Hence both graph topologies coincide.
Recall that a∗-representation is closed if andonly if its graph topology is complete.

Therefore, π is closed if and only ifπ�B is closed. �
Each well-behaved representation of A is self-adjoint, because integrable repre-

sentations of B are self-adjoint by Proposition 7.9.

Proposition 13.3 Letπ be awell-behaved representation ofA.Then any self-adjoint
subrepresentation π0 of π is well-behaved.

Proof Since π0 is self-adjoint, by Corollary 4.31 there exists a ∗-representation π1

of A such that π = π0 ⊕ π1. Since π�B is integrable, so is obviously π0�B. �
Example 13.4 (Weyl algebra)
Let A = C〈a, a+|aa+ − a+a = 1〉 be the Weyl algebra, considered as Z-graded
∗-algebrawithZ-grading given by a ∈ A1; see Example 2.23. ThenB = A0 = C[N ],
where N = a+a.

Let π be ∗-representation of A. If π�B is integrable, then π�B, hence π, is self-
adjoint and the operator π(N ) is essentially self-adjoint by Proposition 4.19(vi).
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Hence, by Theorem 8.9, π is unitarily equivalent to some representation πG and so to
a direct sum of Bargmann–Fock representations. Conversely, let π be a direct sum of
Bargmann–Fock representations. Then, π is self-adjoint and for any b = b+ ∈ B =
C[N ], the operator π(b) acts as a diagonal operator, so it is essentially self-adjoint.
Hence π�B is integrable by Theorem 7.11.

Summarizing, a ∗-representation of the Weyl algebra is well-behaved according
to Definition 13.1 if and only if it is unitarily equivalent to a direct sum of Bargmann–
Fock representations. �

Integrable representations of finitely generated commutative ∗-algebras have been
described in Theorem 7.23 by means of spectral measures. The next proposition
restates this result in the present setting for the ∗-algebra B. Recall from Definition
12.22 that B̂+ is the set of characters of B that are nonnegative on B ∩ ∑

A2. For
b ∈ B, fb denotes the function on B̂+ defined by fb(χ) = χ(b),χ ∈ B̂+. Equipped
with the correspondingweak topology, B̂+ is a locally compact topologicalHausdorff
space and each function fb is continuous.

Proposition 13.5 Suppose π is a well-behaved ∗-representation of A. Then there
exists a unique spectral measure Eπ on the locally compact space B̂+ such that

π(b) =
∫

B̂+
fb(χ) dEπ(χ) ≡

∫

B̂+
χ(b) d Eπ(χ) for b ∈ B. (13.1)

The spectral projections Eπ(M) leave the domain D(π) invariant.

Proof Since π is well-behaved, π0 := π�B is integrable. Clearly, Q := B ∩ ∑
A2

is a quadratic module of B and B̂+ = B(Q)+. If c = ∑
j a

+
j a j ∈ B ∩ ∑

A2, then
〈π0(c)ϕ,ϕ〉 = ∑

j ‖π(a j )ϕ‖2 ≥ 0 for all ϕ ∈ D(π), that is, π0(c) ≥ 0. Thus,
Theorem 7.23 applies to π0 and Q, so there exists a unique spectral measure
Eπ := Eπ0 supported on B̂+ such that (7.7) holds. This gives (13.1). By Theorem
7.23(ii), Eπ(M) = Eπ0(M) leaves D(π0) = D(π) invariant. �
Corollary 13.6 Let π be a well-behaved ∗-representation of A and b ∈ B. Then the
operator π(b) is normal, its spectral measure Eπ(b) is Eπ(b) (·) = Eπ( f −1

b (·)), that
is, Eπ(b) (M) = Eπ({χ ∈ B̂+ : χ(b) ∈ M}) for any Borel subset M of C, and its
spectral decomposition is

π(b) =
∫

C

λ d Eπ( f −1
b (λ)). (13.2)

Proof By Theorem 7.11, π(b) is normal. Transforming (13.1) under the mapping
B̂+ � χ → λ := fb(χ) ∈ C yields (13.2). Hence, by the uniqueness of the spectral
measure of a normal operator, Eπ( f −1

b (·)) is the spectral measure of π(b). �
General elements ofAmaybehave badly inwell-behaved ∗-representations.How-

ever, for homogeneous elements ag ∈ Ag there are the following nice results.
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Proposition 13.7 Suppose π is a well-behaved ∗-representation of A. Let a ∈ Ag

and c ∈ Ah, where g, h ∈ G. Then:

∣
∣ π(a)

∣
∣2 = π(a+a) = π(a)∗π(a), π(a) = π(a+)∗, (13.3)

π(ac) = π(a) · π(c) . (13.4)

Proof Clearly, π(a+a) ⊆ π(a)∗π(a) ⊆ π(a)∗π(a), hence π(a+a) ⊆ π(a)∗π(a).
Since π is well-behaved, π�B is integrable. Therefore, since a+a ∈ Bher, π(a+a) is
self-adjoint by Theorem 7.11, so that π(a+a) = π(a)∗π(a) = |π(a)|2. This proves
the first half of (13.3).

Similarly, π(a+a) ⊆ π(a+) π(a+)∗ implies that π(a+a) = π(a+)π(a+)∗, so
π(a+a) = π(a+)∗∗ π(a+)∗ = |π(a+)∗|2. Combining these relationswith the fact that
D(T ) = D(|T |) for any densely defined closed operator T we get

D(
π(a)

) = D( | π(a) | ) = D(
(π(a+a)

)1/2
) = D(|π(a+)∗|) = D(π(a+)∗).

(13.5)

Since π(a) ⊆ π(a+)∗, Eq. (13.5) yields π(a) = π(a+)∗. This is the second half of
(13.3).

Now we prove (13.4). Let us abbreviate T := π(a) · π(c) . Clearly,

π(c+a+ac) = π(c+)π(a+)π(a)π(c) ⊆
(
π(a) · π(c)

)∗
π(a) · π(c) = T ∗T ,

so that π(c+a+ac) ⊆ T ∗T .Sinceπ�B is integrable and c+a+ac ∈ Bher, the operator
π(c+a+ac) is self-adjoint. But T ∗T is also self-adjoint. Hence π(c+a+ac) = T ∗T
which implies D((π(c+a+ac) )1/2) = D(|T |) = D( T ). Since ac ∈ Agh , Eq. (13.5)
remains valid if a is replaced by ac and yields D(π(ac) ) = D((π(c+a+ac) )1/2).
From the two preceding domain equalities we conclude that D(π(ac) ) = D( T ).

Combined with the obvious inclusion π(ac) ⊆ π(a) · π(c) = T , this gives
π(ac) = T , which is the equality (13.4). �

13.2 Representations Associated with ∗-Algebras
of Fractions

Throughout this section, we deal with the following setup:

(1) A is a unital ∗-algebra and S is a countable submonoid of A\{0} which is
invariant under the involution (i.e., 1 ∈ S and st ∈ S, s+ ∈ S for s, t ∈ S).

(2) B is a unital ∗-algebra such that A is a ∗-subalgebra of B containing the unit
element of B and all elements of S are invertible in B.



13.2 Representations Associated with ∗-Algebras of Fractions 305

(3) X is a unital ∗-subalgebra of B such that S−1 is a right Ore subset of X (i.e.,
S−1 ⊆ X and for s ∈ S, x ∈ X there exist t ∈ S, y ∈ X such that s−1y = xt−1,
or equivalently, sx = yt).

It should be emphasized that (3) requires that the set S−1 (!) of inverses of elements
of S is an Ore set of X. Further, A and B have the same unit elements and

S ⊆ A ⊆ B, S−1 ⊆ X ⊆ B.

Since S is ∗-invariant, so is S−1. Hence the right Ore set S−1 of X is also a left
Ore set (i.e., for s ∈ S, x ∈ X there exist t ∈ S, y ∈ Y such that ys−1 = t−1x , or
equivalently, xs = t y). Note that the ∗-algebras B and X contain “fractions” of the
form as−1, where a ∈ A, s ∈ S.

A simple example for the preceding setup is the following.

Example 13.8 Let A = C[x] and S = {sn : n ∈ N0}, where s := x2+1. Let B be
the ∗-algebra of rational functions on R generated by A and s−1 = (x2 + 1)−1 and
let X be the unital ∗-subalgebra of B generated by a := s−1 and b := xs−1. Since X
is commutative, S−1 is obviously a right Ore subset of X. �
Remark 13.9 We mention two interesting and important examples of Ore sets.
These results will not be used in this book. Let A be the enveloping algebra E(g)
of a finite-dimensional Lie algebra g (see Sect. 9.1) or the Weyl algebra W(d) (see
Example 2.10). Then the set A\{0} is a right Ore subset of A and also a left Ore set,
because it is ∗-invariant. For A = E(g) this is proved in [Di77a, 3.6.13], while for
A = W(d) this follows from [Di77a, 4.6.4], [Co95, Exercise 5.5], or [Lm99, p. 318,
Exercise 12]. �

Some simple facts are collected in the next lemma. Set

XS := {
xs : x ∈ X, s ∈ S

} ⊆ B, SX := {
sx : x ∈ X, s ∈ S

} ⊆ B.

Lemma 13.10 Suppose that the conditions of (3) are satisfied.

(i) Let F be a finite subset of S. There exists an element t0 ∈ S such that st−1 ∈ X
and t−1s ∈ X for all s ∈ F , where t := t+0 t0 ∈ S.

(ii) XS = SX.
(iii) XS is a unital ∗-subalgebra of B.
(iv) Let A0 be a set of generators of the ∗-algebra A. If A0 ⊆ XS, then A ⊆ XS.

Proof (i): Wefirst prove by induction on the cardinality that for eachfinite setF ⊆ S
there exists a t1 ∈ S such that st−1

1 ∈ X for all s ∈ F . Suppose this is true for F .
Let s1 ∈ S. Since s−1

1 ∈ X and S−1 is a right Ore set, there are elements t2 ∈ S
and y ∈ X such that s−1

1 t−1
2 = t−1

1 y. Then s(t2s1)−1 = (st−1
1 )y ∈ X for s ∈ F

and s1(t2s1)−1 = t−1
2 ∈ X. This proves our claim with t2s1 ∈ S for F ∪ {s1}.

Again, let F be a finite subset of S. Applying the statement proved in the
preceding paragraph to the set F ∪ F+, there exists an element t0 ∈ S such that



306 13 Well-Behaved Representations

st−1
0 ∈ X and s+t−1

0 ∈ X for s ∈ F. Then we have s(t +
0 t0)−1 = (st−1

0 )(t +
0 )−1 ∈

X and (t+0 t0)−1s = ((s+t−1
0 )(t +

0 )−1)+ ∈ X for s ∈ F .

(ii): That S−1 is a right Ore set means that SX ⊆ XS. Hence, since X and S are
∗-invariant, XS ⊆ SX. Thus, XS = SX.

(iii): Let x1, x2 ∈ X and s1, s2 ∈ S. By the right Ore property of S−1, there are
elements t1 ∈ S, y1 ∈ X such that s1x2 = y1t1. Then x1s1x2s2 = x1y1t1s2 ∈
XS. By (i), we can find an element t ∈ S such that s1t−1 ∈ X and s2t−1 ∈
X. For λ1,λ2 ∈ C, we obtain λ1x1s1 + λ2x2s2 = (λ1x1s1t−1 + λ2x2s2t−1)t ∈
XS. This proves that XS is a linear subspace of B which is closed under mul-
tiplication. Obviously, 1 = 1 · 1 ∈ XS. Since XS = SX by (ii), XS is invari-
ant under the involution. Summarizing, we have shown that XS is a unital
∗-subalgebra of B.

(iv): Follows at once from (iii). �
Retain the conditions (1), (2), (3) and suppose A ⊆ XS. Recall that S−1 ⊆ X.

Definition 13.11 A ∗-representation ρ of the ∗-algebra X is called S−1-torsionfree
if ker ρ(s−1) = {0} for all s ∈ S.

Suppose ρ is a nondegenerate S−1-torsionfree *-representation of X acting by
bounded operators on a Hilbert space H such that D(ρ) = H. Then ρ(1) = I ,
because ρ is nondegenerate. Our aim is to associate an (in general unbounded) ∗-
representation πρ of the ∗-algebra A with ρ. The domain of πρ is

D(πρ) := ⋂

s∈S
ρ(s−1)H. (13.6)

Let a ∈ A. SinceA ⊆ XS, there exists an s ∈ S such that as−1 ∈ X.Then the inverse
operator ρ(s−1)−1 exists (because ρ is S−1-torsionfree)), and we can define

πρ(a)ϕ := ρ(as−1)ρ(s−1)−1ϕ, ϕ ∈ D(πρ). (13.7)

The main result of this section is the following theorem.

Theorem 13.12 Suppose A,S,B,X satisfy the assumptions (1), (2), (3) and, in addi-
tion, A ⊆ XS. Let ρ be a bounded nondegenerate S−1-torsionfree ∗-representation
of the ∗-algebra X on a Hilbert space D(ρ) = H.

Then πρ is a well-defined closed ∗-representation of the ∗-algebraA on the dense
domain D(πρ) of H. It has a Frechet graph topology, and we have πρ(1) = I ,

πρ(s)D(πρ) = D(πρ) and πρ(s)ϕ = ρ(s−1)−1�D(πρ) f or s ∈ S. (13.8)

Some technical steps of the proof are contained in the following lemma.

Lemma 13.13 (i) D(πρ) is dense in the Hilbert space H.

(ii) ρ(x)D(πρ) ⊆ D(πρ) for x ∈ X.

(iii) ρ(s−1)D(πρ) = D(πρ) for s ∈ S.
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Proof (i): The proof is based on the Mittag-Leffler lemma (Proposition 3.30).
We enumerate the countable setS = {r j : j ∈ N} such that r1 = 1 and putSn :=
{r1, . . . , rn}. From Lemma 13.10(i) it follows that for any n ∈ N there exists an
element tn = t+n ∈ S such that st−1

n ∈ X for all s ∈ Sn and tnt
−1
n+1 ∈ X.

Let En denote the vector space ρ(t−1
n )H, equipped with the inner product

(ϕ,ψ)n := 〈ρ(t−1
n )−1ϕ, ρ(t−1

n )−1ψ〉, ϕ,ψ ∈ En, n ∈ N0.

Since En is the range of the bounded injective operator ρ(t−1
n ), (En, (·, ·)n) is a

Hilbert space with norm || · ||n = ||ρ(t−1
n )−1 · ||.

We first show that En+1 is a subspace of En and that || · ||n ≤ cn|| · ||n+1 for
some constant cn > 0. Letψ ∈ H and setϕ := ρ(t−1

n+1)ψ. Since tnt
−1
n+1 ∈ X by the

choice of elements tk , we have ϕ = ρ(t−1
n+1)ψ = ρ(t−1

n )ρ(tnt
−1
n+1)ψ. This proves

that En+1 ⊆ En . Set cn = ||ρ(tnt
−1
n+1)||. By definition, ||ϕ||n+1 = ||ψ|| and hence

||ϕ||n = ||ρ(tnt
−1
n+1)ψ|| ≤ ||ρ(tnt

−1
n+1)|| ||ψ|| = cn ||ϕ||n+1.

Next we prove that En+1 is dense in (En, || · ||n). It suffices to show that the
null vector is the only vector ζ ∈ En which is orthogonal to En+1 in the Hilbert
space (En, (·, ·)n). Put ξ := ρ(t−1

n )ζ. Then, since ζ is orthogonal to En+1 in
(En, (·, ·)n),

0 = (ζ, ρ(t−1
n+1)ϕ)n = 〈ρ(t−1

n )−1ζ, ρ(t−1
n )−1ρ(t−1

n+1)ϕ〉
= 〈ξ, ρ(t−1

n )−1ρ(t−1
n )ρ(tnt

−1
n+1)ϕ〉 = 〈ξ, ρ(tnt

−1
n+1)ϕ〉

= 〈ρ(tnt
−1
n+1)

∗ξ,ϕ〉 = 〈ρ(t−1
n+1tn)ξ,ϕ〉

= 〈ρ(t−1
n+1tn)ρ(t−1

n )ζ,ϕ〉 = 〈ρ(t−1
n+1)ζ,ϕ〉

for all ϕ ∈ H. Thus, ρ(t−1
n+1)ζ = 0. Since ρ is torsionfree, ker ρ(t−1

n+1) = {0}.
Hence ζ = 0. This proves that En+1 is dense in En .
In the preceding paragraphs we have shown that the assumptions of
Proposition 3.30 are fulfilled. Therefore, E∞ := ∩n∈N0En is dense in the normed
space E0 = H.Obviously,D(πρ) ⊆ E∞.Let s ∈ S. Then s ∈ Sn for somen ∈ N

and hence ρ(t−1
n )H = ρ(s−1)ρ(st−1

n )H ⊆ ρ(s−1)H. This yields E∞ ⊆ D(πρ).
Therefore, D(πρ) = E∞ is dense inH.

(ii): Suppose ϕ ∈ D(πρ) and x ∈ X. Let s ∈ S. By assumption (3) there exist t ∈
S, y ∈ X such that xt−1 = s−1y. By (13.6), there is a vector ψ ∈ H such that
ϕ = ρ(t−1)ψ. Then ρ(x)ϕ = ρ(xt−1)ψ = ρ(s−1)ρ(y)ψ ∈ ρ(s−1)H. Since s ∈
S was arbitrary, ρ(x)ϕ ∈ ∩s∈S ρ(s−1)H = D(πρ).

(iii): Let s ∈ S. Since ρ(s−1)D(πρ) ⊆ D(πρ) by (ii), it suffices to show that each
vector ϕ ∈ D(πρ) is in ρ(s−1)D(πρ). By (13.6), we have ϕ ∈ ρ(s−1)H and ϕ ∈
ρ((ts)−1)H for all t ∈ S, so there exist vectorsψ ∈ H and ηt ∈ H such thatϕ =
ρ(s−1)ψ = ρ((ts)−1)ηt = ρ(s−1)ρ(t−1)ηt . Since ker ρ(s−1) = {0}, the latter
impliesψ = ρ(t−1)ηt , so thatψ ∈ ∩t∈S ρ(t−1)H = D(πρ) andϕ = ρ(s−1)ψ.
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Proof of Theorem 13.12 First we prove that the operator πρ(a) is well defined, that
is, πρ(a) in (13.7) does not depend on the particular element s of S satisfying as−1 ∈
X. Let s̃ ∈ S be another element such that ãs−1 ∈ X. By Lemma 13.10(i), there
exists an element t ∈ S such that st−1 ∈ X and s̃t−1 ∈ X. Then we have at−1 =
(as−1)(st−1) ∈ X. Let r denote s or s̃. Suppose ϕ ∈ D(πρ). We write ϕ = ρ(t−1)ψ
with ψ ∈ H and compute

ρ(ar−1)ρ(r−1)−1ϕ = ρ(ar−1)ρ(r−1)−1ρ(t−1)ψ

= ρ(ar−1)ρ(r−1)−1ρ(r−1r t−1)ψ = ρ(ar−1)ρ(r t−1)ψ

= ρ(ar−1r t−1)ρ(t−1)−1ψ = ρ(at−1)ρ(t−1)−1ϕ.

We apply this for r = s, s̃ and obtain ρ(as−1)ρ(s−1)−1ϕ = ρ(ãs−1)ρ(̃s−1)−1ϕ. This
shows that the operator πρ(a) is well defined.

Since ρ(s−1)−1ϕ ∈ D(πρ) and ρ(as−1)ρ(s−1)−1ϕ ∈ D(πρ) by Lemma 13.13,(ii)
and (iii), πρ(a)ϕ ∈ D(πρ). Hence πρ(a) leaves D(πρ) invariant.

Let a, b ∈ A. We prove that πρ(a + b) = πρ(a) + πρ(b) and πρ(ab) =
πρ(a)πρ(b). For this we use essentially the fact, proved in the first paragraph, that in
the definition (13.7) of πρ(a) any element s ∈ S such that as−1 ∈ X can be taken.

SinceA ⊆ XS, there are s1, s2 ∈ S such that as−1
1 ∈ X and bs−1

2 ∈ X. By Lemma
13.10(i) we can find s ∈ S such that s1s−1 ∈ X and s2s−1 ∈ X. Since as−1 ∈ X,
bs−1 ∈ X, and (a + b)s−1 ∈ X, the relation

ρ(as−1)ρ(s−1)−1ϕ + ρ(bs−1)ρ(s−1)−1ϕ = ρ((a + b)s−1)ρ(s−1)−1ϕ

for ϕ ∈ D(πρ) implies that πρ(a + b)ϕ = πρ(a)ϕ + πρ(b)ϕ.
Again by A ⊆ XS, there exist t1, t2, t3, t4 ∈ S such that at−1

1 , bt−1
2 , abt−1

3 ∈ X
and t1bt

−1
4 ∈ X. By Lemma 13.10(i) there is an element t ∈ S such that t j t−1 ∈

X, j = 1, 2, 3, 4. Then abt−1 = (abt−1
3 )(t3t−1) ∈ X, t1bt−1 = (t1bt

−1
4 )(t4t−1) ∈ X

and bt−1 = (bt−1
2 )(t2t−1) ∈ X. Let ϕ ∈ D(πρ). Inserting the preceding facts and the

definitions of πρ(ab),πρ(a), πρ(b) we derive

πρ(ab)ϕ = ρ(abt−1)ρ(t−1)−1ϕ = ρ(at−1
1 )ρ(t1bt

−1)ρ(t−1)−1ϕ

= ρ(at−1
1 )ρ(t−1

1 )−1ρ(t−1
1 )ρ(t1bt

−1)ρ(t−1)−1ϕ

= πρ(a)ρ(t−1
1 t1bt

−1)ρ(t−1)−1ϕ = πρ(a)ρ(bt−1)ρ(t−1)−1ϕ

= πρ(a)πρ(b)ϕ.

Next we show that 〈πρ(a)ϕ,ψ〉 = 〈ϕ,πρ(a+)ψ〉 for a ∈ A and ϕ,ψ ∈ D(πρ).

From Lemma 13.10(i) there are elements t1, t2 ∈ S and t = t+ ∈ S such that
at−1

1 , a+t−1
2 ∈ X and t1t−1, t2t−1 ∈ X.Thenat−1 = (at−1

1 )(t1t−1) ∈ X anda+t−1 =
(a+t−1

1 )(t2t−1) ∈ X. Using that ρ is ∗-representation defined on H and ρ(t−1) is a
bounded self-adjoint operator we compute
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〈πρ(a)ϕ,ψ〉 = 〈ρ(at−1)ρ(t−1)−1ϕ,ψ〉 = 〈ρ(t−1)−1ϕ, ρ((at−1)+)ψ〉
= 〈ρ(t−1)−1ϕ, ρ(t−1a+)ρ(t−1)ρ(t−1)−1ψ〉
= 〈ρ(t−1)−1ϕ, ρ(t−1a+t−1)ρ(t−1)−1ψ〉
= 〈ρ(t−1)−1ϕ, ρ(t−1)ρ(a+t−1)ρ(t−1)−1ψ〉
= 〈ρ(t−1)ρ(t−1)−1ϕ,πρ(a

+)ψ〉 = 〈ϕ,πρ(a
+)ψ〉,

where in the second line we can write ψ ∈ D(πρ) as ψ = ρ(t−1)ρ(t−1)−1ψ because
ρ(t−1)D(πρ) = D(πρ) by Lemma 13.13(iii).

Setting a = s = 1 in (13.7) yields πρ(1)ϕ = ϕ for ϕ ∈ D(πρ), so πρ(1) = I .
Recall from Lemma 13.13(i) thatD(πρ) is dense inH. Thus, we have shown that

πρ is a ∗-representation of A on the dense domain D(πρ) of the Hilbert space H.
Let s ∈ S. Then, πρ(s)ϕ = ρ(ss−1)ρ(s−1)−1ϕ = ρ(s−1)−1ϕ for ϕ ∈ D(πρ),

because ρ(1) = I . Since ρ(s−1)D(πρ) = D(πρ) by Lemma 13.13(iii), we obtain
πρ(s)D(πρ) = D(πρ). This proves (13.8).

Finally we prove the assertion concerning the graph topology of πρ. Let us retain
the notation of the proof of Lemma 13.13(i). Then, since πρ(tn)ϕ = ρ(t−1

n )−1ϕ for
ϕ ∈ D(πρ) by (13.8), ||πρ(tn)ϕ|| is just the norm ||ϕ||n . Let a ∈ A. Applying again
that A ⊆ XS, there exist n ∈ N and t ∈ Sn such that at−1 ∈ X. Then t t−1

n ∈ X, so
that at−1

n = (at−1)(t t−1
n ) ∈ X and hence

||πρ(a)ϕ|| = ||ρ(at−1
n )ρ(t−1

n )−1ϕ|| = ||ρ(at−1
n )πρ(tn)ϕ|| ≤ ||ρ(at−1

n )|| ||ϕ||n.

The preceding shows that the graph topology of πρ is generated by the countable
family of norms || · ||n , n ∈ N. Hence it is metrizable. It is complete and so a Frechet
topology, since D(πρ) = ∩n En is the intersection of Hilbert spaces (En, || · ||n). In
particular, πρ is closed. This completes the proof of Theorem 13.12. �
Corollary 13.14 Retain the assumptions and the notation of Theorem 13.12. Sup-
pose there is a set X0 of generators of the algebra X such that each x ∈ X0 is of
the form x = as−1 in B, with a ∈ A, s ∈ S. Then πρ(A)′s = ρ(X)′. In particular, the
∗-representation πρ of A is irreducible if and only if the ∗-representation ρ of X is
irreducible.

Proof Suppose T ∈ πρ(A)′s . Then, Tϕ ∈ D(πρ) and Tπρ(a)ϕ = πρ(a)Tϕ for a ∈
A, ϕ ∈ D(πρ). Let x = as−1 ∈ X0, where a ∈ A, s ∈ S, and ψ ∈ D(πρ). By Lemma
13.13(ii), ϕ := ρ(s−1)ψ is in D(πρ). Applying (13.7) twice we derive

Tρ(x)ψ = Tρ(as−1)ρ(s−1)−1ϕ = Tπρ(a)ϕ = πρ(a)Tϕ = ρ(as−1)ρ(s−1)−1Tϕ

= ρ(as−1)πρ(s)Tϕ = ρ(as−1)Tπρ(s)ϕ = ρ(x)Tρ(s−1)−1ϕ = ρ(x)Tψ.

Since D(πρ) is dense in H, this gives Tρ(x) = ρ(x)T on H for x ∈ X0. Hence
T ∈ ρ(X)′, because X0 generates the algebra X.
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Conversely, let T ∈ ρ(X)′. From (13.6) it follows at once that T leaves D(πρ)

invariant. Therefore, since T commutes with ρ(as−1) and ρ(s−1), hence with
ρ(s−1)−1, (13.7) implies that T commutes with πρ(a). Thus, T ∈ πρ(A)′s .

The assertion concerning the irreducibility follows from the fact (Proposition
4.26) that πρ is irreducible if and only if 0, I are the only projections in πρ(A)′s . �
Example 13.15 (Example 13.8 continued)
Retain the notation of Example 13.8. Recall that X is the unital ∗-algebra of rational
functions generated by a := s−1 = (x2 + 1)−1 and b := xs−1 = x(x2 + 1)−1. Then
(a − 1

2 )
2 + b2 = 1

4 , so the ∗-algebra X is bounded by Corollary 10.8. Hence each
closed ∗-representation ρ of X acts by bounded operators on D(ρ) = H(ρ).

Let C be the circle in R2 defined by the equation (λ − 1
2 )

2 + μ2 = 1
4 . Then, since

ρ(a) and ρ(b) are commuting bounded self-adjoint operators on H(ρ) satisfying
(ρ(a) − 1

2 I )
2 + ρ(b)2 = 1

4 I , it follows from the multi-dimensional spectral theorem
that there exists a spectral measure E supported on C such that

ρ(p(a, b)) =
∫

C
p(λ,μ) dE((λ,μ)), p ∈ C[a, b].

Then ker ρ(a) = ker ρ(s−1) = E((0, 0))H(ρ). Therefore, ρ is torsionfree if and only
if E((0, 0)) = 0.

Assume that E((0, 0)) = 0. Note that x = ba−1 in the larger algebra B. By (13.7)
and (13.6), πρ(x)ϕ = ρ(b)ρ(a)−1ϕ for ϕ ∈ D(πρ) = ∩∞

n=1ρ(an)H(ρ), so

πρ(q(x))ϕ =
∫

C
q(μλ−1) dE((λ,μ))ϕ, q ∈ A = C[x], ϕ ∈ D(πρ). �

13.3 Application to the Weyl Algebra

In this section,A is theWeyl algebra C〈p, q|p = p+, q = q+, pq − qp = −i 〉 and
the submonoid S consists of 1 and all finite products of elements from the set

{
s1 = p − i, s2 = p + i, s3 = q − i, s4 = q + i

}
.

Recall that the Schrödinger representation πS of A on L2(R) acts by

(πS(p)ϕ)(t) = −iϕ′(t), (πS(q)ϕ)(t) = tϕ(t) for ϕ ∈ D(πS) = S(R).

Sincemultiplication by the function (t ± i)−1 leaves the Schwartz spaceS(R) invari-
ant, πS(s3) and πS(s4) are bijections ofS(R). Applying the Fourier transform (Exam-
ple 8.11) it follows that the same is true for πS(s1) and πS(s2). Hence x := πS(s1)−1

and y := πS(s3)−1 are bounded operators of L+(S(R)). Clearly, x+ = πS(s2)−1 and
y+ = πS(s4)−1. Then the following relations are valid:



13.3 Application to the Weyl Algebra 311

x − x+ = 2i x+x, y − y+ = 2i y+y, xx+ = x+x, yy+ = y+y, (13.9)

xy − yx = −ixy2x = −iyx2y, xy+ − y+x = −ix(y+)2x = −iy+x2y+.

(13.10)

Indeed, the relations (13.9) are obvious resolvent identities, while the relations
(13.10) are just the resolvent Eqs. (8.53) and (8.54) which hold by Example 8.21.

Let B denote the ∗-subalgebra of L+(S(R)) generated by the operators x, y,
and πS(A) and let X be the unital ∗-subalgebra of B generated by x, y. Since πS

is faithful, A becomes a ∗-subalgebra of B by identifying πS( f ) and f ∈ A. From
the relations (13.10) it follows immediately that xX = Xx and yX = Xy. Hence
x+X = Xx+ and y+X = Xy+. Since x ∼= s−1

1 , x+ ∼= s−1
2 , y ∼= s−1

3 , y+ ∼= s−1
4 , the

latter means that the four generators s−1
j of the monoid S−1 in X obey the right

Ore condition and so does S−1. Thus assumption (3) is fulfilled. Clearly, p − i =
s−1
1 s21 ∈ XS and q − i = s−1

3 s23 ∈ XS. Therefore, from Lemma 13.10(iv), applied
with A0 = {p − i, q − i }, it follows that A ⊆ XS. Summarizing, all assumptions of
Theorem 13.12 and Corollary 13.14 (with X0 = {x, x+, y, y+}) are satisfied.
Lemma 13.16 Suppose z is a bounded normal operator on a Hilbert spaceH such
that ker z = {0} and z − z∗ = 2 iz∗z. Then b := z−1 + iI is self-adjoint.

Proof Because z is normal, we obtain ker z∗ = {0}. Since z∗ = z(I − 2 iz∗) and
z = z∗(I + 2 iz), we have z∗H = zH and soD((z∗)−1) = D(z−1). The identity z∗ =
z(I − 2 iz∗) implies that z−1z∗ = I − 2 iz∗ onH. Let ψ ∈ H. Then, for ϕ := z∗ψ ∈
D((z∗)−1), we get z−1ϕ = z−1z∗ψ = ψ − 2 iz∗ψ = (z∗)−1ϕ − 2 iϕ. Thismeans that
z−1 ⊇ (z∗)−1 − 2 iI . SinceD((z∗)−1) = D(z−1) as noted above, it follows that z−1 =
(z∗)−1 − 2 iI . Using the latter identity we derive

b = z−1 + iI = (z∗)−1 − iI = (z−1)∗ − iI = b∗. �
Theorem 13.17 Suppose ρ is a nondegenerate bounded S−1-torsionfree
∗-representation of the ∗-algebra X on a Hilbert space D(ρ) = H. Then the ∗-
representation πρ of the Weyl algebra A from Theorem 13.12 is unitarily equivalent
to a direct sum of Schrödinger representations.

Proof Set z := ρ(x) = ρ(s−1
1 ). Then z∗ = ρ(x+). From the first and the third rela-

tions of (13.9) it follows that z is a normal operator satisfying z − z∗ = 2 iz∗z.
Since ρ is torsionfree, ker z = {0}. Therefore, Lemma 13.16 applies, so the operator
P := z−1 + iI = ρ(s−1

1 )−1 + iI is self-adjoint. Replacing x by y the same reasoning
shows that Q := ρ(s−1

3 )−1 + iI is a self-adjoint operator.
Let ϕ ∈ D(πρ). We show that PQϕ − QPϕ = −iϕ. The relation pq − qp = −i

implies s1s3 − s3s1 = −i. Since πρ is a representation of A by Theorem 13.12,

πρ(s1)πρ(s3)ϕ − πρ(s3)πρ(s1)ϕ = −iϕ. (13.11)
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From (13.8) and the definition of P we obtain πρ(s1)ϕ = ρ(s−1
1 )−1ϕ = (P − i)ϕ.

Similarly, πρ(s3)ϕ = (Q − i)ϕ. Inserting these expressions into Eq. (13.11) we get
(P − i)(Q − i)ϕ − (Q − i)(P − i)ϕ = −iϕ, so that PQϕ − QPϕ = −iϕ.

By (13.8), (P − i)(Q − i)D(πρ) = πρ(s1)πρ(s3)D(πρ) = D(πρ). Therefore, the
self-adjoint operators P and Q satisfy the assumptions of Kato’s Theorem 8.22. By
this theorem, {P, Q} is unitarily equivalent to a direct sum of Schrödinger pairs.

We show that πρ is unitarily equivalent to a direct sum of Schrödinger repre-
sentations. The map ρ → πρ (according to Theorem 13.12) respects unitary equiv-
alences and direct sums. Hence it suffices to prove this in the case when {P, Q} is
theSchrödinger pair.By construction,πρ(p) = πρ(s1 + i) ⊆ (P − i) + i = P . Simi-
larly,πρ(q) ⊆ Q. Since the Schrödinger representation is the largest ∗-representation
π of A on L2(R) such that π(p) ⊆ P and π(q) ⊆ Q, this implies πρ ⊆ πS .

We prove the converse inclusion. From the relation P = ρ(s−1
1 )−1 + iI we get

(P − i)−1 = ρ(s−1
1 ). Similarly, we derive (P + i)−1 = ρ(s−1

2 ), (Q − i)−1 = ρ(s−1
3 ),

and (Q + i)−1 = ρ(s−1
4 ). The Schwartz space S(R) is invariant under (P ± i)−1

and (Q ± i)−1, so it is contained in the intersection of ranges of finite products
of operators ρ(s−1

j ) and hence in D(πρ) by (13.6). Thus, D(πS) = S(R) ⊆ D(πρ).
Combined with the result from the preceding paragraph, we obtain πρ = πS . �

13.4 Compatible Pairs of ∗-Algebras

In this section, A is a complex unital ∗-algebra and X is a (not necessarily unital)
complex ∗-algebra.
Definition 13.18 We shall say that (A,X) is a compatible pair of ∗-algebras if X
is a left A-module, with left action denoted by �, that is, there exists a linear map
θ : A ⊗ X → X, written as θ(a ⊗ x) = a � x , such that

(ab) � x = a � (b � x) and 1A � x = x for a, b ∈ A, x ∈ X, (13.12)

satisfying the condition

(a � x)+y = x+(a+ � y) for a ∈ A, x, y ∈ X. (13.13)

We illustrate this notion with a simple example.

Example 13.19 Suppose that B is a ∗-algebra which contains A and X as
∗-subalgebras such that a · x ∈ X and 1A · x = x for a ∈ A, x ∈ X. We define
θ(

∑
j a j ⊗ x j ) := ∑

j a j · x j , that is, a � x := a · x , where “·” always denotes the
product of the larger ∗-algebra B.

Then (A,X) is a compatible pair of ∗-algebras. Condition (13.13) and the first
equation of (13.12) follow from the ∗-algebra axioms for B. We verify (13.13) by

(a � x)+y = (a · x)+y = (x+ · a+) · y = x+ · (a+ · y) = x+(a+ � y). �
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Any compatible pair (A,X) allows one to construct ∗-representations of A from
nondegenerate ∗-representations of X, as shown by the following theorem.

Theorem 13.20 Suppose (A,X) is a compatible pair of ∗-algebras and let ρ be a
nondegenerate ∗-representation of the ∗-algebraX. Then there exists a unique closed
∗-representation πρ of A on the Hilbert spaceH(πρ) = H(ρ) such that πρ(1A) = I ,
ρ(X)D(ρ) := Lin {ρ(x)ϕ : x ∈ X,ϕ ∈ D(ρ)} is a core for πρ, and

πρ(a)ρ(x)ϕ = ρ(a � x)ϕ for a ∈ A, x ∈ X, ϕ ∈ D(ρ). (13.14)

Proof The uniqueness assertion is obvious, so it suffices to prove the existence.
Let ζ = ∑

j ρ(x j )ϕ j and η = ∑
k ρ(yk)ψk be arbitrary vectors from ρ(X)D(ρ),

where x j , yk ∈ X and ϕ j ,ψk ∈ D(ρ), and let a ∈ A. Using the compatibility condi-
tion (13.13) and the ∗-representation properties of ρ we compute

〈 ∑

j
ρ(a � x j )ϕ j ,

∑

k
ρ(yk)ψk

〉
=

∑

j,k
〈ϕ j , ρ((a � x j )

+)ρ(yk)ψk〉
=

∑

j,k
〈ϕ j , ρ((a � x j )

+yk)ψk〉 =
∑

j,k
〈ϕ j , ρ(x+

j (a+ � yk))ψk〉
=

∑

j,k
〈ϕ j , ρ(x+

j )ρ(a+ � yk)ψk〉 =
〈 ∑

j
ρ(x j )ϕ j ,

∑

k
ρ(a+ � yk)ψk

〉
,

which means that
〈 ∑

j
ρ(a � x j )ϕ j , η

〉
=

〈
ζ,

∑

k
ρ(a+ � yk)ψk

〉
. (13.15)

Now suppose ζ = 0. Then Eq. (13.15) implies 〈∑ j ρ(a � x j )ϕ j , η〉 = 0 for all
vectors η ∈ ρ(X)D(ρ). Since the representation ρ is nondegenerate, the set of such
vectors η is dense in H(ρ). Therefore,

∑
j ρ(a � x j )ϕ j = 0. Hence there exists a

well-defined (!) linear operator π(a) on the domain ρ(X)D(ρ) given by

π(a)
( ∑

j
ρ(x j )ϕ j

)
:=

∑

j
ρ(a � x j )ϕ j , a ∈ A. (13.16)

We insert this definition into Eq. (13.15). Then (13.15) reads as

〈π(a)ζ, η
〉 = 〈ζ,π(a+)η〉 for a ∈ A, ζ, η ∈ ρ(X)D(ρ). (13.17)

From (13.16) and the first equality of (13.12) it follows that π is an algebra homo-
morphism of A in the algebra L(ρ(X)D(ρ)) of linear operators on ρ(X)D(ρ). Since
π(1A)(ρ(x)ϕ) = ρ(1A � x)ϕ = ρ(x)ϕ by the second equality of (13.12) , π(1A) is
the identity map of ρ(X)D(ρ). Combined with (13.17) we have shown that π is a
∗-representation of the ∗-algebra A on the domain ρ(X)D(ρ) such that π(1A) = I .
Let πρ be the closure of π. Then all assertions of Theorem 13.20 hold. �

Representations of the form πρ, for appropriate compatible pairs and bounded
∗-representations ρ, can be used to define well-behaved representations of A. In
the next section, we elaborate this idea with an important example. Another much
simpler example is sketched in Exercise 3.
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13.5 Application to Enveloping Algebras

In this section, we use the notation and some results on Lie groups and enveloping
algebras from Sect. 9.1. Let A := E(g) be the enveloping algebra of the Lie algebra
g of a Lie group G and X the ∗-subalgebra C∞

0 (G) of the ∗-algebra L1(G;μl).
First we recall some basic facts. Themultiplication ofX is the convolution f1 ∗ f2,

see (9.4), and the involution of X is given by f +(g) := ΔG(g)−1 f (g−1), see (9.7),
where ΔG is the modular function of G. Note that ΔG(g)−1 = ΔG(g)−1 and right
and left Haar measures of G are related by dμr (g) = ΔG(g)−1dμl(g), g ∈ G.

Each element x ∈ g acts onC∞
0 (G) by (x̃ f )(g) = d

dt f (exp(−t x)g)|t=0; see (9.1).
Set 1̃ f = f . The map x → x̃ extends uniquely to a unit preserving algebra homo-
morphism of E(g). Then X becomes a left A-module satisfying (13.12) by

x � f := x̃ f for x ∈ A = E(g), f ∈ X = C∞
0 (G). (13.18)

Lemma 13.21 With this left action �, (A,X) is a compatible pair of ∗-algebras.
Proof By the preceding it only remains to prove that (13.13) is satisfied. This can be
derived from Example 13.19; in Exercise 5 we sketch such a proof. Here we prefer
to give a direct proof of the crucial condition (13.13) by an explicit computation.

It is easily seen (see Exercise 4) that if (13.13) holds for a set of algebra generators,
it does for the whole algebra A. Therefore, since (13.13) is trivial for 1, it suffices to
prove it for elements of g.

Let x ∈ g and f1, f2 ∈ X. Using the above formulas and x+ = −x we derive

((x � f1)
+ ∗ f2)(g) =

∫

(x � f1)
+(k) f2(k

−1g) dμl (k)

=
∫

ΔG(k)−1 (x̃ f1)(k−1) f2(k
−1g) dμl (k)

=
∫

(x̃ f1)(k−1) f2(k
−1g) dμr (k)

= − d

dt

∣
∣
t=0

∫

f1(exp(t x)k−1) f2(k
−1g) dμr (k)

= − d

dt

∣
∣
t=0

∫

f1(exp(t x)k−1) f2(k
−1g) dμr (k exp(−t x))

= − d

dt

∣
∣
t=0

∫

f1(h−1) f2(exp(−t x)h−1g) dμr (h)

= −
∫

f1(h−1) (x̃ f2)(h
−1g) dμr (h)

= −
∫

ΔG(h)−1 f1(h−1) (x̃ f2)(h
−1g) dμl (h)

= −
∫

f +
1 (h) (x̃ f2)(h

−1g) dμl (h)

= −( f +
1 ∗ (x � f2))(g) = ( f +

1 ∗ (x+ � f2))(g). �
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The following theorem says that certain representations πρ from Theorem 13.20
are infinitesimal representations dU .

Theorem 13.22 Let ‖ · ‖1 denote the norm of L1(G;μl). Suppose ρ is a bounded
nondegenerate ∗-representation of the ∗-algebra X on a Hilbert space D(ρ) = H
that is continuous in the norm ‖ · ‖1. Then there exists a unitary representation of
the Lie group G on H such that dU = πρ.

Proof Since X = C∞
0 (G) is dense in (L1(G;μl), ‖ · ‖1) and ρ is ‖ · ‖1-continuous,

ρ extends by continuity to a continuous nondegenerate ∗-representation, denoted
again by ρ, of the Banach ∗-algebra L1(G;μl). A basic result from group repre-
sentation theory (see, e.g., [F95, Theorem 3.11]) states that ρ comes from a unitary
representation U of the Lie group G, that is, we have

ρ( f )ϕ =
∫

G
f (g)U (g)ϕ dμl(g) = U f ϕ for f ∈ L1(G;μl), ϕ ∈ D(ρ). (13.19)

In particular, (13.19) holds for f ∈ X. By definition, the domain ρ(X)D(ρ) is the
span of vectors U f ϕ, where f ∈ C∞

0 (G), ϕ ∈ H. This is just the Gårding domain
DG(U ) of U . Let x ∈ E(g), f ∈ C∞

0 (G), and ϕ ∈ H. Then, by formula (13.14) and
Proposition 9.6(iii), we derive

πρ(x)U f ϕ = πρ(x)ρ( f )ϕ = ρ(x � f )ϕ = ρ(x̃ f )ϕ = Ux̃ f ϕ = dU (x)U f ϕ.

Thus, πρ�DG(U ) = dU�DG(U ). By definition, ρ(X)D(ρ) is a core for πρ, and by
Corollary 9.13, DG(U ) is a core for dU . Therefore, since both ∗-representations πρ

and dU are closed, we obtain πρ = dU . �
For each unitary representation U of the Lie group G, there is a nondegener-

ate continuous ∗-representation ρ of (L1(G;μl), ‖ · ‖1), hence of (X, ‖ · ‖1), such
that ρ( f ) = U f , f ∈ X (see, e.g., [F95, Theorem 3.9]). Using this result one can
reverse the reasoning of the preceding proof and show that the converse of Theo-
rem 13.22 is also true, that is, any ∗-representation dU of A = E(g) is of the form
πρ; see Exercise 6. Thus, if the Lie group G is connected and simply connected,
these ∗-representations πρ are precisely the integrable representations according to
Definition 9.47.

Each ∗-representation of a Banach ∗-algebra on a Hilbert space is continuous
in the operator norm [DB86, Theorem 26.13]; hence all ∗-representations of the
∗-algebra L1(G;μl) are automatically continuous in the norm ‖ · ‖1.
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13.6 Exercises

1. Retain the notation and the assumptions of Theorem 13.12. Show that for s ∈ S
we have πρ(s) = ρ(s−1)−1 and D(πρ) is a core for the operator ρ(s−1)−1.
Hint: In the proof of Lemma 13.13, use the fact that E∞ = D(πρ) is dense in
each Hilbert space (En, || · ||n), n ∈ N, by the Mittag-Leffler lemma.

2. (Integrable representations of A := C[x1, . . . , xd ] and fraction algebras)
Let S be the submonoid of A generated by 1, s j := x2j + 1 for j = 1, . . . , d.

Let B the ∗-algebra of all rational functions on R
d and X the ∗-subalgebra of B

generated 1, s−1
j , x j s

−1
j for j = 1, . . . , d.

a. Verify that A,S,B,X satisfy the assumptions of Theorem 13.12.
b. Prove that each ∗-representation πρ from Theorem 13.12 is an integrable

representation of A in the sense of Definition 7.7.
c. Show that each integrable representation of A is of the form πρ.

3. (Integrable representations of A := C[x1, . . . , xd ] and compatible pairs)
Let X be the ∗-algebra Cc(R

d) of compactly supported continuous functions
on R

d with pointwise multiplication and involution f +(t) = f (t). We define
(p � ϕ)(t) = p(t) f (t) for p ∈ A,ϕ ∈ X.

a. Show that (A,X) is a compatible pair.
b. Prove that each ∗-representation πρ of A in Theorem 13.20 is integrable.
c. Show that each integrable ∗-representation of A is of the form πρ.

4. LetA be a unital ∗-algebra andX a ∗-algebra. LetA0 be a set of algebra generators
of A. Suppose that X is a left A-module; see Definition 13.18. Prove that if
condition (13.13) holds for a ∈ A0, it does for all a ∈ A.

5. Consider the ∗-algebras A = E(g) and X = C∞
0 (G) from Sect. 13.5.

a. Show that the map f → f ∗ ϕ, f ∈ X, ϕ ∈ C∞
0 (G), define a nondegener-

ate faithful ∗-representation of X on the domain C∞
0 (G) in L2(G;μl).

b. Prove that (x̃ f ) ∗ ϕ = x̃( f ∗ ϕ) for x ∈ E(g) and f,ϕ ∈ C∞
0 (G).

c. Use Example 13.19 to prove that (A,X) is a compatible pair, with action of
A on X defined by (13.18).
Hints: Consider A and X (by a.) as ∗-subalgebras of L+(D), D = C∞

0 (G).
By b., the product of L+(D) gives the corresponding action of A on X.

6. Let A = E(g) and X = C∞
0 (G) be as in Sect. 13.5 and let U be a unitary repre-

sentation of the Lie group G. Show that there is a continuous ∗-representation ρ
of (X, ‖ · ‖1) such that dU = πρ.
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13.7 Notes

Well-behaved representations for group graded ∗-algebras A with commutative base
algebras Ae were introduced in [SS13], with another definition, and studied therein
in detail.

The method of fraction algebras elaborated in Sect. 13.2 is taken from [Sch10],
where it was used to prove noncommutative Positivstellensätze. The algebra X from
Sect. 13.3 is the one-dimensional version of the so-called resolvent algebra studied in
[BG08]. Compatible pairs as in Sect. 13.4 were invented in [Sch02], which contains
a number of further examples.

Another method for the construction of well-behaved representations was pro-
posed by A. Inoue and his coworkers; it is based on unbounded C∗-seminorms. An
unboundedC∗-seminorm on a ∗-algebraA is aC∗-seminorm (seeDefinition 10.1 and
[Yo96]) on some∗-subalgebra ofA. This approachwasdeveloped in [BIO01, BIT01],
and its relation to the method of compatible pairs was investigated in [BIK04]. A
detailed treatment can be found in [AIT02, Chap. 8].



Chapter 14
Representations on Rigged Spaces
and Hilbert C∗-Modules

This chapter gives a short digression into the theory of∗-representations of∗-algebras
on rigged spaces. There, in contrast to Hilbert space representations, the complex-
valued inner product is replaced by an algebra-valued sesquilinear map. In Sect. 14.1,
we develop right or left rigged A-spaces and ∗-representations on such spaces. In
Sect. 14.2, we studyweakA−B-imprimitivity bimodules. These areA−B-bimodules
which are right B-rigged and left A-rigged spaces satisfying various compatibility
axioms. They allow us to convert algebraic properties of A into those of B and
vice versa. In Sect. 14.3, we require the positive semi-definiteness of the riggings.
If A acts by a ∗-representation on a positive semi-definite right B-rigged space,
then each ∗-representation π of B on a complex inner product space induces a
∗-representation Ind π of A on a complex inner product space. Section14.4 deals
with A−B-imprimitivity bimodules. These are weak A−B-imprimitivity bimodules
for which the riggings are positive semi-definite. An A−B-imprimitivity bimodule
yields an equivalence between ∗-representations of A and B (Theorem 14.31). In
Sects. 14.5 and 14.6, we introduce Hilbert C∗-modules for C∗-algebras and study
∗-representations on Hilbert C∗-modules.

Throughout this chapter, A, B, C are unital complex ∗-algebras and A denotes a
C∗-algebra.

14.1 Rigged Spaces

Roughly speaking, a rigged space is a right or left module equipped with an algebra-
valued sesquilinear mapping which is compatible with the module action.
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Definition 14.1 A right A-rigged space is a right A-module EA, with right action
written as x · a, together with a map [·, ·]A : EA × EA �→ A, which is linear in the
second variable, such that:

(i) ([x, y]A)+ = [y, x]A for x, y ∈ EA.
(ii) [x, y · a]A = [x, y]A a for x, y ∈ EA, a ∈ A.

A right A-rigged space EA is called full if

Lin
{ [x, y]A : x, y ∈ EA

} = A

and nondegenerate if [x, y]A = 0 for all y ∈ EA implies that x = 0.

The symbol “·” always refers to the action of elements of A on a left or right
A-module. That EA is a right A-module with right action “x · a” means that

(x · a) · b = x · (ab) and x · 1A = x for x ∈ EA, a, b ∈ A.

Note that [x, y]A a in (ii) denotes the product of the elements [x, y]A and a in A.
Let EA be a right A-rigged space. Then, by condition (i), [·, ·]A : EA × EA �→ A is

conjugate linear in the first variable. Further, using conditions (i) and (ii) we derive

a [x, y]A = ([y, x]Aa+)+ = ([y, x · a+]A)+ = [x · a+, y]A,

so that

a [x, y]A = [x · a+, y]A for x, y ∈ EA, a ∈ A. (14.1)

A rigging [·, ·]A can have a large kernel or it could be even identically zero. By
passing to the quotient with respect to its kernel we obtain a nondegenerate rigged
space, as stated in the next lemma. We omit the simple proof.

Lemma 14.2 Suppose (EA, [·, ·]A) is a right A-rigged space. Then the kernel space

NA := {
x ∈ EA : [x, y]A = 0, y ∈ EA } = {y ∈ EA : [x, y]A = 0, x ∈ EA

}

is a rightA-module and the quotient rightA-module EA/NA is a nondegenerate right
A-rigged space with rigging given by [x + NA, y + NA]A := [x, y]A, x, y ∈ EA.
Definition 14.3 A left A-rigged space is a left A-module AE , equipped with a map
A[·, ·] : AE × AE �→ A, which is linear in the first variable and satisfies:

(i) (A[x, y])+ = A[y, x] for x, y ∈ AE .
(ii) A[a · x, y] = a A[x, y] for x, y ∈ AE , a ∈ A.

For a leftA-rigged space, the form A[·, ·] is conjugate linear in the second variable.
The left module action and notions such as fullness and nondegeneracy are defined
similarly as for right rigged spaces. For a left A-rigged space AE , we obtain
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A[x, y] a = A[x, a+ · y] for x, y ∈ AE, a ∈ A. (14.2)

Example 14.4 (EA = A and AE = A)
The ∗-algebra A itself is a right A-rigged space EA = A with multiplication as right
action and rigging [a, b]A := a+b, a, b ∈ A. Likewise, A is a left A-rigged space
AE = A with multiplication as left action and rigging A[a, b] := ab+, a, b ∈ A. �

The following are two slight modifications of the preceding example.

Example 14.5 Suppose c = c+ is a central element of A. Then EA = A is a right
A-rigged space and AE = A is a left A-rigged space with actions given by the mul-
tiplication and riggings [a, b]A := c a+b and A[a, b] := c ab+, respectively. �
Example 14.6 Suppose (D, 〈·, ·〉) is a complex inner product space. The complex
tensor product EA := D ⊗ A becomes a right A-rigged space with action given by
(ϕ ⊗ a) · b = ϕ ⊗ ab and rigging

[ ∑

i
ϕi ⊗ ai ,

∑

j
ψ j ⊗ b j

]

A
:=

∑

i, j
〈ψ j ,ϕi 〉(ai )+b j . � (14.3)

Remark 14.7 In the theory of Hilbert modules of C∗-algebras (see, e.g., [La94],
[RW98]) it is common to work with rightmodules and algebra-valued inner products
that are conjugate linear in the first variable. We follow this convention. However, in
this book, inner products of “ordinary” Hilbert spaces are always linear in the first
variable. This requires a changing of the order of variables when we pass from right
rigged spaces to Hilbert spaces and vice versa. Note that for a left rigged space the
algebra-valued map is linear in the first variable. �

For a vector space E , let E denote the complex conjugate vector space, that is, the
sets and the additive groups of E and E are the same, but the scalar multiplication is
replaced by the complex conjugate. We write x to indicate that an element x of E is

viewed as an element of E . Then, by definition, λ x = λ x for λ ∈ C and x ∈ E .
Clearly, if EA is a right A-rigged space, then the complex conjugate vector space

E becomes a left A-rigged space AE with definitions

a · x := x · a+ and A[x, y] := [x, y]A, x, y ∈ EA, a ∈ A.

Similarly, if AE is a left A-rigged space, then E is a right A-rigged space EA with

x · a := a+ · x and [x, y]A := A[x, y], x, y ∈ AE, a ∈ A. (14.4)

Indeed, axiom (ii) inDefinitions 14.1 and 14.3 follows from (14.1) and (14.2), respec-
tively. Roughly speaking, passing to E interchanges right and left structures.

Another important notion is introduced in the following definition.
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Definition 14.8 AnA−B-bimodule is a vector space E which is both a leftA-module
and a right B-module and satisfies

a · (x · b) = (a · x) · b for a ∈ A, b ∈ B, x ∈ E . (14.5)

To indicate the module actions one may write AEB for an A−B-bimodule E .
For a right B-rigged space EB, let L(EB) denote the algebra of all C-linear and

B-linear mappings t of EB into itself. Here a mapping t of EB is called B-linear if
t (x · b) = t (x) · b for b ∈ B and x ∈ EB.
Definition 14.9 A ∗-representation of a ∗-algebra A on a right B-rigged space EB
is an algebra homomorphism π of A in L(EB) satisfying

[π(a)x, y]B = [x,π(a+)y]B for a ∈ A, x, y ∈ EB. (14.6)

If π is a ∗-representation of A on EB, then by the definition of L(EB) we have

π(a)(x · b) = (π(a)x) · b for a ∈ A, b ∈ B, x ∈ EB. (14.7)

Thus, EB is an A−B-bimodule with left action of A given by a · x := π(a)x .
If π is an algebra homomorphism of A in L(EB) such that (14.6) and (14.7) hold,

then π is a map into L(EB) (by (14.7)) and hence a ∗-representation of A on EB.
The following important construction is called the internal tensor product of

rigged spaces.

Proposition 14.10 Suppose EA is a rightA-rigged space andπ is a∗-representation
of A on a right B-rigged space FB. Let E ⊗A F denote the quotient of the complex
tensor product EA ⊗ FB by

N := Lin
{
x · a ⊗ y − x ⊗ π(a)y : x ∈ EA, y ∈ FB, a ∈ A

}
. (14.8)

This space is a right B-rigged space (E ⊗A F)B with right action and rigging

(x ⊗ y) · b := x ⊗ y · b, x ∈ EA, y ∈ FB, b ∈ B, (14.9)

[x ⊗ y, x ′ ⊗ y′]B := [y,π([x, x ′]A) y′]B, x, x ′ ∈ EA, y, y′ ∈ FB. (14.10)

Proof Clearly, formula (14.10) extends to amap [·, ·]B of the complex tensor product
EA ⊗ FB into Bwhich is linear in the second and conjugate linear in thefirst variables.
Then, by Definition 14.1(i) and (14.6),

([x ⊗ y, x ′ ⊗ y′]B)+ = ([y,π([x, x ′]A)y′]B)+ = [π([x, x ′]A)y′, y]B
= [y′,π(([x, x ′]A)+)y]B = [y′,π([x ′, x]A)y]B = [x ′ ⊗ y′, x ⊗ y]B. (14.11)

Further, using (14.1) and (14.6) we derive
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∑

j,k

[ x j · a ⊗ y j , x
′
k ⊗ y′

k]B =
∑

j,k

[y j ,π([x j · a, x ′
k]A)y′

k]B

=
∑

j,k

[y j ,π(a+[x j , x
′
k]A)y′

k]B =
∑

j,k

[π(a)y j ,π([x j , x
′
k]A)y′

k]B

=
∑

j,k

[x j ⊗ π(a)y j , x
′
k ⊗ y′

k]B

and similarly, by (14.11),

∑

j,k

[x ′
k ⊗ y′

k, x j · a ⊗ y j ]B =
∑

j,k

[x ′
k ⊗ y′

k, x j ⊗ π(a)y j ]B.

These two equations imply that [·, ·]B passes to a well-defined sesquilinear map,
denoted also [·, ·]B, of the quotient (E ⊗A F)B = (EA ⊗ FB)/N into B. By (14.11)
thismap satisfies condition (i) ofDefinition 14.1. Sinceπ is a ∗-representation ofA on
FB, we have π(a)(y · b) = (π(a)y) · b for y ∈ FB, a ∈ A, b ∈ B by (14.7). Hence
the action of B on the complex tensor product EA ⊗ FB defined by (14.9) leaves N
invariant, so it gives a well-defined right action of B on the quotient (E ⊗A F)B. We
verify condition (ii) of Definition 14.1. Using again (14.7) we compute for b ∈ B,

[x ⊗ y, (x ′ ⊗ y′) · b]B = [x ⊗ y, x ′ ⊗ (y′ · b)]B = [y,π([x, x ′]A) (y′ · b)]B
= [y, (π([x, x ′]A)y′) · b]B = [y,π([x, x ′]A)y′]B b = [x ⊗ y, (x ′ ⊗ y′) ]B b.

Summarizing, we have shown that (E ⊗A F)B is a right B-rigged space. �
Proposition 14.11 Let EA, FB, (E ⊗A F)B be as in Proposition 14.10. In addition,
suppose c �→ c · is a ∗-representation of C on the right A-rigged space EA. Then
there is a ∗-representation ρ of C on the right B-rigged space (E ⊗A F)B such that

ρ(c)(x ⊗ y) = c · x ⊗ y, x ∈ EA, y ∈ FB, c ∈ C. (14.12)

Proof Since C acts as a ∗-representation on EA, (c · x) · a = c · (x · a) for x ∈ EA,
a ∈ A, c ∈ C by (14.7). Therefore, the left action ρ(c) of C on the complex tensor
product EA ⊗ FB defined by (14.12) leavesN (see (14.8)) invariant. Hence it passes
to a well-defined left action of C on the quotient (E ⊗A F)B. By the correspond-
ing definitions, ρ(c)((x ⊗ y) · b) = (c · x) ⊗ (y · b) = (ρ(c)(x ⊗ y)) · b, so (14.7)
holds. Using condition (14.6) for the ∗-representation c �→ c · of C we derive

[ρ(c)(x ⊗ y), x ′ ⊗ y′]B = [y,π([c · x, x ′]A)y′]B = [y,π([x, c+ · x ′]A)y′]B
= [x ⊗ y, (c+ · x ′) ⊗ y′]B = [x ⊗ y, ρ(c+)(x ′ ⊗ y′)]B.

Therefore, by linearity, ρ is a ∗-representation of C on (E ⊗A F)B. �
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14.2 Weak Imprimitivity Bimodules

The main notions of this section are contained in the following two definitions.

Definition 14.12 A weak A−B-imprimitivity bimodule is a triple (E,A [·, ·], [·, ·]B)
such that E is an A−B-bimodule satisfying the following conditions:

(i) (E, [·, ·]B) is a full right B-rigged space such that [a · x, y]B = [x, a+ · y]B for
a ∈ A and x, y ∈ E .

(ii) (E, A[·, ·]) is a full left A-rigged space such that A[x · b, y] = A[x, y · b+] for
b ∈ B and x, y ∈ E .

(iii) A[x, y] · z = x · [y, z]B for x, y, z ∈ E .
Definition 14.13 Two ∗-algebras A and B are called weakly Morita equivalent if
there exists a weak A−B-imprimitivity bimodule.

Note that axiom (iii) in Definition 14.12 is a compatibility condition of the two
riggings A[·, ·] and [·, ·]B. It is crucial for many applications.

If E is a right B-rigged space and a left A-rigged space, then the A−B-bimodule
property (14.5) follows already from the conditions (i)–(iii) in Definition 14.12.
Indeed, let a ∈ A and x, y, z ∈ E . Using (iii), the left A-module property of E and
Definition 14.3(ii) we derive

a · (x · [y, z]B) = a·(A[x, y] · z) = (a A[x, y]) · z = A[a · x, y] · z = (a · x) · [y, z]B.

Since the right B-rigged space E is full by (i), each b ∈ B is a sum of terms [y, z]B.
Hence the preceding equality yields (14.5).

Note that (14.5) and the last condition in Definition 14.12(i) imply that the map
a �→ a· is a ∗-representation of A on the right B-rigged space E according to Defi-
nition 14.9.

Example 14.14 If A and B are ∗-isomorphic, then A and B are weakly Morita
equivalent. Indeed, let θ be a ∗-isomorphism of A on B and set E := B. Then, for
a ∈ A, b ∈ B, x, y ∈ E , we define the operations

a · x := θ(a)x, x · b := xb, [x, y]B := x+y, A[x, y] := θ−1(xy+).

One easily verifies that E = B is a weak imprimitivity module of A and B. �
Example 14.15 (Matrix ∗-algebras)
Let C be a fixed unital complex ∗-algebra and k,m ∈ N. Recall from Subsection 2.2
that A := Mk(C) and B := Mm(C) are also unital complex ∗-algebras. The vector
space E := Mk,m(C) of (k,m)-matrices over C is an A−B-bimodule with left and
right actions given by the multiplication of matrices. The bimodule axiom (14.5)
holds by the associativity of matrix multiplication. Also, E is a right B-rigged space
and a left A-rigged space with riggings defined by
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[X,Y ]B := X+Y and A[X,Y ] := XY+, X,Y ∈ E = Mk,m(C).

It is straightforward to verify that E , with these definitions, is a weak A−B-
imprimitivity bimodule. Hence A and B are weakly Morita equivalent. �

As noted above, passing to the complex conjugate E interchanges left and right
rigged structures of E . Thus, if E is a weak A−B-imprimitivity bimodule, then E
becomes a weak B−A-imprimitivity bimodule with the corresponding operations.

The next proposition describes the tensor product of weak imprimitivity bimod-
ules. This result is in fact the transitivity of the weak Morita equivalence.

Proposition 14.16 Suppose E is a weak A−B-imprimitivity bimodule and F is a
weak B−C-imprimitivity bimodule. Then the quotient E ⊗B F of the complex ten-
sor product E ⊗ F by N := Lin {x · b ⊗ y − x ⊗ b · y : x ∈ E, y ∈ F , b ∈ B} is a
weak A−C-imprimitivity module. The left action of A and the right action of C on
E ⊗B F and the corresponding riggings are defined by

a · (x ⊗ y) : = (a · x) ⊗ y, (14.13)

(x ⊗ y) · c : = x ⊗ (y · c), (14.14)

[x ⊗ y, u ⊗ v]C : = [ [u, x]B · y, v]C, (14.15)

A[x ⊗ y, u ⊗ v] : = A[x, u · B[v, y] ], (14.16)

where a ∈ A, c ∈ C, x, u ∈ E and y, v ∈ F .

Proof First we show that E ⊗B F satisfies condition (i) of Definition 14.12. Here we
use essentially the conditions of the twoweak imprimitivity bimodulesE andF . Then
E is a right B-rigged space, F is a right C-rigged space and the map b �→ b · is a ∗-
representation ofBonF . Therefore, byProposition 14.10,E ⊗B F is a rightC-rigged
space andEq. (14.9) gives just the action (14.14) ofC. Then, since [ [u, x]B · y, v]C =
[ y, [x, u]B · v]C, the rigging (14.10) coincides with (14.15). Further, since the map
a �→ a · is a ∗-representation ofA on E , it follows fromProposition 14.11 that (14.13)
defines a ∗-representation of A on E ⊗B F .

To complete the proof of Definition 14.12(i) it remains to verify the fullness of the
right C-rigged space E ⊗B F . Let c ∈ C. The right B-rigged space E and the right
C-rigged spaceF are full (by Definition 14.12(i)), so there exist elements u j , u′

j ∈ E
and vk, v

′
k ∈ F such that 1B = ∑

j [u′
j , u j ]B and c = ∑

k[vk, v′
k]C. Then

∑

j,k

[u j ⊗ vk, u
′
j ⊗ v′

k]C =
∑

k

[ ( ∑

j

[u′
j , u j ]B

)
· vk, v′

k

]

C

=
∑

k

[ 1B · vk, v′
k]C =

∑

k

[vk, v′
k]C = c.

Now the proof of condition (i) is complete. The proof of (ii) is similar; Propositions
14.10 and 14.11 are replaced by their counterparts which are obtained by interchang-
ing left and right actions and riggings.
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Finally, we prove condition (iii). For x, u, u′ ∈ E and y, v, v′ ∈ F , we deduce

(x ⊗ y) · [u ⊗ v, u′ ⊗ v′]C = x ⊗ (y · [ [u′, u]B · v, v′]C)
= x ⊗ (B[y, [u′, u]B · v] · v′) = (x · B[y, [u′, u]B · v]) ⊗ v′

= (x · (B[y, v] [u, u′]B)) ⊗ v′ = (x · [u · B[v, y], u′]B) ⊗ v′

= (A[x, u · B[v, y] ] · u′) ⊗ v′ = A[x ⊗ y, u ⊗ v] · (u′ ⊗ v′).

Here the first and seventh equalities are the definitions (14.13) and (14.14) of the
actions of C andA. The second and sixth equalities follow fromDefinition 14.12(iii)
and the fourth and fifth from (14.1) and (14.2). The third equality holds because N
is annihilated in the quotient space.

Thus, we have poved that E ⊗B F is a weak A−C-imprimitivity bimodule. �
Proposition 14.17 Weak Morita equivalence is an equivalence relation for unital
complex ∗-algebras.
Proof Example 14.14, with A = B and θ the identity map, shows that weak Morita
equivalence is reflexive. As noted above, if E is a weak A−B-imprimitivity bimod-
ule, then E is a weak B−A-imprimitivity bimodule, so weak Morita equivalence is
symmetric. The transitivity follows from Proposition 14.16. �

In the rest of this section, suppose E is a weak A−B-imprimitivity bimodule. We
will show how pre-quadratic modules can be transported from A to B and vice versa.

Lemma 14.18 If Q is a subset of Aher, then the finite sums of elements [a · x, x]B,
where a ∈ Q and x ∈ E , form a pre-quadratic module QE of B.

Proof Since ([a · x, x]B)+ = [x, a · x]B = [a · x, x]B,QE is contained inBher.Obvi-
ously, λc ∈ QE for λ > 0 and c ∈ QE . Let b ∈ B, a ∈ Q, and x ∈ E . Then

b+[a · x, x]Bb = b+[a · x, x · b]B = ([x · b, a · x]Bb)+
= ([x · b, (a · x) · b]B)+ = [x · b, a · (x · b)]B)+ = [a · (x · b), (x · b)]B ∈ QE .

Thus, QE is a pre-quadratic module of B. �
For a subset P of Bher, let E P denote the finite sums of elements A[y, y · b],

where b ∈ P and y ∈ E . Then, a similar reasoning as in the proof of Lemma 14.18
shows E P is a pre-quadratic module of A.

Proposition 14.19 If Q is a pre-quadratic module of A and P is a pre-quadratic
module of B, then we have E(QE) ⊆ Q and (E P)E ⊆ P.

Proof We prove only the first inclusion; the proof for the second is similar.
Since E(QE) consists of sums of elements of the form A[y, y · [a · x, x]B], where

a ∈ Q and x, y ∈ E , it suffices to show that these elements are in Q. Using the axioms
of a weak A−B-imprimitivity bimodule we compute
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A[y, y · [a · x, x]B] = A[y · [x, a · x]B, y] = A[ A[y, x] · (a · x), y]
= A[y, x]A[a · x, y] = (A[x, y])+ a (A[x, y]).

This element is in Q, since a ∈ Q and Q is a pre-quadratic module of A. �
We illustrate these general constructions with an interesting example.

Example 14.20 (Matrix algebras- Example 14.15 continued)
As in Example 14.15, C is a unital complex ∗-algebra, A = Mk(C), B = Mm(C),
and E = Mk,m(C) is a weak A−B-imprimitivity bimodule.

If Q and P are pre-quadratic modules of A = Mk(C) and B = Mm(C), respec-
tively, the pre-quadratic modules QE of B and E P of A are

Qm,k := QE =
{

s∑

i=1

X+
i Ai Xi : Ai ∈ Q, Xi ∈ Mk,m(C), s ∈ N

}

, (14.17)

Pk,m := E P =
{

s∑

i=1

Yi BiY
+
i ; Bi ∈ P, Yi ∈ Mk,m(C), s ∈ N

}

.

We now specialize this to the case of the polynomial algebra C := C[t1, . . ., td ].
Let Q be the quadratic module of hermitian k × k matrices over C[t1, . . . , td ] that
are positive semi-definite for all t ∈ R

d . It is easily checked that the identity matrix
is in Qm,k . Hence each set Qm,k defined by (14.17) is a quadratic module of B. Put
Qm,0 := ∑

B2. Then we obtain from (14.17) an increasing chain (see Exercise 6) of
quadratic modules of the ∗-algebra B = Mm(C[t1, . . . , td ]):

Qm,0 ⊆ Qm,1 ⊆ Qm,2 ⊆ · · · ⊆ Qm,m . (14.18)

The matrices of Qm,k are called k-positive.
Let d = 1.Anymatrix A ∈ Qm,m is positive semi-definite for all t ∈ R. Therefore,

by a classical result [Ja70], [Dj70] on matrix polynomials in one variable, A is of the
form A = B+B for some B ∈ Mm(C[t]). Hence all quadratic modules in (14.18)
coincide with Qm,0 = ∑

Mm(C[t])2.
Now suppose d ≥ 2. As shown in [FS89], the matrix

(
1 + t41 t

2
2 t1t2

t1t2 1 + t21 t
4
2

)
(14.19)

is in Q2,2, but it is not in Q2,1. Therefore, Q2,1 �= Q2,2.
The quadratic modules Qm,k are not as artificial, as one might think at first

glance. They can be used to characterize k-positive ∗-representations of the ∗-algebra
C[t1, . . ., td ] (see [Sch90, pp. 307–308] for precise statements). �
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14.3 Positive Semi-definite Riggings

All considerations in the preceding two sectionswere purely algebraic. In this section,
we turn to Hilbert space representations and study positive semi-definite riggings.
This requires some preliminaries.

Lemma 14.21 For a matrix A = (ai j )ni, j=1 ∈ Mn(A) the following are equivalent:

(i) For any ∗-representation ρ of A and vectors ϕ1, . . . ,ϕn ∈ D(ρ), we have

n∑

i, j=1

〈ρ(ai j )ϕ j ,ϕi 〉 ≥ 0. (14.20)

(ii) For each positive functional f on the ∗-algebra Mn(A) we have f (A) ≥ 0.

The set of hermitian matrices of Mn(A) satisfying these equivalent conditions is
denoted by Mn(A)+. Then Mn(A)+ a quadratic module of Mn(A).

Proof Using (14.20) it is straightforward to verify that Mn(A)+ is a quadratic mod-
ule; we leave this to the reader as Exercise 7.

(i)→(ii): Let f be a positive functional on the ∗-algebra Mn(A) and let π f be its
GNS representation. By Proposition 10.23, there is a ∗-representation ρ of A such
that π f = ρn , that is, D(π f ) = ⊕n

k=1D(ρ) , ϕ f = (ϕ1, . . . ,ϕn), ϕ j ∈ D(ρ), and

(π f (A)ϕ f )k =
n∑

j=1

ρ(akj )ϕ j for A = (ai j ) ∈ Mn(A), k = 1, . . . , n. (14.21)

Then, by (14.21) and (14.20),

f (A) = 〈π f (A)ϕ f ,ϕ f 〉 =
n∑

i, j=1

〈ρ(ai j )ϕ j ,ϕi 〉 ≥ 0.

(ii)→(i): Let ρ and ϕ1, . . . ,ϕn be as in (i). Define a functional f on Mn(A) by

f (B) =
n∑

i, j=1

〈ρ(bi j )ϕ j ,ϕi 〉 for B = (bi j ) ∈ Mn(A). (14.22)

Let C = (ci j ) ∈ Mn(A). Then (C+C)i j = ∑
k c

+
ki ck j and therefore

f (C+C) =
n∑

i, j,k=1

〈ρ(c+
ki ck j )ϕ j ,ϕi 〉 =

n∑

k=1

〈 n∑

j=1

ρ(ck j )ϕ j ,

n∑

i=1

π(cki )ϕi

〉
≥ 0.

This shows that f is a positive linear functional on Mn(A). Hence f (A) ≥ 0 by (ii),
which gives (14.20) by (14.22). �
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The following simple lemma is based on a standard separation argument.

Lemma 14.22 Let X be a complex ∗-algebra and a = a+ ∈ X. If f (a) ≥ 0 for all
positive linear functionals of X, then a is in the closure of the cone

∑
X2 in the

finest locally convex topology of X (see Appendix C).

Proof Let C denote the closure of
∑

X2 in the finest locally convex topology.
Assume to the contrary that a /∈ C . Then, by Proposition C.2, there exists an R-
linear functional f on the real vector space Xher such that f (a) < 0 and f (c) ≥ 0
for c ∈ C . Its extension, denoted also f , to a C-linear functional on X is a positive
functional such that f (a) < 0, a contradiction. �
Definition 14.23 A right A-rigged space (EA, [·, ·]A) is called positive semi-definite
if for all x1, . . . , xn ∈ E , n ∈ N, the matrix ([xi , x j ]A)ni, j=1 is in Mn(A)+.

Similarly, a left B-rigged space (BF , B[·, ·]) is called positive semi-definite if the
matrix (B[xi , x j ])ni, j=1 belongs to Mn(B)+ for all x1, . . . , xn ∈ E and n ∈ N.

Example 14.24 (Examples 14.4 and 14.5 continued)
Consider the right A-rigged module EA = A with rigging [a, b]A = c a+b, where
c = c+ is a central element ofA. Let x1, . . . , xn ∈ EA. Then, for any ∗-representation
ρ of A and vectors ϕ1, . . . ,ϕn ∈ D(ρ),

n∑

i, j=1

〈ρ([xi , x j ]A)ϕ j ,ϕi 〉 =
n∑

i, j=1

〈ρ(c)ρ(x+
i )ρ(x j )ϕ j ,ϕi 〉

=
〈
ρ(c)

( n∑

j=1

ρ(x j )ϕ j

)
,

n∑

i=1

ρ(xi )ϕi

〉
. (14.23)

Hence, if ρ(c) ≥ 0 for all ∗-representations ρ, then the matrix ([xi , x j ]A)ni, j=1 is in
Mn(A)+ by Lemma 14.21 and the rigging [·, ·]A is positive semi-definite. In partic-
ular, this holds for c = 1, so the “canonical” rigging [a, b]A = a+b of EA is always
positive semi-definite. The same is true for the rigging A[a, b] = ab+ of AE .

Now suppose there exist a ∗-representation ρ of A and a vector ϕ ∈ D(ρ) such
that 〈ρ(c)ϕ,ϕ〉 < 0. (An example is the Motzkin polynomial for A = C[t1, t2]; see
Examples 2.30 and 7.5.) Then, for x1 = 1,ϕ1 = ϕ, n = 1, the expression in (14.23)
is negative, so the rigging is not positive semi-definite. �

The next proposition is the main result of this section. It says that the positive
semi-definiteness of riggings carries over to the internal tensor product.

Proposition 14.25 Suppose EA is a right A-rigged space, FB is a right B-rigged
space, and π is a ∗-representation of A on FB. Then, if EA and FB are positive
semi-definite, so is the right B-rigged space (E ⊗A F)B from Proposition 14.10
with rigging given by (14.10).
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Proof Let z1, . . . , zm ∈ E ⊗A F . We can write zi as a finite sum zi = ∑
k xik ⊗ yik ,

where xik ∈ EA, yik ∈ FB. Then, by (14.10), we have

[zi , z j ]B =
∑

k,l

[yik,π([xik, x jl ]A) y jl]B. (14.24)

Since EA is positive semi-definite, Lemma 14.22, applied to a ∗-algebra of matri-
ces over A, implies that the matrix X = ([xik, x jl ]A)ik, jl is the limit of a net of
matrices A = (aik, jl)ik, jl , which are finite sums

∑
r (Ar )

+Ar of hermitian squares
of matrices. Then we have aik, jl = ∑

r,p,q(ar;pq,ik)+ar;pq, jl . We abbreviate brpq;i :=∑
l π(ar;pq,il)yil . Let us fix i, j and compute

∑

k,l

[ yik,π(aik, jl)y jl ]B =
∑

k,l

[
yik,π

( ∑

r,p,q

(ar;pq,ik)+ar;pq, jl
)
y jl

]

B

=
∑

r,p,q

[ ∑

k

π(ar;pq,ik)yik,
∑

l

π(ar;pq, jl)y jl
]

B
=

∑

r,p,q

[ brpq;i , brpq; j ]B.

Since FB is positive semi-definite, each matrix ([ brpq;i , brpq; j ]B)mi, j=1, hence also

( ∑

r,p,q

[brpq;i , brpq; j ]B
)m

i, j=1

=
(∑

k,l

[yik,π(aik, jl)y jl
]
B

)m

i, j=1

, (14.25)

belongs to Mm(B)+. Now we pass to the limit A → X in the finest locally convex
topology. Then the matrix in (14.25) goes to the matrix in (14.24). Since Mm(B)+
is obviously closed in the finest locally convex topology and the matrix in (14.25)
is in Mm(B)+, so is the matrix ([zi , z j ]B)mi, j=1 by (14.24). This proves that the right
B-rigged space (E ⊗A F)B is positive semi-definite. �

Recall that induced representations were introduced and studied in Chap.12. Now
we present an approach to this concept in the context of rigged spaces. That is, we use
Propositions 14.10, 14.11, and 14.25 to define induced representations on Hilbert
spaces. In order to get representations of A that are induced from representations
of B, we apply these results with A,B,C replaced by B,C,A, respectively, and set
C := C.

For the following discussion we assume that EB is a positive semi-definite right
B-rigged space and a �→ a· is a ∗-representation of A on EB.

Supposeπ is an “ordinary”∗-representation ofB on a complex inner product space
(D, 〈·, ·〉0). Setting [ϕ,ψ]C := 〈ψ,ϕ〉0 for ϕ,ψ ∈ D, FC := D becomes a right C-
rigged space and π is a ∗-representation on FC. Further, by (14.8), the B-balanced
tensor product E ⊗B F is the quotient of the complex tensor product by

N := Lin
{
x · b ⊗ ϕ − x ⊗ π(b)ϕ : x ∈ EB, ϕ ∈ D, b ∈ B

}
.
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By Proposition 14.25, the rigging (14.10) is positive semi-definite. The riggings of
right rigged spaces are conjugate linear, and our inner products are linear in the
first variables. Therefore, as noted in Remark 14.7, in order to get a positive semi-
definite inner product 〈·, ·〉 on D0 := E ⊗B D from the rigging (14.10), we have to
interchange the order of variables twice, for 〈·, ·〉 and 〈·, ·〉0. Then we obtain

〈x ⊗ ϕ, y ⊗ ψ〉 := 〈π([y, x]B)ϕ,ψ〉0, x, y ∈ EB, ϕ,ψ ∈ D. (14.26)

Then, for a ∈ A, there is a linear mapping ρ0(a) on D0 such that

ρ0(a)(x ⊗ ϕ) = a · x ⊗ ϕ, a ∈ A, ϕ ∈ D0, a ∈ A. (14.27)

By Proposition 14.11, the map a �→ ρ0(a) is an algebra homomorphism of A in the
algebra L(D0) of linear operators on D0 satisfying

〈ρ0(a)η, ξ〉 = 〈η, ρ0(a+)ξ〉, η, ξ ∈ D0. (14.28)

To obtain a positive definite inner product we consider the quotient D(ρ) of D0 by

Nπ := {
η ∈ D0 : 〈η, ξ〉 = 0, ξ ∈ D0

} = {
η ∈ D0 : 〈ξ, η〉 = 0, ξ ∈ D0

}
. (14.29)

The inner product of D0 yields an inner product, also denoted 〈·, ·〉, on the quo-
tient spaceD(ρ) = D0/Nπ . For η ∈ D0, let [η] denote the equivalence class η + Nπ

in D(ρ). From (14.28) it follows that the operators ρ0(a) leave Nπ invariant, so
ρ(a)[η] = [ρ0(a)η], η ∈ D0, is well defined, and that the map a �→ ρ(a) is a ∗-
representation ρ of A on the complex inner product space (D(ρ), 〈·, ·〉).
Definition 14.26 The ∗-representation ρ of A on D(ρ), given by

ρ(a)[x ⊗ ϕ] = [a · x ⊗ ϕ], ϕ ∈ D(ρ), a ∈ A, (14.30)

is called the induced representation of π and denoted by E−Ind π.

Note that, in contrast to Definition 12.16 in Sect. 12.2, the induced representation
E−Ind π according to Definition 14.26 is not necessarily closed.

14.4 Imprimitivity Bimodules

Recall that weakA−B-imprimitivity bimodules were introduced in Definition 14.12.

Definition 14.27 A weak A−B-imprimitivity bimodule (E, A[·, ·], [·, ·]B) is called
an A−B-imprimitivity bimodule if the right B-rigged space (E, [·, ·]B) and the left
A-rigged space (E, A[·, ·]) are positive semi-definite.
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Two ∗-algebras A and B are called Morita equivalent if there exists an A−B-
imprimitivity bimodule.

Proposition 14.28 Morita equivalence is an equivalence relation for complex unital
∗-algebras.
Proof The proof is almost the same as for the weakMorita equivalence (Proposition
14.17). From Example 14.24 it follows that E = A is an A−A-imprimitivity bimod-
ule, which gives the reflexivity. It is easily shown that if a weak A−B-imprimitivity
bimodule E has positive semi-definite riggings, so has E . This yields the symmetry.
The transitivity follows by combining Proposition 14.16 and its counterpart for left
rigged spaces with Proposition 14.25. �
Remark 14.29 Morita equivalence was invented in ring theory by K. Morita (1958)
in order to study the equivalence of module categories of rings (see, e.g., [Lm99,
§18]). The corresponding notion for C∗-algebras [RW98, Definition 3.1] is based
on Hilbert C∗-modules which are complete and have positive definite riggings (see
Definition 14.32(iv) below). Our Definitions 14.12 and 14.27 for general ∗-algebras
are much weaker; we assume neither the nondegeneracy of the riggings nor the
completeness in some topology. �
Example 14.30 (Matrix ∗-algebras-Example 14.15 continued)
We retain the notation of Example 14.15 and prove that the weakA−B-imprimitivity
bimodule E = Mk,m(C) defined therein is an A−B-imprimitivity bimodule. Hence
the ∗-algebras A = Mk(C) and B = Mm(C) are Morita equivalent.

It suffices to show that both riggings are positive semi-definite. We carry out the
proof for [·, ·]B. The reasoning is very similar to the one use in Example 14.24.

Let X1, . . . , Xn ∈ E, n ∈ N. By Definition 14.23 and Lemma 14.21, we have to
show for any ∗-representation π of B = Mm(C) and vectors ϕ1, . . . ,ϕn ∈ D(π) the
matrix ([Xi , X j ]B)ni, j=1 satisfies (14.20). By Proposition 10.23, the ∗-representation
π of Mm(C) is of the form ρm for some ∗-representation ρ of C. Let ϕi =
(ϕi,1, . . . ,ϕi,m) and Xi = (xi;p,q)p,q ∈ Mk,m(C). The matrix ([Xi , X j ]B) has the
entries ([Xi , X j ]B)p,q = ((Xi )

+X j )p,q = ∑
l (xi;l,p)+x j;l,q . Hence

∑

i, j

〈π([Xi , X j ]B)ϕ j ,ϕi 〉 =
∑

i, j,p,q,l

〈ρ((xi;l,p)+x j;l,q)ϕ j,q ,ϕi,p〉

=
∑

l

〈 ∑

j,q

ρ(x j;l,q)ϕ j,q ,
∑

i,p

ρ(xi;l,p)ϕi,p

〉
≥ 0.

Thus, condition (14.20) holds for the rigging [·, ·]B, which completes the proof. �
Let E be an A−B-imprimitivity bimodule. By the induction procedure devel-

oped at the end of the preceding section, each ∗-representation of B induces a ∗-
representation of A (see Definition 14.26). Since E is a B−A-imprimitivity bimod-
ule, any ∗-representation of A induces a ∗-representation of B as well. The following
theorem says that for nondegenerate ∗-representations, up to unitary equivalence,
these maps are inverse to each other.
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Theorem 14.31 Suppose E is anA−B-imprimitivity bimodule. Let π and π′ be non-
degenerate ∗-representations of B and A, respectively. Then the ∗-representations π
and E−Ind(E−Ind π) of B are unitarily equivalent and so are the ∗-representations
π′ and E−Ind(E−Ind π′) of A.

Proof We prove the assertion for π; the proof for π′ is similar. In the following proof
we use freely the axioms of imprimitivity bimodules from Definition 14.12. Let ρ0
and ρ := E−Ind π be defined by (14.27) and (14.30), respectively.

First we note that there exists a well-defined linear (!) map U of the complex
tensor product E ⊗ E ⊗ D(π) into D(π) such that

U (x ⊗ (y ⊗ ϕ)) = π([x, y]B)ϕ, x, y ∈ E,ϕ ∈ D(π). (14.31)

The map U passes to the balanced tensor product E ⊗A E ⊗B D(π). Indeed, for
a ∈ A and b ∈ B, we derive

U ( x · a ⊗ (y · b ⊗ ϕ)) = U ( a+ · x ⊗ (y · b ⊗ ϕ)) = π([a+ · x, y · b]B)ϕ
= π([a+ · x, y]B)π(b)ϕ = π([x, a · y]B)π(b)ϕ = U (x ⊗ (a · y ⊗ π(b)ϕ)).

Our next aims are to show that U passes to a map of E ⊗ D(ρ) into D(π) and
that it preserves the inner product. Let ξ, η ∈ D(ρ). Then ξ and η are of the form
ξ = ∑

i yi ⊗ ϕi , η = ∑
j v j ⊗ ψ j , where yi , v j ∈ E , ϕi ,ψ j ∈ D(π). We compute

〈x ⊗ ξ, u ⊗ η〉 = 〈ρ0([u, x]A)ξ, η〉 =
∑

i, j

〈ρ0(A[u, x])(yi ⊗ ϕi ), v j ⊗ ψ j 〉

=
∑

i, j

〈(A[u, x] · yi ) ⊗ ϕi , v j ⊗ ψ j 〉 =
∑

i, j

〈π([v j , A[u, x] · yi ]B)ϕi ,ψ j 〉.

(14.32)

Let ξ = ∑
i yi ⊗ ϕi ∈ Nπ , see (14.29). Then, for a ∈ A , a · ξ = 0 and hence

〈a · ξ, w ⊗ ζ〉 =
∑

i
〈a · yi ⊗ ϕi , w ⊗ ζ〉 =

∑

i
〈π([w, a · yi ]B)ϕi , ζ〉 = 0.

Inserting the latter into (14.32), with a = A[u, x], w = v j , ζ = ψ j , it follows that
〈x ⊗ ξ, u ⊗ η〉 = 0. Similarly, η ∈ Nπ implies 〈x ⊗ ξ, u ⊗ η〉 = 0. Therefore, we
can pass to the equivalence classes [ξ], [η] of ξ, η in D(ρ) = D0/Nπ and continue

〈x ⊗ [ξ], u ⊗ [η]〉 =
∑

i, j

〈π([ v j , A[u, x] · yi ]B)ϕi ,ψ j 〉

=
∑

i, j

〈π([v j , u · [x, yi ]B]B)ϕi ,ψ j 〉 =
∑

i, j

〈π([v j , u]B [x, yi ]B)ϕi ,ψ j 〉

=
∑

i, j

〈π([v j , u]B)π([x, yi ]B)ϕi ,ψ j 〉 =
∑

i, j

〈π([x, yi ]B)ϕi ,π([u, v j ]B)ψ j 〉

= 〈U (x ⊗ ξ),U (u ⊗ η)〉.
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Hence,U extends by linearity to a linear mapping, denoted againU , of the complex
tensor product E ⊗ D(ρ) into D(π), which preserves the inner product.

Now we consider the representation σ := E−Ind ρ of B which is induced from
the representation ρ of A. Let σ0 denote the corresponding homomorphism defined
by (14.27) with ρ replaced by σ. Let b ∈ B. Then, for ξ = ∑

i yi ⊗ ϕi ∈ E ⊗ D(ρ),

U (σ0(b)(x ⊗ ξ)) = U ((b · x) ⊗ ξ) = U
(
x · b+ ⊗

( ∑

i

yi ⊗ ϕi

))

=
∑

i

π([x · b+, yi ]B)ϕi =
∑

i

π(b [x, yi ]B)ϕi

=
∑

i

π(b)π([x, yi ]B)ϕi = π(b)U
(
x ⊗

( ∑

i

yi ⊗ ϕi

))
= π(b)U (x ⊗ ξ),

which implies that

π(b)Uζ = Uσ0(b)ζ for ζ ∈ E ⊗ D(ρ). (14.33)

Since Lin {[x, y]B; x, y ∈ E} = B (because E is full) and π(B)D(π) = D(π)
(because π is nondegenerate), it follows from (14.31) that U maps E ⊗ D(ρ) onto
D(π). Since U : E ⊗ D(ρ) �→ D(π) preserves the inner product, kerU is just the
kernel Nρ defined by (14.29), applied to ρ. Hence U passes to an isometric linear
mapping U of D(σ) = (E ⊗ D(ρ))/Nρ on D(π) and the equality (14.33) yields
π(b)U = Uσ(b). Thus, π(b) = Uσ(b)U−1 for b ∈ B. Since σ = E−Ind (E−Indπ)
by the above definitions, this is the assertion. �

14.5 Hilbert C∗-modules

In this section, A is a (not necessarily unital) C∗-algebra with norm ‖ · ‖A = ‖ · ‖.
For a, b ∈ Aher, “a ≥ b” refers to the order relation in A, that is, σA(a − b) ⊆ R+.
We also use the fact that 0 ≤ a ≤ b implies that ‖a‖ ≤ ‖b‖.

A Hilbert C∗-module for A is a very special case of a right A-rigged space X :
The rigging is an A-valued inner product, denoted now by 〈·, ·〉X , and the module is
complete in the corresponding norm. First we define pre-Hilbert C∗-modules.

Definition 14.32 A pre-Hilbert C∗-module over A, or a pre-Hilbert A-module, is a
rightA-moduleX , together with a map 〈·, ·〉X : X × X �→ A, such that for x, y, z ∈
X , α,β ∈ C, and a ∈ A:

(i) 〈x,αy + βz〉X = α〈x, y〉X + β〈x, z〉X ,
(ii) (〈x, y〉X )+ = 〈y, x〉X ,
(iii) 〈x, y · a〉X = 〈x, y〉X a,
(iv) 〈x, x〉X ≥ 0, and 〈x, x〉X = 0 implies x = 0.
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Before we define Hilbert C∗-modules we derive an auxiliary lemma.

Lemma 14.33 Suppose X is a pre-Hilbert C∗-module over A. Then

‖x‖X := ∥∥〈x, x〉X
∥∥1/2
A

, x ∈ X ,

defines a norm ‖ · ‖X on X . For x, y ∈ X and a ∈ A, we have

‖〈x, y〉X ‖A = ‖x‖X ‖y‖X , (14.34)

‖x · a‖X ≤ ‖x‖X ‖a‖A. (14.35)

Proof First we prove (14.34). We abbreviate a := 〈y, x〉X ∈ A, b := 〈x, x〉X ∈ A
and c := 〈y, y〉X ∈ A. If a = 0, then 〈x, y〉X = 0 and (14.34) holds trivially.

Now we assume that a �= 0. Let λ ∈ R. Using the axioms (i)–(iii) of Definition
14.32 we derive

0 ≤ 〈x − y · (λa), x − y · (λa)〉X
= 〈x, x〉X − λ〈x, y〉X a − λa+〈y, x〉X + λ2a+〈y, y〉X a

= b − 2λa+a + λ2a+ca.

Therefore, 2λa+a ≤ b + λ2a+ca and

2λ ‖a+a‖ = 2λ ‖a‖2 ≤ ‖b + λ2a+ca‖ ≤ ‖b‖ + λ2‖c‖ ‖a‖2

for all λ ∈ R. Hence it follows that ‖a‖4 ≤ ‖b‖ ‖c‖ ‖a‖2. Since a �= 0, this yields

‖〈x, y〉X ‖2 = ‖a+‖2 = ‖a‖2 ≤ ‖b‖ ‖c‖ = ‖〈x, x〉X ‖ ‖〈y, y〉X ‖,

which gives (14.34).
As in the scalar case, (14.34) implies the triangle inequality for ‖ · ‖X . It is obvi-

ous that ‖λx‖X = |λ| ‖x‖X for λ ∈ C, x ∈ X . Hence ‖ · ‖X is a seminorm. From
Definition 14.32(iv) it follows that it is a norm.

To prove (14.35) we derive

‖x · a‖2X = ‖〈x · a, x · a〉X ‖A = ‖a+〈x, x〉X a‖A ≤ ‖x‖2X ‖a‖2A. �
Definition 14.34 A Hilbert C∗-module over A, or a Hilbert A-module, is a pre-
Hilbert A-module X that is complete in the norm ‖ · ‖X .

An “ordinary” complex Hilbert space (H, 〈·, ·〉) is a Hilbert C∗-module for the
C∗-algebra A = C if we define 〈ϕ,ψ〉X = 〈ψ,ϕ〉. The interchange of variables is
necessary, because in our convention Hilbert space inner products are linear and
inner products of Hilbert C∗-modules are conjugate linear in the first variables.

The simplest example of a Hilbert A-module is the C∗-algebra A itself.
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Example 14.35 (X = A)
The C∗-algebra A is a Hilbert A-module X with multiplication as right action and
A-valued inner product 〈x, y〉X := x+y, where x, y ∈ A. Then

‖x‖2X = ‖〈x, x〉X ‖A = ‖x+x‖2A = ‖x‖2A
by the C∗-property of the norm ‖ · ‖A, so we have ‖x‖X = ‖x‖A for x ∈ A. Hence,
since A is complete, so is X . Thus, X = A is a Hilbert A-module. �
Example 14.36 (Direct sum of a finite set of Hilbert A-modules)
Let (Xk, 〈·, ·〉Xk ), k = 1, . . . , n, be Hilbert A-modules. Then the direct sum X =∑n

k=1 ⊕Xk of right A-modules becomes a Hilbert A-module with inner product

〈
(xk), (yk)

〉
X :=

n∑

k=1

〈xk, yk〉Xk , (xk), (yk) ∈ X . �

The simplest infinite-dimensionalHilbert space is l2(N). Its counterpart forHilbert
C∗-modules is more subtle, as the following example shows.

Example 14.37 (X = l2(A))
The Hilbert A-module X = l2(A) is defined by

l2(A) :=
{
(xk)k∈N : xk ∈ A,

∞∑

k=1

(xk)
+xk converges in A

}
.

In this example the following two facts will be essentially used.

I. A sequence (xk), with xk ∈ A, belongs to l2(A) if and only if for each ε > 0
there exists an n(ε) such that ‖∑s

k=r (xk)
+xk‖ < ε for all s ≥ r ≥ n(ε).

II. ‖∑s
k=r (xk)

+xk‖ ≤ ‖∑m
k=n(xk)

+xk‖ for elements xk ∈ A, r ≥ n,m ≥ s, and
‖∑s

k=r (yk)
+yk‖ ≤ ‖∑∞

k=1(yk)
+yk‖ for (yk) ∈ l2(A).

(Note that II. holds, since 0 ≤ a ≤ b for a, b ∈ A implies that ‖a‖ ≤ ‖b‖.)
Now we begin to prove that l2(A) is a Hilbert A-module.
Let (xk), (yk) ∈ l2(A), λ ∈ C, and a ∈ A. From I. and the relations

(x + y)+(x + y) ≤ (x + y)+(x + y)+ + (x − y)+(x − y) = 2x+x + 2y+y

we conclude that (xk + yk) ∈ l2(A). It is clear that (λxk) ∈ l2(A). Combining I. and
the inequality ‖∑s

k=r (xka)
+xka‖ ≤ ‖a‖2 ‖∑s

k=r (xk)
+xk‖ it follows that (xka) ∈

l2(A). Thus, l2(A) is a right A-module.
From the polarization identity (2.27) it follows that

∑
k(xk)

+yk converges in A
if (xk), (yk) ∈ l2(A). Therefore,
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〈
(xk), (yk)

〉
X :=

∞∑

k=1

(xk)
+yk for (xk), (yk) ∈ l2(A),

defines an A-valued inner product on l2(A).
It remains to prove the completeness. For suppose x (n) = (x (n)k ), n ∈ N, is a

Cauchy sequence in l2(A). Fix k ∈ N. Then, by II., we have for n,m ∈ N,

∥∥(x (n)k − x (m)
k )+(x (n)k − x (m)

k )
∥∥ ≤

∥∥∥∥

∞∑

j=1

(x (n)j − x (m)
j )+(x (n)j − x (m)

j )

∥∥∥∥.

Hence the kth coordinate sequence (x (n)k )n∈N is a Cauchy sequence in A, so it con-
verges to some xk ∈ A. Let x denote the sequence (xk)k∈N. We have to show that
x ∈ l2(A) and limn ‖x − x (n)‖X = 0. Let n, r, s ∈ N, s ≥ r . Again by II.,

∥∥∥
s∑

j=r

(x j − x (n)j )+(x j − x (n)j )

∥∥∥ (14.36)

= lim
m

∥∥∥∥

s∑

j=r

(x (m)
j − x (n)j )+(x (m)

j − x (n)j )

∥∥∥∥

≤ lim
m

∥∥∥∥

∞∑

j=1

(x (m)
j − x (n)j )+(x (m)

j − x (n)j )

∥∥∥∥ = lim
m

∥∥x (m) − x (n)‖2X . (14.37)

Let ε > 0. Since (x (n)) is a Cauchy sequence, ‖x (m) − x (n)‖2 < ε/2 for large n,m.
Fix such an n. Then (14.37) is < ε for largem and so is (14.36) for all r, s, s ≥ r . By
I., this implies that the series

∑∞
j=1(x j − x (n)j )+(x j − x (n)j ) converges in the norm

of A. Therefore, x − x (n) ∈ l2(A) and hence x ∈ l2(A).
Further, setting r = 1 and letting s → ∞ in (14.36)–(14.37), we obtain

‖x − x (n)‖2X =
∥∥∥∥

∞∑

j=1

(x j − x (n)j )+(x j − x (n)j )

∥∥∥∥ < ε.

Thus, limn ‖x − x (n)‖X = 0. This proves that l2(A) is a Hilbert A-module.
It might be instructive to compare X = l2(A) with

X1 :=
{
(xk)k∈N : xk ∈ A,

∞∑

k=1

‖xk‖2 < ∞
}
.

It is not difficult to see that X1 ⊆ X . However, X1 = X if and only if the C∗-algebra
A is finite-dimensional [Fk90]. �
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The Hilbert A-module l2(A) is also denoted HA and called the standard Hilbert
C∗-module over A. It plays an important role in the theory of Hilbert C∗-modules.
The Kasparov stabilization theorem [La94, Theorem 6.2] says for each countably
generatedHilbertA-moduleX the direct sum X ⊕ HA is unitarily equivalent toHA.
(A Hilbert A-module X is called countably generated if it has a countable subset
such that X is the smallest Hilbert A-submodule which contains this set.)

Definition 14.38 A subset M of X is called essential if M⊥ = {0}, where

M⊥ := {
x ∈ X : 〈x, y〉X = 0 for y ∈ M

}
. (14.38)

Obviously, if M is dense in (X , ‖ · ‖X ), it is essential. The converse is not true,
as the following simple example shows.

Example 14.39 (A proper closed submodule which is essential)
Let X be the Hilbert A-module from Example 14.35 for the C∗-algebra A :=
C([0, 1]). Then M := { f ∈ X : f (0) = 0} is a closed A-submodule of X such that
M �= X and M⊥ = {0}. In particular, M ⊕ M⊥ �= X . �

This example shows that the Riesz theorem about orthogonal projections does not
hold for Hilbert C∗-modules! From the technical side, this failure is one of the main
reasons for most of the difficulties in operator theory on Hilbert C∗-modules.

14.6 Representations on Hilbert C∗-modules

In this section, (X , 〈·, ·〉X ) is a Hilbert A-module and B is a ∗-subalgebra of A.
By B-submodule of X we mean a linear subspace D of X which is invariant

under the right action of B.
First we develop some elementary definitions and facts on operators.

Definition 14.40 A B-operator on X is a C-linear and B-linear map t of a B-
submodule D(t) of X , called the domain of t , into X , that is,

t (λx) = λt (x) and t (x · b) = t (x) · b for x ∈ D(t), λ ∈ C, b ∈ B.

Note that theB-linearity is a very strong requirement in general.

Example 14.41 Let X = A be the Hilbert A-module for the C∗-algebra A =
C([0, 1]) andB = C[x]. Themultiplication operator t by the variable x with domain
D(t) = C[x] is a B-operator. The domain D(t) is not an A-submodule and t is not
an A-operator. The multiplication operator by the variable x with domain X is the
continuous extension of t and an A-operator.

Suppose s is anotherB-operator such thatD(s) = C[x] and t1 = s1. Then s(b) =
s(1 · b) = s(1)b = t (1)b = t (1 · b) = t (b) for b ∈ C[x], so that s = t . �
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Definition 14.42 Suppose t is aB-operator onX such thatD(t) is essential. Define

D(t∗) = {
y ∈ X : There exists a z ∈ X such that 〈t x, y〉X = 〈x, z〉X , x ∈ D(t)

}
.

Since D(t) is essential, the element z in Definition 14.42 is uniquely determined
by y. (Indeed, if z and z′ are two such elements, it follows that z − z′ ∈ D(t)⊥ = {0},
so z = z′.) Hence t∗y := z gives a well-defined map t∗ of D(t∗) into X . It is easily
verified (and follows from Lemma 14.44 below) that t∗ is a B-operator. It is called
the adjoint operator of t and by definition we have

〈t x, y〉X = 〈x, t∗y〉X for x ∈ D(t), y ∈ D(t∗).

It should be emphasized that the adjoint operator t∗ is already well defined if the
domain D(t) is essential; it is not needed that D(t) is dense in X .

The counterpart of the ∗-algebra L+(D) (see Definition 3.1) is the following.

Definition 14.43 SupposeD is aB-submodule of X . Let L+
B(D) denote the set of

maps t : D �→ D for which there exists a map s : D �→ D such that

〈t x, y〉X = 〈x, sy〉X for x, y ∈ D. (14.39)

From now on we suppose that D is aB-submodule of X .

Lemma 14.44 Suppose t ∈ L+
B(D) and let s be as in Definition 14.43. Then both

maps t and s areB-operators with domain D. Further, s is uniquely determined by
t and will be denoted by t+.

Proof In order to prove that t and s areB-operators we have to show that these maps
are C-linear and B-linear. As a sample we verify that t is B-linear. Let b ∈ B and
x, y ∈ D. Then, x · b ∈ D, so using (14.39) we deduce

〈t (x · b), y〉X = 〈x · b, sy〉X = b+〈y, sy〉X = b+〈t x, y〉X = 〈(t x) · b, y〉X .

Therefore, 〈t (x · b) − (t x) · b, y〉X = 0 for all y ∈ D. Since (t (x · b) − (t x) · b) ∈
D, we can set y := t (x · b) − (t x) · b. Then 〈y, y〉X = 0. Hence y = 0 by Definition
14.32(iv) and so t (x · b) = (t x) · b, which proves that t isB-linear.

We show that s is uniquely determined by t . Let s̃ : D �→ D be another map
satisfying (14.39) and let y ∈ D. Then we have 〈t x, y〉X = 〈x, sy〉X = 〈x, s̃ y〉X
and so 〈x, sy − s̃ y〉X = 0 for all x ∈ D. Setting x = sy − s̃ y we obtain x = 0 and
hence sy = s̃ y. Thus, s = s̃. �
Lemma 14.45 L+

B(D) is a unital complex ∗-algebra with operator multiplication
and involution t �→ t+.

Proof The proof is verbatim the same as in the Hilbert space case (Lemma 3.2). �
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If D is essential in X , it follows from (14.39), compared with the definitions of
D(t∗) and t∗, that t+ is the restriction to D of the adjoint operator t∗.

Now we can give the main definition of this section.

Definition 14.46 A ∗-representation of a ∗-algebra A on aB-submoduleD of X is
a ∗-homomorphism π of A in the ∗-algebra L+

B(D). We write D(π) := D.

A large number of basic notions and facts for Hilbert space representations carry
over almost verbatim to ∗-representations on B-submodules.

Let π be a ∗-representation of A on aB-submodule D. The graph topology of π
is the locally convex topology on D defined by the seminorms

‖x‖a := ‖π(a)x‖X , a ∈ A, x ∈ D.

As in the Hilbert space case (Lemma 3.5), this family of seminorms is directed.

Proposition 14.47 Suppose that B is dense in the C∗-algebra A. Let π be a ∗-
representation ofA on aB-submoduleD. Then theB-operatorπ(a) onX is closable
for a ∈ A. The completion D̂ of D in the graph topology of π is a rightA-submodule
such that

D̂ = ⋂

a∈A
D(

π(a)
)
. (14.40)

There is a ∗-representation π on the A-submodule D(π) := D̂ given by

π(a) := π(a) �D̂, a ∈ A.

Proof We show that the B-operator π(a) is closable. Suppose (xn) is a sequence
of D such that xn → 0 and π(a)xn → y in X for some y ∈ X . Then, for z ∈ D,

〈π(a)xn, z〉X = 〈xn,π(a+)z〉X → 〈y, z〉X = 0.

Hence y ∈ D⊥. Since π(a)xn ∈ D, we obtain 0 = 〈y,π(a)xn〉X → 0 = 〈y, y〉X , so
that y = 0. This proves that π(a) is closable.

Next we prove that the closure π(a) of π(a) is an A-operator. Let x ∈ D and
b ∈ A. SinceB is dense in A, there is a sequence (bn) of elements ofB converging
to b. Using Eq. (14.35) and the fact that π(a) is a B-operator we deduce

π(a)(x · bn) = (π(a)x) · bn → (π(a)x) · b and x · bn → x · b in X .

Therefore, from the definition of the closure it follows that x · b ∈ D(π(a) ) and
π(a) (x · b) = (π(a)x) · b = (π(a) x) · b. Thus, π(a) is an A-operator.

Using essentially the fact that the family of seminorm ‖ · ‖a, a ∈ A, is directed,
the remaining part of the proof follows the same pattern as in the Hilbert space case;
see the proof of Proposition 3.8. We do not carry out the details. �
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Many examples of ∗-representations on Hilbert C∗-modules can be derived from
the following simple lemma.

Lemma 14.48 Let X = A be the Hilbert A-module from Example 14.35, with A-
valued inner product 〈x, y〉X = x+y, and letB be a ∗-subalgebra of A. Let D be a
complex inner product space. Suppose that B is also a ∗-subalgebra of L+(D) and
there is a ∗-representation ρ of A on the complex inner product space D such that

ρ(a) · b ∈ B for a ∈ A, b ∈ B. (14.41)

Then there is a ∗-representation π of A (according to Definition 14.46) on the B-
submodule B of X defined by π(a)b := ρ(a) · b for a ∈ A, b ∈ B.

The dot “·” in (14.41) refers to the product of operators inL+(D). That is, ρ(a) · b
is the product of ρ(a) and b in the algebra L+(D), while π(a)b means the action of
a ∈ A on b ∈ B by the representation π.

Proof From the assumptions it follows easily that π is an algebra homomorphism
of A into L(B). Let a ∈ A and b, c ∈ B. Again we denote the product in L+(D) by
“·” in this proof. Using the ∗-algebra properties of ρ and L+(D) we derive

〈π(a)b, c〉X = (ρ(a) · b)+ · c = (b+ · ρ(a)+) · c = b+ · (ρ(a+) · c) = 〈b,π(a+)c〉X .

Here the first equality holds, because for elements ofB the A-valued inner product
〈·, ·〉X is the product in B and hence the product in L+(D) by the assumption. The
third equality is just the associativity of the multiplication in the algebra L+(D).
Hence π(a) ∈ L+

B(D) by Definition 14.43 and π is a ∗-homomorphism of A into
L+
B(D). �
The following example shows that each “ordinary” Hilbert space representation

gives rise to a ∗-representation on the Hilbert C∗-module of compact operators.

Example 14.49 (Hilbert space representations and C∗-algebras of compacts)
Suppose ρ is a ∗-representation ofA on aHilbert spaceH(ρ). LetA be theC∗-algebra
of compact operators on the Hilbert spaceH(ρ) and letX = A be the corresponding
C∗-module fromExample 14.35. Then the ∗-subalgebraF of all finite rank operators
of L+(D(ρ)) is also a ∗-subalgebra of A. Clearly, ρ(a) · x ∈ F for a ∈ A, x ∈ F .
Therefore, by Lemma 14.48, there is a ∗-representation π of A on the (dense) F-
submodule F of the Hilbert C∗-module X = A defined by π(a)x = ρ(a) · x for
a ∈ A and x ∈ F . �

Since HilbertC∗-modules have positive definite riggings (by axiom (iv) in Defini-
tion 14.32), all constructions and results of Sects. 14.3 and 14.4 remain valid here. In
particular, if A acts by a ∗-representation on a A-submodule of a Hilbert A-module,
then each ∗-representation π of theC∗-algebraA on aHilbert space yields an induced
∗-representation E−Ind π of A according to Definition 14.26.

In the rest of this section we develop three interesting examples of representations
on Hilbert C∗-modules.
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Example 14.50 (Representations on A = C0(R
d))

Suppose A is the C∗-algebra C0(R
d) of continuous functions on R

d vanishing at
infinity and X = A is the Hilbert A-module from Example 14.35. It is not difficult
to verify that there is a ∗-representation π of the ∗-algebra A := Cd [x] acting on the
A-submodule D(π) of X given by

π(p) f := p · f, D(π) := {
f ∈ C0(R

d) : p · f ∈ C0(R
d), p ∈ A

}
. (14.42)

Since A = Cd [x], the domain D(π) contains Cc(R
d), so D(π) is dense in X .

Now let d = 1 and let K be a nonempty nowhere dense subset of R. Let A be the
∗-algebra of rational functionswith poles (if there are any) in K . Then (14.42) defines
also a ∗-representation of A on the A-submodule D(π) of X . Since the functions of
the domain D(π) vanish at K , D(π) is not dense in X . But D(π) is essential in X ,
because K is nowhere dense. �

In Definition 14.46 we required only the B-linearity for the representation oper-
ators π(a) rather than the A-linearity. The reason is that the B-linearity for some
appropriate dense ∗-subalgebra B is often easily obtained, as shown by the follow-
ing Examples 14.51 and 14.52. Then, by Proposition 14.47, in both examples the
∗-representation π of A acts on an A-submodule by A-linear operators π(a).

Example 14.51 (Representation of the Hermitian quantum plane on a C∗-algebra)
In this example we use some facts from Sect. 11.6. Fix a number q > 0, q �= 1. Let
A := C〈x, x+|xx+ = qx+x〉 be the ∗-algebra of the Hermitian quantum plane.

Suppose μ is a Radon measure on (0,+∞) such that μ(M) = μ(q1/2M) for all
Borel sets M and let H := L2((0,+∞);μ). Then the operator U on H defined by
(Uϕ)(t) = ϕ(q1/2t) is unitary. Let Cc denote the set of continuous functions f on
(0,+∞) such that supp f ⊆ [a, b] for somenumbersa, b, where 0 < a < b < +∞.
Let M f be the multiplication operator by f ∈ Cc on H.

LetB be the linear span of operatorsUnM f , where f ∈ Cc, n ∈ Z. SinceUM f =
M f (q1/2·)U , B is a ∗-algebra of bounded operators on H. The completion of B in
the operator norm is a C∗-algebra A. Again let X := A the corresponding Hilbert
A-module from Example 14.35.

As noted in Sect. 11.6, the operator X on the Hilbert space H, defined by

(Xϕ)(t) := q1/2tϕ(q1/2t), D(X) = {
ϕ(t) ∈ H : tϕ(t) ∈ H}

, (14.43)

is q-normal with adjoint (X∗ϕ)(t) = tϕ(q−1/2t). Since the dense domain D := Cc
of H is invariant under X and X∗, there is a ∗-representation ρ of A on D given by
ρ(x) = X�D. Clearly, D is invariant under B and B is a ∗-subalgebra of L+(D).
For f ∈ Cc, n ∈ Z, we have XUnM f = Un+1Mg and X∗UnM f = Un−1Mh with
g, h ∈ Cc. This implies that ρ(a) · b ∈ B for a ∈ A, b ∈ B. Thus, the assumptions
of Lemma 14.48 are fulfilled. Hence there is a ∗-representation π of A on the B-
submodule B of X such that π(a)b = ρ(a) · b for a ∈ A, b ∈ B. �
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Example 14.52 (Representations of enveloping algebras on group C∗-algebras)
In this example, we freely use the notation and some facts on Lie groups from
Sects. 9.1 and 9.2. Let G be a Lie group and let A := E(g) be the enveloping alge-
bra of the Lie algebra g of G. Recall that C∞

0 (G) is a ∗-algebra with convolution
multiplication (9.4) and involution (9.7). Let f ∈ C∞

0 (G). Then, for each unitary
representation U of the Lie group G, there is a bounded operator U f on H(U )

defined by U f = ∫
U (g) f (g) dμl(g). By Proposition 9.6(vi), the map f �→ U f is

a (nondegenerate) ∗-representation of the ∗-algebra C∞
0 (G). Let ‖ f ‖∗ denote the

supremum of operator norms ‖U f ‖ over all unitary representations U of the Lie
group G.

Statement: ‖ · ‖∗ is a C∗-norm (see (B.2)) on the ∗-algebra C∞
0 (G).

Proof Let f, f1, f2 ∈ C∞
0 (G). Since ‖U f ‖ ≤ ∫ | f (g)|dμl(g), the supremum ‖ f ‖∗

is always finite. Using that f �→ U f is a ∗-representation we derive

‖U f1 f2‖ = ‖U f1U f2‖ ≤ ‖U f1‖ ‖U f2‖,
‖U f +‖ = ‖(U f )

∗‖ = ‖U f ‖,
‖U f + f ‖ = ‖U f +U f ‖ = ‖(U f )

∗U f ‖ = ‖U f ‖2.

Taking the supremum over U we conclude that ‖ · ‖∗ is a C∗-seminorm.
Suppose ‖ f ‖∗ = 0 for some function f ∈ C∞

0 (G). LetU be the left regular repre-
sentation ofG (see Example 9.9). Then, forϕ ∈ C∞

0 (G),U f ϕ is just the convolution
f ∗ ϕ, as shown by (9.19). Taking an approximate identity (that is, a sequence (ϕn)

of functions ϕn ∈ C∞
0 (G) such that

∫
ϕndμl = 1 and ∩nsuppϕn = {e}), we obtain

0 = limn f ∗ ϕn = f . Thus, f = 0, so ‖ · ‖∗ is a C∗-norm. �
From this Statement it follows that the completion of (C∞

0 (G), ‖ · ‖∗) is a C∗-
algebra, called the group C∗-algebra of G and denoted by C∗(G). (The same C∗-
algebra is obtained by completing L1(G;μl) in the C∗-norm ‖ · ‖∗. This is the usual
way to define the group C∗-algebra in the literature; see, e.g., [F89].) Again let X be
the Hilbert C∗-module for the C∗-algebra A := C∗(G) from Example 14.35.

Each element a ∈ A = E(g) acts as a right-invariant differential operator ã onG,
see (9.1), and there is a ∗-representation ρ ofA on the dense domainD := C∞

0 (G) of
the Hilbert space L2(G;μl) given by ρ(a)ϕ := ãϕ, ϕ ∈ C∞

0 (G), see Example 9.9.
It is not difficult to verify thatB = C∞

0 (G) is a ∗-subalgebra of L+(D) and we have
ρ(a) · f = ã f ∈ B for a ∈ A, f ∈ B. Hence Lemma 14.48 applies, so there is a
∗-representation π of A on the B-submodule B of X defined by π(a) f = ρ(a) · f
for a ∈ A, f ∈ B.

The ∗-representations π on B-submodules of Hilbert A-modules in Examples
14.51 and 14.52 are closely related to the compatible pairs studied in Sect. 13.4. For
instance, Lemma 13.21 states that the ∗-algebras A = E(g) and X = C∞

0 (G) form a
compatible pair. This means the action of A on X, defined by a � f := ã f , satisfies
the compatibility condition (13.13):

(a � f1)
+ f2 = f +

1 (a+ � f2) for a ∈ A, f1, f2 ∈ C∞
0 (G). (14.44)
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Set π(a) f := a � f . Then, in terms of the A-valued inner product on C∞
0 (G),

Eq. (14.44) reads as 〈π(a) f1, f2〉X = 〈 f1,π(a+) f2〉X . Therefore, condition (13.13)
implies that π is a ∗-representation of A on B = C∞

0 (G). �

14.7 Exercises

1. Let EA be a right A-rigged space. Show that Lin { [x, y]A : x, y ∈ EA} is a two-
sided ∗-ideal of A.

2. Suppose E is a weak A−B-imprimitivity bimodule. Carry out the proof that E
is a weak B−A-imprimitivity bimodule.

3. Show that the rigging in Example 14.6 defined by (14.3) is positive semi-definite.
4. Let A be the ∗-algebra C[t1, . . . , td ] of polynomials or the ∗-algebra of rational

functions onRd , equipped with the rigging [a, b]A = c a+b as in Example 14.5.
Are these rightA-rigged spaces nondegenerate?When are the rigged spaces full?

5. Carry out the proofs that the A−B-bimodules E in Examples 14.14 and 14.15
are weak A−B-imprimitivity bimodules.

6. Consider the quadratic modules Qm,k in Example 14.20 defined by (14.17).

a. Prove that Qm, j ⊆ Qm, j+1 for j = 0, . . . ,m − 1.
b. Prove that Qm,0 �= Qm,1 if C = C[t1, . . . , td ], d ≥ 2.

7. Prove that the set Mn(A)+ of hermitian matrices defined in Lemma 14.21 is a
quadratic module of Mn(A).

8. Show that the completion of a pre-Hilbert A-module is a Hilbert A-module.
9. Suppose Z is a compact Hausdorff space and H is a Hilbert space. Show that

the space X = C(Z;H) of continuous functions z �→ ϕ(z) from Z to H is a
Hilbert C∗-module over the C∗-algebraA = C(Z)withA-valued inner product
〈ϕ,ψ〉X (z) = 〈ϕ(z),ψ(z)〉H and pointwise multiplication as right A-action.

10. Let A be a C∗-algebra and (xn)n∈N a sequence of elements xn ∈ A such that∑
n ‖xn‖2 < ∞. Show that (xn) ∈ l2(A).

11. LetA be theC∗-algebra of compact operators on an infinite-dimensional Hilbert
space. Find a sequence (xn) ∈ l2(A) such that

∑
n ‖xn‖2 = +∞.

Hint: Set xn = λn〈·,ϕn〉ϕn , where (ϕn) is an orthonormal sequence and (λn) is
a null sequence which is not in l2(N).

12. Develop Example 14.52 for G = R
d . Prove in this case directly that π is a ∗-

representation on the Hilbert C∗-module C∗(Rd).

14.8 Notes

The pioneering work on induced representations, Morita equivalence and rigged
spaces for C∗-algebras is due to M. Rieffel [Rf74a], [Rf74b], see also [RW98].
General rigged spaces without positivity conditions, as in the text, are developed
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in the monograph [FD88]. Morita equivalence and rigged modules for general ∗-
algebras were studied extensively in [Ar99], [BW01], [BW05]. Standard texts on
Hilbert C∗-modules are [La94] and [RW98]. The transport of quadratic modules as
in Sect. 14.2 is taken from [Sch09]. Representations of ∗-algebras on Hilbert C∗-
modules are used in [My16].

A well-studied class of unbounded operators on Hilbert C∗-modules are the reg-
ular operators introduced by S. Baaj [B81] and investigated in [Wo91], [WN92]; see
[La94, Chap. 9 and 10] for a nice treatment. Let X and Y be Hilbert C∗-modules
over A. An A-operator of X into Y is called regular if t is closed, D(t) is dense
in X , D(t∗) is dense in Y and (I + t∗t)X is dense in X . A more general class of
operators are the graph regular operators introduced in [GS15]; their domains are
essential, but not necessarily dense. To illustrate the difference between regular and
graph regular operators we consider the special case X = Y = A := C0(Z), where
Z is a locally compact Hausdorff space. Then regular operators are multiplication
operators by functions of C(Z), while graph regular operators are multiplication
operators by functions which are continuous up to nowhere dense sets and for which
the modulus goes to infinity in a neighborhood of each discontinuity.

An interesting and important problem is how to associate aC∗-algebra to a class of
unbounded representations of a∗-algebra. There are various attempts and approaches,
the affiliated operators of Woronowicz [Wo95], the C∗-envelope of Dowerk and
Savchuk [DS13], and theC∗-hull of representations onHilbertC∗-modules ofMeyer
[My16].



Appendix A
Unbounded Operators on Hilbert Space

The following basic operator-theoretic notions and facts can be found in most books
on Hilbert space operators such as [RS72, RS75, BS87], or [Sch12].

Suppose H, H1, H2 are complex Hilbert spaces with inner products 〈·, ·〉, 〈·, ·〉1,
〈·, ·〉2, respectively. The bounded operators ofH1 intoH2 are denoted byB(H1,H2),
and we set B(H) := B(H,H). The Hilbert–Schmidt operators onH are denoted by
B2(H), the trace class operators by B1(H), and the trace by Tr.

By an operator of H1 into H2 we mean a linear mapping T of a linear subspace
D(T ) of H1, the domain of T , into H2. The kernel of the operator T is defined by
ker T := {ϕ ∈ D(T ) : Tϕ = 0} and its range is ran T := {Tϕ : ϕ ∈ D(T )}.

If T and S are operators of Hilbert spacesH andH1, respectively, intoH2, we say
S is an extension of T or T is a restriction of S and write T ⊆ S if H is a subspace
of H1, D(T ) ⊆ D(S) and Tϕ = Sϕ for ϕ ∈ D(T ). The restriction of T to a linear
subspace D of D(T ) is denoted by T �D.

Let T be an operator ofH1 intoH2. Then T is called closed if for each sequence
(ϕn) from D(T ) such that limn ϕn = ϕ in H1 and limn Tϕn = ψ in H2 we have
ϕ ∈ D(T ) and ψ = Tϕ. Further, T is called closable if it has a closed extension. In
this case, T has a smallest closed extension, called the closure of T and denoted by
T . Note that T is closable if and only if for each sequence (ϕn) fromD(T ) such that
limn ϕn = 0 inH1 and (Tϕn) converges inH2 we have limn Tϕn = 0.

A linear subspace D of the domain D(T ) is called a core for an operator T if for
eachϕ ∈ D(T ) there exists a sequence (ϕn) of vectorsϕn ∈ D such thatϕ = limn ϕn

inH1 and Tϕ = limn Tϕn inH2. If T is closable, this holds if and only if the closures
of T �D and T coincide.

Suppose D(T ) is dense inH1. The adjoint operator T ∗ is defined as follows: Its
domain D(T ∗) is the set of vectors ψ ∈ H2 for which there exists an η ∈ H1 such
that 〈Tϕ,ψ〉2 = 〈ϕ, η〉1 for allϕ ∈ D(T ); in this case T ∗ψ := η. Then T ∗ is a closed
operator of H2 intoH1 and ( T )∗ = T ∗. If T ⊆ S onH1, then S∗ ⊆ T ∗.
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The operator T is closable if and only if the domainD(T ∗) of its adjoint is dense
in H2; in this case, T ⊆ T ∗∗ and T = T ∗∗. In particular, T is closed if and only if
T = T ∗∗. Further, ker T ∗ = (ran T )⊥ and ker T = (ran T ∗)⊥.

If an operator T maps H intoH, we say that T is an operator on H.
For a linear subspace D ofH, the identity map of D is denoted by ID.
If T1 and T2 are operators of H1 and H2, respectively, into H, the direct sum

T := T1 ⊕ T2 is the operator T of H1 ⊕ H2 intoH defined by

T (ϕ1,ϕ2) = (T1ϕ1, T2ϕ2), ϕ1 ∈ D(T1),ϕ2 ∈ D(T2).

A closed subspace K of H is called reducing for an operator T on H if T is a
direct sum of operators acting on K and K⊥.

We shall say that an operator T on H is irreducible if {0} and H are the only
reducing subspaces for T , or equivalently, if T cannot be written as a direct sum of
two operators acting on nonzero Hilbert spaces. This holds if and only if 0 and I are
the only orthogonal projections P acting on H and satisfying PT ⊆ T P .

Now we suppose that T and S are operators onH.
Suppose D(S) is dense. If D(ST ) is dense, then T ∗S∗ ⊆ (ST )∗. If D(T + S) is

dense, then T ∗ + S∗ ⊆ (T + S)∗. Further, if D(Sn) is dense, then (S∗)n ⊆ (Sn)∗. In
all three caseswe do not have equality in general. But, if S is bounded andD(S) = H,
then T ∗S∗ = (ST )∗ and T ∗ + S∗ = (T + S)∗.

For a closed operator T the resolvent set ρ(T ) is the set of numbers z ∈ C for
which the operator T − z I has a bounded inverse (T − z I )−1 that is defined on the
whole Hilbert space H. The set σ(T ) := C\ρ(T ) is the spectrum of T . The subset
of all eigenvalues of the operator T is denoted by σp(T ).

An operator T is called symmetric if 〈Tϕ,ψ〉 = 〈ϕ, Tψ〉 for ϕ,ψ ∈ D(T ), or
equivalently, if 〈Tϕ,ϕ〉 is real for all ϕ ∈ D(T ). A symmetric operator is called
positive if 〈Tϕ,ϕ〉 ≥ 0 for ϕ ∈ D(T ); in this case write T ≥ 0.

Suppose T is an operator on H with dense domain D(T ). Then T is called
formally normal if D(T ) ⊆ D(T ∗) and ‖Tϕ‖ = ‖T ∗ϕ‖ for ϕ ∈ D(x) and normal
if T is formally normal and D(T ) = D(T ∗). Note that T is normal if and only if T is
closed and T ∗T = T T ∗. Further, a normal operator T is maximal formally normal,
that is, if S is formally normal onH and T ⊆ S, then T = S.

An operator T with dense domainD(T ) is symmetric if and only if T ⊆ T ∗. Any
densely defined symmetric operator is closable and its closure is also symmetric.

A densely defined operator T is called self-adjoint if T = T ∗ and essentially
self-adjoint if its closure T is self-adjoint, or equivalently, if T = T ∗.

Each self-adjoint operator T is maximal symmetric, that is, if S is a symmetric
operator acting on the same Hilbert space such that T ⊆ S, then T = S.
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Some important self-adjointness criteria are given in the following proposition.

Proposition A.1 Let z+, z− ∈ C be fixed such that Im z+ > 0, Im z− < 0. For any
densely defined symmetric operator T onH the following are equivalent:

(i) T is essentially self-adjoint.
(ii) T has a unique self-adjoint extension on H.
(iii) (T − z+ I )D(T ) and (T − z− I )D(T ) are dense inH.
(iv) D−(T ) := ker (T ∗ − z− I ) = {0} and D+(T ) := ker (T ∗ − z+ I ) = {0}.
If the symmetric operator T is positive, these conditions are equivalent to

(v) (T + z I )D(T ) is dense inH for one (then for all) z > 0.

Proof [Sch12, Propositions 3.8 and 3.15 and Theorem 13.10]. �
The vector spaces D±(T ) in Proposition A.1(iv) are the deficiency spaces of T .

Their dimensions d± = dimD± are called the deficiency indices of the symmetric
operator T ; they are independent of the particular choice of numbers z± satisfying
Im z+ > 0 and Im z− < 0.

Suppose T is a symmetric operator and TD(T ) ⊆ D(T ). Then

‖T kϕ‖2 ≤ ‖T nϕ‖2 + ‖ϕ‖2 for ϕ ∈ D(T ), k, n ∈ N0, k ≤ n. (A.1)

From (A.1) it can be derived that T n ⊆ (T )n . Further, if D ⊆ D(T ) is a core for
some power T n , it is also a core for each power T k , k ≤ n.

Corollary A.2 Suppose T is a densely defined symmetric operator and n ∈ N. If
T n is essentially self-adjoint, so is T . In this case, T n = ( T )n.

Proof Since T n is essentially self-adjoint, T n = (T n)∗ ⊇ (T ∗)n . We choose z ∈ C

such that zn = i and let ξ ∈ ker(T ∗ − z I ). Then T ∗ξ = zξ, so (T n)∗ξ = (T ∗)nξ =
znξ = iξ. Since T n = (T n)∗ is self-adjoint, Proposition A.1,(i)→(iv), gives ξ = 0.
Thus, ker(T ∗ − z I ) = {0} and ker(T ∗ − z I ) = {0}, upon replacing z by z. Hence
T is essentially self-adjoint by Proposition A.1,(iv)→(i).

Further, since T n ⊆ (T )n as noted above, (T )n is a symmetric extension of the
self-adjoint operators T n . Therefore, T n = (T )n . �

LetK j be a closed linear subspace ofH j , j = 1, 2. A partial isometrywith initial
space K1 and final space K2 is a linear operator T of H1 into H2 with domain H1

such that T is an isometric mapping of K1 onto K2 and Tϕ = 0 for ϕ ∈ K⊥
1 .

Proposition A.3 Suppose X is a densely defined closed operator of H1 into H2.
Then |X | := (X∗X)1/2 is a positive self-adjoint operator onH1, and there is a partial
isometry U ofH1 intoH2 with initial space K1 and final space K2, where

K1 : = (ker X)⊥ = ran X∗ = (ker |X |)⊥ = ran |X | = U ∗( ran X ), (A.2)

K2 : = ran X = (ker X∗)⊥ = (ker |X∗|)⊥ = ran |X∗| = U ( ran X∗ ), (A.3)
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such that X = U |X |. Moreover,

U ∗U = PK1 , UU ∗ = PK2 , |X∗| = UX∗ = XU ∗ = U |X |U ∗, (A.4)

where PK1 and PK2 are the projections of H1 andH2 onto K1 and K2, respectively.
If X = VC, where C is a positive self-adjoint operator onH1 and V is a partial

isometry of H1 intoH2 with initial space ran |X |, then C = |X | and V = U.

Proof [Sch12, Theorem 7.2]. �
The representation X = U |X | is called the polar decomposition of X and U is

the phase operator of X . Then X∗ = U ∗|X∗| is the polar decomposition of X∗.
Next we recall some basics on spectral integrals (see [Sch12, Chap.4] for precise

definitions and further results).
Let A be a σ-algebra of subsets of a set Ω . A spectral measure on A is a mapping

E ofA into the orthogonal projections of a Hilbert spaceH such that E(Ω) = I and
E(∪∞

n=1Mn)ϕ = ∑∞
n=1 E(Mn)ϕ, ϕ ∈ H, for any sequence (Mn)of pairwise disjoint

sets Mn ∈ A. Suppose E is a spectral measure on A. Then, for any A-measurable
complex function f on Ω , there exists the spectral integral

I( f ) :=
∫

Ω

f (λ) dE(λ).

This operator-valued integral is a closed normal operator onH with domain

D(I( f )) =
{
ϕ ∈ H :

∫

Ω

| f (λ)|2 d〈E(λ)ϕ,ϕ〉 < ∞
}
.

If the function f is bounded, the operator I( f ) is bounded. If f is the complex
conjugate function of f , then I( f )∗ = I( f ). For A-measurable functions f, g,

I( f ) + I(g) ⊆ I( f + g) and I( f )I(g) ⊆ I( f · g). (A.5)

In general, we do not have equalities in (A.5), but for any polynomial p ∈ C[x] we
have p(I( f )) = I(p( f )); see [Sch12, Theorem 4.16 and Proposition 4.22].

We say that two self-adjoint operators T and S on H strongly commute if their
resolvents (T − z I )−1 and (S − w I )−1 commute for some (then for all) z, w ∈ C\R.

The following result is the multi-dimensional spectral theorem.

Proposition A.4 Let d ∈ N. Suppose T = {T1, . . . , Td} is a d-tuple of pairwise
strongly commuting self-adjoint operators Tj on a Hilbert space H. Then there
exists a unique spectral measure ET on the Borel σ-algebra of Rd such that

Tj =
∫

Rd

λ j dET (λ1, . . . ,λd) , j = 1, . . . , d.
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Proof [Sch12, Theorem 5.23]. �
Then, for any Borel function f on R

d there exists the spectral integral

f (T ) := I( f ) ≡
∫

Rd

f (λ) dET (λ).

Let T be a single self-adjoint operator. By the spectral theorem (Proposition A.4),
there exists a unique spectral measure ET on the Borel σ-algebra of R such that

T =
∫

R

λ dET (λ).

The assignment f �→ f (T ) := ∫
R
f (λ) dET (λ) is the functional calculus of T . The

support of ET is equal to the spectrum of T . Two self-adjoint operators T and S on
H strongly commute if and only if their spectral measures ET and ES commute.

A one-parameter unitary group on a Hilbert space H is a homomorphism U of
R into the unitary operators on H such that limt→0U (t)ϕ = ϕ for all ϕ ∈ H.

If T is a self-adjoint operator, thenU (t) := eitT , t ∈ R, is a one-parameter unitary
group. The following converse of this fact is Stone’s theorem.

Proposition A.5 For each one-parameter unitary group U on a Hilbert space H,
there exists a unique self-adjoint operator T on H such that U (t) = eitT for t ∈ R.

The operator iT is called the infinitesimal generator of U. In fact,

D(T ) = {
ϕ ∈ H : lim

t→0
t−1(U (t) − I )ϕ exists in H}

,

Tϕ = −i
(
lim
t→0

t−1(U (t) − I )ϕ
)
, ϕ ∈ D(T ).

Proof [Sch12, Theorem 6.2]. �
In the rest of this appendix we develop the complexification of a real Hilbert

space. Suppose (K, 〈·, ·〉) is a real Hilbert space. This means that 〈·, ·〉 is a real-
valued inner product on the real vector space K such that K is complete in the norm
defined by ‖ϕ‖ := √〈ϕ,ϕ〉, ϕ ∈ K. We define a complex Hilbert space KC.

The elements ofKC are pairs ϕ + iψ := (ϕ,ψ) ∈ K × K. It is easily verified that
KC becomes a C-vector space with algebraic operations

(ϕ + iψ) + (ξ + iη) := ϕ + ξ + i(ψ + η),

(α + iβ)(a + ib) := αa − βb + i(αb + βa),

and there is an inner product 〈·, ·〉C on the complex vector space KC defined by

〈ϕ + iψ, ξ + iη〉C : = 〈ϕ, ξ〉 + 〈ψ, η〉 + i〈ψ, ξ〉 − i〈ϕ, η〉,

where ϕ,ψ, ξ, η ∈ K and α,β ∈ R. For the corresponding norm we have
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‖ϕ + iψ‖2
C

= ‖ϕ‖2 + ‖ψ‖2, ϕ,ψ ∈ K.

Therefore, (KC, ‖ · ‖C) is complete and hence a complex Hilbert space.
Let T be an R-linear operator on K. We define a C-linear operator TC on KC by

D(TC) = D(T ) + iD(T ), TC(ϕ + iψ) = Tϕ + iTψ, ϕ,ψ ∈ D(T ). (A.6)

Basic properties of T carry over almost verbatim to TC. For instance, if T is bounded,
so is TC and ‖T ‖ = ‖TC‖. Further, if T is densely defined, then TC is also densely
defined on KC and for the corresponding adjoints we have

D((TC)∗) = D(T ∗) + iD(T ∗), (TC)∗(ϕ + iψ) = T ∗ϕ + iT ∗ψ, ϕ,ψ ∈ D(T ∗).

Hence T is self-adjoint on K if and only if TC is self-adjoint on KC. In this case,
the spectra σ(T ) and σ(TC) coincide. For the self-adjoint operators T and TC the
spectral theoremholds and the spectralmeasures ET and ETC are related by ET (M) =
ETC(M)�K. (Proofs of these facts and further results about operators on K and KC

can be found, for instance, in [MV97, Remark 20.18].)
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Standard references for (complex) C∗-algebras and their representations are
[Di77b, KR83, Dv96]. Real C∗-algebras do not occur in most books on operator
algebras. They are treated extensively in the books [Gol82] and [Li03].

A Banach algebra is a complex algebra A equipped with a norm with respect to
which A is complete and which satisfies

‖ab‖ ≤ ‖a‖ ‖b‖ for a, b ∈ A. (B.1)

A Banach ∗-algebra is a Banach algebra which is simultaneously a ∗-algebra.
Definition B.1 A (complex) C∗-algebra is a Banach ∗-algebra with norm ‖ · ‖ and
involution a �→ a+ such that the norm satisfies the “C∗-condition”

‖a+a‖ = ‖a‖2 for a ∈ A. (B.2)

A norm satisfying (B.1) and (B.2) is called a C∗-norm.

By (B.1) and (B.2), ‖a‖2 = ‖a+a‖ ≤ ‖a+‖ ‖a‖, so that ‖a‖ ≤ ‖a+‖. Replacing
a by a+ yields ‖a+‖ = ‖a‖. Thus, ‖a+‖ = ‖a‖, a ∈ A, for each C∗-algebra A.

Suppose A is a C∗-algebra. Let Aher := {a ∈ A : a+ = a}. An element a ∈ Aher

is called positive, denoted a ≥ 0, if a ∈ ∑
A2, or equivalently, if the spectrum of a

is contained in R+. For a, b ∈ Aher we write a ≤ b or b ≥ a if b − a ≥ 0. Note that
0 ≤ a ≤ b implies ‖a‖ ≤ ‖b‖.

Two C∗-algebras are called isomorphic if there exists a ∗-isomorphism of the
corresponding ∗-algebras which preserves the norm.

If X is a locally compact Hausdorff space, then the algebra C0(X ) of continuous
functions onX vanishing at infinity is a commutativeC∗-algebra with the supremum
norm and complex conjugation as involution. Note that C0(X ) is unital if and only
if the space X is compact. Each commutative C∗-algebra is isomorphic to some
C∗-algebra C0(X ).
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Let H be a Hilbert space. For a subset N of B(H) its commutant is defined by

N ′ := {
T ∈ B(H) : T S = ST for S ∈ N }

.

Now we introduce two locally convex topologies on B(H): The weak operator
topology is defined by the family of seminorms T �→ |〈Tϕ,ψ〉|, where ϕ,ψ ∈ H,
and the strong operator topology is defined by the seminorms T �→ ‖Tϕ‖, where
ϕ ∈ H. A net (Tj ) j∈J of operators Tj ∈ B(H) converges to T ∈ B(H) in the weak
operator topology if and only if lim j 〈(Tj − T )ϕ,ψ〉 = 0 for ϕ,ψ ∈ H and in the
strong operator topology if and only if lim j ‖(Tj − T )ϕ‖ = 0 for ϕ ∈ H.

Definition B.2 A ∗-subalgebra N of B(H) which contains the identity operator
is called a von Neumann algebra if it is closed in the weak operator topology, or
equivalently, in the strong operator topology.

By the double commutant theorem [KR83, 5.3.1], a ∗-subalgebraN ofB(H)with
I ∈ N is a von Neumann algebra if and only if N is equal to (N ′)′.

LetN be a von Neumann algebra onH. A densely defined closed operator A on
H is affiliated with N if T A ⊆ AT for T ∈ N ′, or equivalently, for all unitaries
T ∈ N ′ [KR83, p. 342]. If A = U |A| is the polar decomposition of A, this holds
if and only if U ∈ N and the spectral projections of |A| are in N . A self-adjoint
operator is affiliated with N if and only if its spectral projections are in N .

Now we suppose that A is a complex C∗-algebra. We collect some basic notions
and results on ∗-representations of A.

A ∗-representation of A on a (complex) Hilbert spaceH is a ∗-homomorphism π
of A into the (complex) ∗-algebra B(H). Then we writeH(π) := H.

Let πi , i ∈ I, be a family of ∗-representations of A. The direct sum π = ⊕i∈Iπi is
the ∗-representation π on the direct sum Hilbert space H(π) := ⊕i∈IH(πi ) defined
by π(a)(ϕi ) = (πi (a)ϕi ) for a ∈ A and (ϕi ) ∈ H(π).

Two ∗-representations π1 and π2 of A are called unitarily equivalent if there is a
unitary operator U of H(π1) onto H(π2) such that π2(a) = Uπ1(a)U−1 for a ∈ A.

Suppose π is a ∗-representation of A.
A closed linear subspace K of H(π) is called invariant under π if π(a)K ⊆ K

for all a ∈ A. In this case, πK(a) := π(a)�K, a ∈ A, defines a ∗-representation πK
of A on K. The orthogonal complement K⊥ = {ψ ∈ H(π) : 〈ψ,ϕ〉 = 0,ϕ ∈ K} is
also invariant under π, and we have π = πK ⊕ πK⊥ .

Further,π is called irreducible if {0} andH(π) are the only closed linear subspaces
of H(π) that invariant under π, or equivalently, if π is a direct sum π1 ⊕ π2 of
∗-representations, then H(π1) = {0} or H(π1) = H(π). By Schur’s lemma, π is
irreducible if and only if the commutant π(A)′ of π(A) is C · I .

A ∗-representation π is called cyclic if there exists a vector ϕ ∈ H, called a cyclic
vector for π, such that π(A)ϕ is dense in H. Each ∗-representation of A is a direct
sum of cyclic ∗-representations.

We say π is nondegenerate if π(A)H(π) := Lin {π(a)ϕ : a ∈ A,ϕ ∈ H(π)} is
dense inH(π) and π is faithful if π(a) = 0 implies a = 0.
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The famousGelfand–Naimark theorem [KR83, 4.5.6] states that everyC∗-algebra
has a faithful ∗-representation. Thus, eachC∗-algebra is isomorphic to a norm-closed
∗-subalgebra of B(H) for some Hilbert space H.

A linear functional f on A is positive if f (a+a) ≥ 0 for all a ∈ A. Each positive
functional f on A is hermitian (that is, f (a+) = f (a) for a ∈ A) and continuous,
and we have ‖ f ‖ = f (1) if A is unital. A state on a C∗-algebra is a positive linear
functional of norm 1. A state f on A is called pure if it is an extreme point of the
convex set of all states of A.

By the GNS construction [Dv96, Theorem I.9.6], for each positive functional on a
C∗-algebraA there exists a, unique up to unitary equivalence, cyclic ∗-representation
ρ f of A with cyclic vector ϕ such that f (a) = 〈π(a)ϕ,ϕ〉, a ∈ A. If f is a state, this
∗-representation ρ f is irreducible if and and only if f is pure.

In the rest of this appendix we discuss real C∗-algebras. The definitions of real
Banach algebras and Banach ∗-algebras are the same as in the complex case.

Definition B.3 A real C∗-algebra is a real Banach ∗-algebra A such that

‖a‖2 ≤ ‖a+a + b+b‖ for a, b ∈ A. (B.3)

The norm ‖ · ‖ of each real C∗-algebra satisfies the C∗-condition (B.2). Indeed,
from (B.3), applied with b = 0, and (B.1) we obtain

‖a‖2 ≤ ‖a+a‖ ≤ ‖a+‖ ‖a‖ (B.4)

so that ‖a‖ ≤ ‖a+‖ and hence ‖a‖ = ‖a+‖. Inserting this into (B.4) gives (B.2).
In contrast to complex C∗-algebras, (B.3) does not follow from the C∗-condition.

(For the real ∗-algebra A := C with involution z+ = z and absolute value as norm,
(B.2) is valid, but (B.3) is not for a = 1, b = i, since 1+1 + i+i = 0.)

A real Banach∗-algebraA is a realC∗-algebra if and only if theC∗-condition (B.2)
holds, and the element 1 + a+a of the unitizationA1 is invertible inA1 for all a ∈ A.
(This follows by combining Corollary 5.2.1 and Proposition 7.3.4 in [Li03].) This
characterization is often taken as the definition of a real C∗-algebra in the literature
(for instance, in [Gol82]) and [DB86]).

Let A be a real C∗-algebra. A ∗-representation of A is a ∗-homomorphism into
the ∗-algebra B(H) for a real Hilbert spaceH. Many notions and results are similar
to the complex case, but there are also fine distinctions; we will discuss one in the
next paragraph. First we note that, by Schur’s lemma [Li03, Proposition 5.3.7], a
∗-representation π of A is irreducible if and only if π(A)′her = R · I .

Suppose π is irreducible. Let a ∈ π(A)′, a �= 0. Then, since aa∗, a∗a ∈ π(A)′her,
there are real numbers α,β such that aa∗ = αI and a∗a = β I . By a �= 0, we have
α �= 0 and β �= 0. Hence a has a left inverse and a right inverse, so a is invertible and
π(A)′ is a division algebra. Thus π(A)′ is a real normed division algebra. Therefore,
by Mazur’s theorem [Ri47, Theorem 1.7.6], π(A)′ is isomorphic to R orC orH, the
quaternions. All three cases can occur. Recall that, for an irreducible ∗-representation
π of a complex C∗-algebra, π(A)′ is isomorphic to C.
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Let X be a locally compact Hausdorff space and τ : X �→ X a homeomorphism
such that τ 2 = Id. Then the real ∗-subalgebra

C0(X ; τ ) := {
f ∈ C0(X ) : f (τ (x)) = f (x), x ∈ X }

of C0(X ) is a commutative real C∗-algebra. Note that if τ = Id, then C0(X ; τ ) is
just the real C∗-algebra of real-valued functions of C0(X ). By a theorem of Arens
and Kaplansky [AK48], [Gol82, Theorem 10.7], each commutative real C∗-algebra
is isomorphic to some C0(X ; τ ).

The counterpart of the Gelfand–Naimark theorem for real C∗-algebras is the
following result of Ingelstam [I64], [Gol82, Theorem 15.3]: Any real C∗-algebra is
isomorphic to a norm-closed real ∗-subalgebra of B(H) for some real Hilbert space
H.

Suppose H is a real Hilbert space and A is a norm-closed real ∗-subalgebra of
B(H). From the formula ‖T ‖ = sup {|〈Tϕ,ϕ〉| : ‖ϕ‖ = 1} for T = T ∗ ∈ B(H) it
follows easily that condition (B.3) is fulfilled, so A is a real C∗-algebra according to
Definition B.3.

Further, let HC be the complexification of H. For T ∈ B(H) let TC denote the
operator ofB(HC) defined by (A.6). Recall that ‖T ‖ = ‖TC‖. Then themap T �→ TC
is an isometric (real) ∗-isomorphism of A on a real ∗-subalgebra of B(HC), and
there is a (complex) ∗-homomorphim � of the complexification AC = A + iA of
A on a complex ∗-subalgebra �(AC) of B(HC) given by �(T + iS) = TC + iSC,
T, S ∈ A. Clearly, TC + iSC = 0 implies T = S = 0, so� is a ∗-isomorphism. Since
A is norm-closed,�(AC) is norm-closed inB(HC) and hence a complexC∗-algebra.
We define a C∗-norm on AC by ‖a‖C := ‖�(a)‖ for a ∈ AC. Since ‖T ‖ = ‖TC‖ for
T ∈ B(H), we have ‖a‖C = ‖a‖ for a ∈ A. By the preceding sketch of argumentswe
have shown that the complexification of the real C∗-algebra (A, ‖ · ‖) is the complex
C∗-algebra (AC, ‖ · ‖C).

Combining the results of the two last paragraphs it follows that the complexifi-
cation AC of each real C∗-algebra A is a complex C∗-algebra. Thus, a real Banach
∗-algebra (A, ‖ · ‖) is a real C∗-algebra if and only if there is a norm ‖ · ‖C on the
complexification AC which coincide with ‖ · ‖ on A such that (AC, ‖ · ‖C) is a com-
plex C∗-algebra. This result can be also taken as the definition of a real C∗-algebra.

Given a complexC∗-algebraB, it is natural to askwhether it is the complexification
AC of a real C∗-algebra A. In this case, A is called a real form of B. For instance,
the complex C∗-algebra M2(C) has the nonisomorphic real forms M2(R) andH (see
Exercise 2.6). As shown by A. Connes (1977), there exists a von Neumann algebra
that has no real form. In contrast, other von Neumann algebras (for instance, the
hyperfinite I I1 factor) have a unique real form.



Appendix C
Locally Convex Spaces and Separation
of Convex Sets

First we define locally convex topologies and locally convex spaces.
A brief introduction into the theory of locally convex spaces is given in [Cw90,

Chap. IV]. An advanced treatment is the monograph [Sh71].
In this appendix, E and F are K-vector spaces, where K = R or K = C.
A seminorm on E is a mapping p : E �→ [0,+∞) such that p(λx) = |λ|p(x)

and p(x + y) ≤ p(x) + p(y) for all λ ∈ K and x, y ∈ E .

Suppose ΓE is a family of seminorms on E such that p(x) = 0 for all p ∈ ΓE

implies x = 0. The locally convex topology defined by ΓE is the topology τ on E
for which the sets

{
y ∈ E : p1(x − y) ≤ ε, . . . , pk(x − y) ≤ ε

}
,

where p1, . . . , pk ∈ ΓE , k ∈ N, ε > 0, form a base of neighborhoods of x ∈ E . By
the separation assumption on ΓE (i.e., “p(x) = 0 for all p ∈ ΓE implies x = 0”),
this topology τ is Hausdorff.

The family ΓE is called directed if, given p1, p2 ∈ ΓE , there exists a p ∈ ΓE such
that p j (x) ≤ p(x) for x ∈ E , j = 1, 2. The family of seminorms p1 + · · · + pk ,
where p j ∈ ΓE and k ∈ N, is directed and defines the same topology as ΓE .

A locally convex space is a vector space E equipped with some locally convex
topology τ ; in this case we also write E[τ ].

A net (x j ) j∈J of elements x j ∈ E converges to an element x ∈ E in the locally
convex space E[τ ] if and only if lim j p(x j − x) = 0 for all p ∈ ΓE .

A locally convex topology ismetrizable, that is, it is given by a metric, if and only
if the topology can be defined by a countable family of seminorms.

A Frechet space is a complete metrizable locally convex space.
Let E and F be locally convex spaces with defining families of seminorms ΓE

and ΓF , respectively. A linear mapping T : E �→ F is continuous if and only if for
each q ∈ ΓF there exist seminorms p1, . . . , pk ∈ ΓE and a constant c > 0 such that
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q(T (x)) ≤ c(p1(x) + · · · + pk(x)) for x ∈ E .

If ΓE is directed, this holds if and only if for any q ∈ ΓF there are p ∈ ΓE and c > 0
such that q(T (x)) ≤ cp(x), x ∈ E .

The vector space of all continuous linear functionals on a locally convex space
E[τ ] is called the dual space of E[τ ] and denoted by E ′.

The family of all seminorms on a vector space E defines the finest locally convex
topology τst on E . Each linear mapping of E[τst] into another locally convex space
is continuous. In particular, each linear functional on E is τst-continuous, so the dual
space of E[τst] is the vector space E∗ of all linear functionals on E .

A dual pairing of vector spaces E, F is a bilinear mapping (·, ·) : E × F �→ K.
Theweak topologyσ(E, F) is the locally convex topology on E defined by the family
of seminorms e �→ |(e, f )|, where f ∈ F . The dual space of the locally convex space
E[σ(E, F)] is given by the linear functionals e �→ (e, f ), f ∈ F .

In the second part of the appendix we deal with the separation of convex sets.
In what follows, E denotes a real vector space. We denote by E∗ the vector space

of all linear functionals f : E → R.
A subset C of E is called convex if λa + (1 − λ)b ∈ C for a, b ∈ C , λ ∈ [0, 1].
Apoint x ∈ C is said to be an extremepointof a convex setC if x = λy + (1 − λ)z

with y, z ∈ C and λ ∈ (0, 1) implies x = y = z.
A point e ∈ E is called an algebraically interior point of a set C if, given a ∈ E ,

there exists a number λa > 0 such that e + λa ∈ C for λ ∈ [−λa,λa].
The following two propositions are basic separation results for convex sets.

Proposition C.1 Let A and B be nonempty disjoint convex sets in E such that A has
an algebraically interior point. Then there exists a linear functional f ∈ E∗, f �= 0,
such that

sup{ f (b) : b ∈ B} ≤ inf{ f (a) : a ∈ A}. (C.1)

Proof [Kö60, §17, 1, (3), p. 187] or [H75, Chap. I, §4, B, Corollary, p.15]. �
Proposition C.2 Suppose E is a locally convex space and A and B are nonempty
disjoint convex subsets of E. If B is compact and A is closed in E, then there exists
a continuous linear functional f : E �→ R such that

sup{ f (b) : b ∈ B} < inf{ f (a) : a ∈ A}. (C.2)

Proof [Sh71, Chap. II, 9.2]. �
Definition C.3 A subset P of E is called a cone if

a + b ∈ P and λa ∈ P for a, b ∈ P, λ ≥ 0.

For a cone P in E , the dual cone is the cone P∧ in E∗ defined by
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P∧ = { f ∈ E∗ : f (a) ≥ 0 for a ∈ P}. (C.3)

If A is a cone P in E , it is obvious that the infima in (C.1) and (C.2) are zero, so
the functionals f in Propositions C.1 and C.2 belong to the dual cone P∧.

From now on we suppose P is a cone in E . The cone P gives rise to an ordering
on the vector space E by defining “a ≤ b if and only if b − a ∈ P” for a, b ∈ E .

A linear functional f ∈ P∧ is called extremal if g ∈ P∧ and f − g ∈ P∧ imply
that g = α f for some number α ∈ [0, 1].

We say an element e ∈ E is an order unit for P if, given a ∈ E , there exists a
λ > 0 such that −λe ≤ a ≤ λe. A subspace X of E is called cofinal for P if for any
b ∈ E there exists an x ∈ X such that x ≥ b.

Suppose e is an order unit for P . Clearly, then E = P − P and R · e is cofinal.
The relations −λe ≤ a ≤ λe for λ > 0 imply that e ≥ 0, that is, e ∈ P . Further, it
follows easily that e is an algebraically interior point of P .

Except from the extremality the following propositions are standard facts; the first
is [Cw90, Theorem 9.8] and the second follows from Propositions C.1, applied to
A = P , B = {c}. We carry out the proofs to obtain the extremality of f .

Proposition C.4 Suppose P is a cone in E and E0 is a linear subspace of E which
is cofinal in E for P. Let P0 = P ∩ E0. Each extremal functional f0 ∈ (P0)∧ on E0

has an extension to an extremal functional f ∈ P∧ on E.

Proof Suppose f1 is a linear functional on a linear subspace E1 ⊇ E0 of E such that
f1 is an extension of f0, nonnegative on P1 := P ∩ E1 and extremal in (P1)∧.
If E1 = E we are done, so we can assume that E1 �= E . We fix an element b ∈ E

such that b /∈ E1 and set E2 = E1 + R · b. Put

γ := sup
{
f1(a) : a ∈ E1, a ≤ b

}
, δ := inf

{
f1(a) : a ∈ E1, b ≤ a

}
. (C.4)

Since E1 ⊇ E0 is cofinal, the sets in (C.4) are not empty and γ ∈ R and δ ∈ R are
defined. By b /∈ E1, there is a well-defined linear functional f2 on E2 given by

f2(a + λb) := f1(a) + λγ, a ∈ E1, λ ∈ R.

We prove that f2 is nonnegative on P2 := P ∩ E2. Let x = a + λb ∈ P2, where
a ∈ E1 and λ ∈ R. If λ = 0, then x = a ∈ P1 and so f2(x) = f1(a) ≥ 0.

If λ > 0, then b ≥ −λ−1a, hence γ ≥ f1(−λ−1a) by the definition of γ. There-
fore, λγ ≥ − f1(a) and f2(x) = f1(a) + λγ ≥ 0.

Now suppose λ < 0. Then a ≥ −λb and (−λ)−1a ≥ b, so f1((−λ)−1a) ≥ δ by
the definition of δ and f1(a) ≥ −λδ. Since f1 is nonnegative on P1 by assumption,
γ ≤ δ. Therefore, since λ < 0, we obtain f2(x) = f1(a) + λγ ≥ f1(a) + λδ ≥ 0.
This completes the proof of the assertion that f2 is nonnegative on P2.

Next we show that f2 is extremal in (P2)∧. Take a functional g ∈ (P2)∧ such that
f2 − g ∈ (P2)∧. Then, in particular, g(a) ≤ f2(a) = f1(a) for a ∈ P1. Since f1 is
extremal in (P1)∧, there exists an α ∈ [0, 1] such that g(a) = α f1(a) for all a ∈ E1.
We prove that g(b) = αγ.
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Suppose a ∈ E1 and b ≥ a. Since g ∈ (P2)∧, g(b) − α f1(a) = g(b − a) ≥ 0,
so that g(b) ≥ α f1(a). Taking the supremum over a and using that α ≥ 0, we get
g(b) ≥ αγ. On the other side, since f1(a) = f2(a) and f2(b) = γ, we derive

γ − g(b) − (1−α) f1(a) = γ − f1(a) − g(b) + α f1(a) = f2(b−a) − g(b−a) ≥ 0,

so that γ − g(b) ≥ (1 − α) f1(a). Taking again the supremum over a, we obtain
γ − g(b) ≥ (1 − α)γ by 1 − α ≥ 0. Hence g(b) ≤ αγ. Therefore, combining both
inequalities proved in the preceding, we obtain g(b) = αγ. Since f2(b) = γ, we
have g = α f2, which proves that f2 is extremal.

The proof is completed by a standard Zorn’s lemma argument. Consider the set
of pairs ( f1, E1) as above with the ordering ( f1, E1) � ( f̃1, Ẽ1) if E1 ⊆ Ẽ1 and
f1 = f̃1�E1. Zorn’s lemma implies that there is a maximal pair ( f1, E1). Then, by
the preceding proof, wemust have E1 = E , P1 = P , so f := f1 ∈ P∧ is an extremal
extension of f0. �
Proposition C.5 Suppose P is a cone in a real vector space E which has an order
unit e. Then, for any element c ∈ E such that c /∈ P, there exists an extremal linear
functional f ∈ P∧ such that f (e) = 1 and f (c) ≤ 0.

Proof Let E0 = Lin {c, e} and P0 := P ∩ E0. We show that there is an extremal
functional f0 ∈ (P0)∧ such that f0(e) = 1 and f0(c) ≤ 0. Then, since e is an order
unit, E0 ⊇ R · e is cofinal in E , so the desired extension exists by Proposition C.4.

First suppose c and e are linearly dependent. Then c = αe with α ∈ R. Since
e ∈ P as noted above, α ≤ 0, so the functional f0 defined by f0(λe) = λ has the
desired properties. From now on we assume that c and e are linearly independent.

Next note that −e /∈ P . (Otherwise, since e ∈ P is an order unit, we then obtain
c ∈ P , which contradicts the assumption c /∈ P .) Set

γ0 := sup
{
γ : γe ≤ c

}
, δ0 := inf

{
δ : c ≤ δe

}
. (C.5)

Since e is an order unit, there are such numbers γ, δ. Further, γe ≤ c ≤ δe implies
(δ − γ)e ≥ 0. Thus, since −e /∈ P0, it follows that δ ≥ γ and hence δ0 ≥ γ0.

Since e and c are linearly independent, we can define a linear functional f0 on E0

by f0(c) = γ0 and f0(e) = 1. By c /∈ P0 and e ∈ P0, γe ≤ c implies γ < 0, so that
f0(c) = γ0 ≤ 0.
We show that f0 is P0-positive. Let x = αe + βc ∈ P0 with α,β ∈ R.
First let β = 0. Then x = αe ≥ 0. By −e /∈ P0, we have α ≥ 0 and so f0(x) =

α ≥ 0.
Next let β > 0. Upon scaling we can assume that β = 1. Then, x = αe + c ≥ 0

and c ≥ −αe. Hence −α ≤ γ0 by (C.5), so that f0(x) = α + γ0 ≥ 0.
Finally, let β < 0. Again, upon scaling by −β−1, we assume x = αe − c ≥ 0, so

that αe ≥ c. Therefore, α ≥ δ0 by (C.5) and f0(x) = α − γ0 ≥ α − δ0 ≥ 0.
We prove that f0 is extremal in (P0)∧. Let g ∈ (P0)∧ be such that f0 − g ∈ (P0)∧.

If γe ≤ c, then g(γe) = γg(e) ≤ g(c). Since e ∈ P0, we have g(e) ≥ 0. Taking the
supremum over γ we get γ0g(e) ≤ g(c). On the other side,
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( f0 − g)(γe) = γ0 − γg(e) ≤ ( f0 − g)(c) = γ0 − g(c)

gives g(c) ≤ γg(e) ≤ γ0g(e). Thus g(c) = γ0g(e). Therefore, g = g(e) f0. Since
e ∈ P0, we have ( f0 − g)(e) = 1 − g(e) ≥ 0, so that g(e) ∈ [0, 1]. This completes
the proof of the extremality of f0. �
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